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HIGHLIGHTS

* Ecological risk assessment of chemical
pollution was performed in four Iberian
rivers.

* Relationships between chemical risk
and biological responses in situ were
examined.

* Acute risk effects at more than 40% and
chronic at all sites were present.

* Both regulated and emerging compounds
are responsible for chronic risk.

* Decrease of sensitive species was corre-
lated with the increase of the risk.
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ABSTRACT

Ecotoxicological risk assessment of chemical pollution in four Iberian river basins (Llobregat, Ebro, Jicar and
Guadalquivir) was performed. The data set included more than 200 emerging and priority compounds measured
at 77 sampling sites along four river basins studied. The toxic units (TU) approach was used to assess the risk of
individual compounds and the concentration addition model (CA) to assess the site specific risk. Link between
chemical pollution and aquatic macroinvertebrate communities in situ was examined by using four biological
indexes; SPEAR (“Species at Risk Index”) as the indicator of decline of sensitive species in relation to general
organic (SPEARganic) and pesticides (SPEARpesticides) pPollution; and Shannon and Margalef biodiversity indexes.
The results of the study suggested that organic chemicals posed the risk of acute effects at 42% of the sampling
sites and the risk of chronic effects at all the sites. Metals posed the acute risk at 44% of the sites. The main drivers
of the risk were mainly pesticides and metals. However, several emerging contaminants (e.g. the antidepressant
drug sertraline and the disinfectant triclosan) were contributing to the chronic effects risk. When risk associated
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with metals and organic chemicals was compared, the latter dominated in 2010, mainly due to the presence of
highly toxic pesticides, while metals did in 2011. Compounds that are not regulated on the European level
were posing the risk of chronic effects at 23% of the sites. The decline of sensitive macroinvertebrate taxa
expressed in terms of SPEAR index was correlated with the increase of toxic stress related to organic compounds
Biodiversity indexes were negatively correlated with the metals and the urban land use type in the catchment.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Aquatic ecosystems are impacted by a variety of stressors, including
organic and inorganic stressors, excess input of nutrients, geomorpho-
logical alterations, land use changes, hydrological stress, invasive
species and pathogens (Vorosmarty et al., 2010). As a consequence,
the biodiversity decline is one of the greatest ecological problems
threatening aquatic ecosystems (Beketov et al., 2013). However, little
is known beyond the described effects of single stressors on specific
ecological endpoints (Navarro-Ortega et al., 2015) and our understand-
ing of the main causes for the losses of biodiversity still remains vague
(Beketov et al.,, 2013). Rivers are receiving numerous chemical com-
pounds originated from anthropogenic activities on a daily basis. As a
result, complex mixtures of potentially dangerous compounds are
present in the aquatic environment. However, site-specific exposures
can vary a lot and some sites are likely to be affected more than others
due to local conditions and specific vulnerability characteristics (Brack
et al., 2015). Thus, the characterization of the constituents of these
mixtures and the identification of the compounds of the highest
concern in different spatial frameworks is one of the key issues for the
protection of natural ecosystems (Vordsmarty et al., 2010).

Besides a number of regulated pollutants which are known to exhibit
adverse effects, there is a large number of chemicals currently in use that
are not taken into account in the routine water quality monitoring
(Barcel6 and Petrovic, 2007). These compounds are commonly referred
to as emerging contaminants. They encompass a variety of substances
used both in industry and households; such as pharmaceuticals, personal
care products, hormones, industrial chemicals or their byproducts and the
transformation products, all together having in common that their envi-
ronmental allowed levels are not regulated. In the European Union, the
Water Framework Directive (WFD) Directive 2013/39/EU (2013) is the
legislation concerning the chemical pollution which aims to achieve
good chemical status of water bodies by meeting the Environmental
Quality Standards (EQS) for the 45 so-called priority substances (PS)
and priority hazardous substances (PHS). In addition, under the WFD,
the EU member states are obliged to set quality standards for river basin
specific pollutants discharged in each water body and to take action to
meet these quality standards as a part of ecological status. A question
that remains open is to what extent priority pollutants represent chemical
status in comparison with unregulated chemicals. Here we address this
issue from the perspective of their associated ecotoxicological risk.

Another challenge for the scientist dealing with aquatic risk assess-
ment is revealing the link between water pollution and biological com-
munity responses. Due to the presence of multiple stressors, their
unknown joint effects and the complexity of the biological responses, it
is very difficult to distinguish the influence of particular stressors on af-
fected ecosystems. Moreover, in recent years, studies in ecology are in-
creasingly emphasizing that biodiversity loss implies more than the
mere loss of species (i. e. taxonomic diversity) (Feld et al., 2014). Hence,
the functional component of biodiversity should rather be addressed by
using the concept of biological traits (e.g. generation time, body size)
(Beketov and Liess, 2008; Feld et al., 2014). Commonly used taxonomic
richness and diversity metrics (e.g. Shannon or Margalef diversity index-
es) are dependent on both anthropogenic influences and natural longitu-
dinal gradient of environmental factors in rivers as altitude, temperature,
stream width, nutrition status and velocity (Minshall et al.,, 1985; Beketov
and Liess, 2008; Paller et al., 2006) so they might not be able to

characterize the toxicant specific influence of ecosystems. To cope with
this problem stressor specific, traits based metric SPEAR index was devel-
oped for pesticides (Liess and Von Der Ohe, 2005), general organic toxi-
cants (e.g. petrochemicals, synthetic surfactants) (Beketov and Liess,
2008) and salinity (Schéfer et al,, 2011a) which is poorly dependent on
the natural longitudinal factors (Beketov and Liess, 2008).

In this context our study is addressing the following objectives. First,
to assess the area specific levels of the risk posed to aquatic ecosystems
on the river basin level for more than 200 emerging and priority pollut-
ants in four Iberian river basins using the toxic unit concept. Second, to
evaluate whether the current list of WFD priority pollutants is enough
to estimate the ecotoxicological risk in these basins or there are other
compounds present that could be more or equally important in terms of
risk. And third, to determine the potential relationship between the
ecotoxicity associated with local mixtures of pollutants and aquatic mac-
roinvertebrate biological community responses using four different met-
rics: Shannon and Margalef biodiversity indexes and SPEAResticides and
SPEARorganic~

To tackle these questions we used as case study four rivers of the
Iberian Peninsula for which both biological and chemical data were pre-
viously gathered (Navarro-Ortega et al.,, 2012).

2. Materials and methods
2.1. Study area

Four Iberian river basins (Fig. 1) were studied as the representatives
of Mediterranean rivers. Detailed description of the study area can be
found elsewhere (Kuzmanovic et al., 2015).

The Llobregat is the river situated in the North East of Iberian
Peninsula. The lower part of the basin is subjected to strong anthropo-
genic pressures due to high proportion of the urban and industrial
land use types in that area. In the middle part of the basin most of the
agricultural lands are situated. As a typical Mediterranean river,
Llobregat is subjected to decreased flow in the summer periods as a
consequence of Mediterranean climate (Gasith and Resh, 1999). The
Ebro is the large river situated in North of the Peninsula. The main
pressures for water quality are coming from agriculture developed
along the river basin. The urban and industrial centers are scattered in
the basin, mostly in the North East and central part of the basin. The
Jcar basin is situated in the East of Iberian Peninsula characterized by
semi-arid climate. The most of the agricultural and urban areas are
located in the medium and lower parts. Thus, these areas are receiving
the most of the combined pressures together. The Guadalquivir basin,
situated in the South of the Peninsula as a consequence of the high
population, is subjected to strong anthropogenic pressures that may
cause deterioration of water quality. A large portion of the basin is de-
voted to agricultural use which might result in water quality deteriora-
tion due to input of pesticides and fertilizers.

2.2. Sampling

The data used for this study were gathered within the Spanish
research SCARCE-CONSOLIDER project (Navarro-Ortega et al., 2012).
Extensive monitoring of water, sediment and biota from the four Iberian
river basins was carried out in two monitoring campaigns (autumn
2010 and 2011). The autumn of 2010 was characterized by intense
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Fig. 1. Studied river basins with the major land use types and the sampling sites indicated.

precipitation, which resulted in a comparatively higher flow of Iberian
rivers, while the autumn 2011 was dry and the river flows were low.
Grab water samples were collected for chemical characterization at 77
selected locations in the Llobregat (15 sites), Ebro (23 sites), Jacar (15
sites) and Guadalquivir (24 sites) River Basins (Fig. 1). Metals and
biological data were measured at 19 sites: Llobregat (5 sites), Ebro (5
sites), Jucar (5 sites) and Guadalquivir (4 sites). Sites were selected in
a gradient of pollution from sites presumably less polluted to down-
stream where pollution was accumulated. The major land use types in
the catchments were calculated by simplifying the Corine land cover
into three groups: urban, agricultural and natural (including forest
and grasslands) by Arc Map 10.1 software.

2.2.1. Macroinvertebrate sampling

Five sediment samples were randomly collected at each site with a
polyvinyl sand corer (24 cm? area). Samples were sieved through a
500-um mesh and fixed with 4% formaldehyde. The invertebrates
were sorted, counted and identified in the laboratory under a dissecting
microscope (Leica Stereomicroscope). The identification was at species
level for almost all taxa - including Oligochaeta — with the exception of
the Chironomids, which were identified at the genus level, and the
Phylum Nematoda. Abundances were referred to the basis of sediment
surface area (De Castro-Catala et al., 2015).

To examine the biological status and link it with the chemical
pollution three indexes were calculated: Shannon diversity index (H’)
(Shannon, 1949), Margalef diversity index (d) (Margalef, 1969) and
Species at Risk (SPEAR) for general organic pollution SPEAR organic
(Beketov and Liess, 2008) and pesticides SPEAR pesticides (Liess and Von
Der Ohe, 2005) (www.systemecology.eu/spear/spear-calculator/).
SPEAR is a species trait based index that links chemical quality and bio-
logical community composition. It provides an assessment of the mag-
nitude of the ecological effects of pollution (Liess and Von Der Ohe,
2005). For the calculations the species identified in sediment samples
were used. When species was not present in the SPEAR database we se-
lected the higher taxonomical order.

2.3. Chemical analysis

Compounds were measured using previously published analytical
techniques based on gas chromatography-tandem mass spectrometry
and liquid chromatography-tandem and hybrid mass spectrometry
(Table S1). Water phase concentration data of 200 compounds belonging
to different groups of priority and emerging contaminants: a) pesticides
(48), b) pharmaceuticals and hormones (90) c¢) perflourinated com-
pounds (21) d) akylphenols and other industrial organic compounds
(14) e) drugs of abuse (8) and f) personal care products (17) and
g) metals (8) were used for this study. Compounds below their limit of
detection (LOD) were excluded from study. List of measured compounds
and analytical methods used are available in Supporting Information
(Tables S1 and S2, Supplementary information). Of 45 WFD priority pol-
lutants, our dataset included seven pesticides, two industrial organic
compounds and two metals (Table S2). Metals concentrations were
transformed to bioavailable fraction using biotic ligand model (BLM)
(Di Toro et al., 2001). The final number of number of chemicals that
were used for risk assessment in this study (i. e. they were measured
above their LOD is and their toxicity data was available) was 142.

2.4. Toxicity assessment

The toxic unit (TU) approach (Sprague, 1970) was used for the eco-
toxicological risk assessment of measured concentrations of compounds
(G;). The TU of each compound was based on acute toxicity values i.e.
ECso (50% effective concentration) for reproduction and immobilization
for algae and invertebrates respectively and LCsq (50% lethal concentra-
tion) for fish (Eq. (1)).

C:
TU; (algae, invertebrates, fish) — EC5'0 (1)
i

where TU; is the toxic unit of a compound i; C; measured concentration
(pg/L) of the compound in the water phase; EC50; or LC50; (ug/L)
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effective or lethal concentration of 50% of individuals when exposed to
the substance concerned. The toxicity data of each chemical was collect-
ed for three standard test species (green algae Pseudokirchneriella
subcapitata, invertebrate Daphnia magna and fish Pimephales promelas
or Oncorhynchus mykiss) from the literature and the databases when
available, mainly ECOTOX (USEPA, 2008) and Pesticides Properties
Database (PAN, 2015). Missing toxicity data were estimated by
ECOSAR v.1.11. To determine site specific toxic stress and compare it
with biological quality, we used the classical concept of concentration
addition (CA). It allows the prediction of the mixture toxicity from
concentration and toxicity of constituents of the mixture (Backhaus
and Faust, 2012) but without regarding possible synergistic and antag-
onistic effects between chemicals. Site specific toxic stress (TUsjte) Was
calculated by summing all the individual TU; of each detected com-
pound at all of the 77 studied sites. Since different effects in ecosystem
are expected from metals and organic compounds (Lopez-Doval et al.,
2012), toxic units for metals (TUperais) and organic compounds
(TUorganic) were calculated separately. Additionally, in order to find
out how risk is allocated between regulated and unregulated com-
pounds in our dataset we grouped the compounds in the following
manner. Firstly, we excluded the WFD priority pollutants from our
dataset and examined which part of total risk is allocated to “non-
priority contaminants” (TUpon-priority) (Table S2) by summing the toxic
units of all the compounds detected in each sample except the WFD
priority pollutants. Secondly, besides WFD priority pollutants, we ex-
cluded the other compounds regulated in European Union (i.e. banned
pesticides) (Table S3). In that way, we examined the risk posed by the
unregulated contaminants (TUypregulatea) ONly. Finally, the site specific
risk was expressed as the logarithm of the mixture toxicity for: metals,
all the detected organic compounds, “non-priority compounds” and
unregulated compounds (Eq. (2)):

n
TUSHE(metals. organic, non—priority and unregulated) — IOgZizl TU,- (2)

where, TU; is the toxic unit of each of individual compound at the site.
For convenience, along the present article TU associated with each site
is expressed in log units. Having in mind the possible different modes
of action of the studied compounds, there is a possible overestimation
of risk. However, since the modes of action of many studied compounds
are still unknown, we used the CA approach which is generally accepted
as a first tier approach (Backhaus and Faust, 2012). Additionally, it was
showed that the toxicity of the mixture predicted by CA correlated with
the SPEAR index (Schéfer et al., 2013) suggesting this is a valid approach
for predicting the toxic stress for biological communities in situ
(McKnight et al., 2015).

2.5. Effects thresholds selection

To determine the potential effects of chemical pollution on the bio-
logical communities in situ we used the effect thresholds as proposed
by Malaj et al. (2014). The acute risk threshold was set at the TU > —1
(1/10 of ECsq or LCsg) for all three test species, since the acute effects
in the ecosystem are generally expected at that level (Schafer et al.,
2011b; Schafer et al., 2012; Van Wijngaarden et al., 2005). For the inver-
tebrates, chronic risk threshold value of TU > — 3 (1/1000 of ECsp) was
used. Changes in communities have been observed above that threshold
i.e,, decrease of sensitive species and shift towards more resistant
species assemblages (Beketov et al., 2013; Liess and Von Der Ohe,
2005; Schafer et al., 2012). However, this threshold is based on the
field studies of effects of pesticides on biological communities. There-
fore, extrapolating this threshold to other groups of compounds could
lead to over or underestimation of the risk for some of the compounds.
Also, those studies used maximum toxic unit (TUn.x) in the sample,
indicating the minimum estimated toxicity of the mixture as the toxicity
of the most potent compound (Schdfer et al., 2013). In the case when
the sum of toxic units is used to represent the mixture toxicity it should

be noted that this is a bit more conservative approach but in line with
the principle of screening-level risk assessments (McKnight et al.,
2015). Due to the absence of studies relating pollution and long term
effects in communities, chronic risk thresholds for algae and fish were
based on acute to chronic ratio (Malaj et al., 2014). For algae the acute
to chronic factor 5 was used and for fish factor 10 (Ahlers et al., 2006;
Heger et al., 1995; Ldnge et al., 1998).

2.6. Statistical analysis

Analyses of variability and relations of toxic stress and biological
indexes were performed by Principal Component Analysis (PCA) using
Microsoft Excel XLSTAT statistical software. Toxic stress was character-
ized as the sum of TU (for invertebrates) per compound families, name-
ly organic micropollutants and metals. Organic micropollutants were
when necessary, grouped in several sub-classes, namely, pesticides,
industrial organic chemicals (I0Cs), pharmaceuticals, personal care
products (PCPs) and perflourinated compounds (PFCs) (Table S2).

Linear regression and non-parametric correlations (Spearman corre-
lation coefficient) were used to capture the relationships between toxic
stress and changes in aquatic macroinvertebrate communities in situ.

3. Results and discussion
3.1. Ecotoxicological risk assessment: Acute and chronic risk

3.1.1. Acute effects risk in Iberian rivers

The toxic units (TUrganic) indicated that there was a risk of the acute
effects in biological communities posed by organic compounds at 42% of
the sampling sites (Fig. S1) and risk of chronic effects at all the studied
sites (Fig. 5A). Of the three test species used for risk assessment, inver-
tebrates were the most sensitive group (Supplementary Figs. S2-4) due
to the presence of highly toxic insecticides at many sampling sites.
Considering the four studied rivers the total number of sites with
exceedance of the acute risk threshold was higher in 2010 (42% for
invertebrates, 3% for fish and none for algae), than in 2011 (20% for in-
vertebrates and no exceedance for algae and fish). The highest number
of sites exceeding the acute threshold was in Ebro in 2010 (74% of sites)
and in Jacar (67% and 60% in 2010 and 2011, respectively) (Fig. 2) most-
ly due to the presence of insecticides chlorpyriphos, chlorfenvinphos
and ethion. On the contrary, in 2011 there was no exceedance of acute
risk threshold in the Ebro due to relatively lower concentrations of
those pesticides (Fig. 4). In Llobregat and Guadalquivir there was ex-
ceedance of acute risk threshold at less than 25% of the sites (Fig. 2).
In 2011, the only area where acute risk was increased compared to pre-
vious year was in the lower part of the Llobregat basin (Fig. 3).

Of all the organic compounds measured in water the major contrib-
utors to the chemical risk were pesticides (Fig. 4). The compounds
responsible for acute risk in Llobregat were chlorpyriphos and azinphos
ethyl and ethion. In Guadalquivir there was acute risk at only 4 sites in
2010 and 3 sites in 2011 (Fig. 4) where high concentrations of chlorpyr-
iphos, ethion and chlorfenvinphos were measured. In general, several
pesticides were related with risk of acute effects (Fig. 4) of which the
most important were the insecticides chlorfenvinphos (29% of sites
with acute risk exceedance in 2010) and chlorpyriphos (15% sites in
2010). They are both classified by WFD as priority compounds and
were identified as the compounds of highest ecotoxicological concern
in studied river basins (Kuzmanovic et al., 2015). Conversely, in 2011
they were not present in water at such high concentrations and thus
the resulting acute risk exceedance was evidently lower, especially in
the case of Ebro where chlorfenvinphos was detected only at one site
in that year's sampling campaign (Fig. S5). The lower acute risk in
2011 might be an underestimation due to sampling in the dry period
with the absence of precipitation which can trigger for the runoff effect
of pesticides which were the most toxic compounds measured. Other
pesticides not covered by WFD, but banned in the European Union
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Fig. 2. Percentage of sampling sites A) with acute risk exceedance and B) with TUs;.e (most sensitive test species) belonging to one of four toxic unit ranges for each of four river basins in

2010 and 2011.

(Table S3) were also detected in water at high toxic units (e. g. ethion
up to TU = — 0.36 in the Jicar).

3.1.2. Chronic effects risk in Iberian rivers

The chronic risk threshold was exceeded at all of the sampling sites
(Fig. 5A) for at least one of the test species. In 2011, the exceedance was
the highest in the Jacar (all sites), the Llobregat (80% of the sites), the
Ebro (61% of the sites) and the Guadalquivir (55% of the sites)
(Figs. S2-4). While only pesticides and metals were responsible for
acute risk, all measured compound groups except perflourinated
compounds exceeded the chronic risk threshold for at least one test
species (Fig. 4). Perflourinated compounds were in low TU at all
the sampling sites (Fig. 4). Industrial organic compounds exceeded
the chronic risk threshold at several sampling sites, mostly in the
Guadalquivir (54%) and in the lower part of the Llobregat basin (50%).
Of that group, the WFD priority compounds alkyphenols and their
ethoxylate derivatives were the main contributors to toxic load among
compounds detected. Personal care products exceeded algae chronic
threshold (Fig. 4) mostly due to triclosan, that was detected around
industrial and urban areas (lower part of the Llobregat and the Jicar
basins, northern part of the Ebro basin (Fig. 1)). Pharmaceuticals
exceeded chronic risk threshold in the Llobregat basin in 2010 with
the antidepressant sertraline as the compound mostly responsible for
threshold exceedance.

However, in this study we used acute toxicity data to assess the risk
of both acute and chronic effects. Despite the fact that long term chronic
exposure to pollutants is more realistic scenario (Eggen et al., 2004)
there is a paucity of chronic toxicity data, especially for emerging con-
taminants. As stated by Calow and Forbes (Calow and Forbes, 2003),
there is uncertainty in extrapolating results from effects caused after
short, high dose exposure to effects caused after long time exposures

-

TUorganic
<32

<2.1>
. <0
* >0

to low doses of chemicals. There are indications that chronic responses
to some chemicals may be greater than expected from risk assessment
procedures similar to the one we followed. The chemicals causing endo-
crine disrupting effects at low environmental concentrations are the
example for that, and it is reasonable to expect other types of specific
chronic effects in the future caused by different compounds (Calow
and Forbes, 2003).

3.2. Regulated vs. unregulated contaminants

The WEFD priority contaminants list includes a limited number of
priority and hazardous substances for chemical status regulation. How-
ever, the reality in the aquatic ecosystems is far more complex and those
compounds that might be the most toxic are in fact just “the top of the
iceberg”. There are numerous unregulated compounds present in the
environment and their potential adverse effects should not be
overlooked. Besides, some banned pesticides can still be found in the
aquatic environment and pose the threat to biological communities. In
this study, the “non-priority” contaminants (TUpon-priority) (i.€., those
left when WFD priority compounds were excluded from the dataset)
exceeded the chronic threshold at 98% of the studied sites (Fig. 5B).
However, the acute risk threshold was exceeded at six sites only. In
any case, it is clear that we cannot exclude the risk for biological com-
munities of studied rivers by regulating just WFD priority pollutants.
Furthermore, when we excluded both the banned pesticides and the
WED priority pollutants from the dataset, the unregulated contaminants
(TUunregulatea) €xceeded the chronic risk threshold at 23% of sites. More
precisely in Llobregat and Jtcar (25-50% of sites) while in Ebro and
Guadalquivir the exceedance of threshold happened at several sites
only (Fig. 5C). In that group, the compounds responsible for chronic
risk threshold exceedance were mainly unregulated pesticides, biocide

-

TUorganic
3.2

& €201

. <0

Fig. 3. Toxic units (TUs;e) (for the most sensitive test species) for organic compounds at 77 sampling sites in A) 2010 and B) 2011.
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Fig. 4. Minimum and maximum plot for TU summed for families of measured compounds at sampling sites (organic compounds, n = 77; metals n = 18) for algae (A), invertebrates (I) and
fish (F) in 2010 and 2011. Red color indicates the exceedance of acute risk threshold for the species concerned. Orange indicates the exceedance of a chronic risk threshold (TU —3 for
invertebrates., — 2 for fish and — 1.69 for algae). I0OCs—industrial organics, Phac—pharmaceuticals, PCPs—personal care products, PFCs—perfluoralkyl compounds (list of all the compounds

is available in Supplementary material (Table S1)).

triclosan and the antidepressant sertraline. Remarkably, some banned
pesticides such as e.g. chlorfenvinphos or ethion have been found in
the water at the levels high enough even to pose acute risk and even
more of those that were posing a chronic risk (e.g. diclofenthion,
parathion-ethyl etc.) The question remains, why banned pesticides are
still found in water at such levels that pose threat to aquatic life. In
some cases, European legislation bans the pesticides for agricultural
purposes, but the product still can be used in urban settlements as bio-
cide, thus could reach the rivers. In other cases the ban of the pesticides
can be implied just for some types of the crops while it can be used for

-z
>

other crops. On the other hand, McKnight et al. (2015) found several
pesticides in Danish streams that were not authorized for use in that
country for long time periods. They related the presence of banned
pesticides (mostly herbicides) in stream water with the groundwater
input as one of the important pathways. Another possible source
could be the remobilization of legacy pesticides from sediment. Obvi-
ously, both currently used and banned pesticides are still posing the
risk for aquatic life in studied rivers and both should be considered for
risk assessment purposes. Especially important would be to determine
the sources of the banned pesticides. In general, the overall risk for
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aquatic ecosystems may often be dominated by a few components of
the mixtures (Kortenkamp and Faust, 2010), which in this case were
pesticides both classified as WFD priority pollutants and others
(Kuzmanovic et al., 2015). However, the risk of chronic effects of less
toxic compounds is still present. Therefore, the risk of adverse effects
in biological communities of studied rivers cannot be excluded by
setting environmental quality standards just for the WFD priority com-
pounds. Rather, a variety of chemicals present in the environment
should be taken into account for the proper risk characterization. More-
over, in this study, there is a possible underestimation of risk because
other toxic compounds could be present in the river water but they
have not been covered here. Also, the influence of the synergistic
and antagonistic effects between chemicals on the overall risk was not
considered by this study.

3.3. Ecotoxicological risk — metals vs. organic micropollutants

Metals were measured in high toxic units at majority of the sampling
sites (n = 18) (Fig. S6). While invertebrates were the most sensitive test
species for organic chemicals, algae were the most sensitive species for
metals (Fig. 4). When compared the risk at sampling sites where both
organic compounds and metals were measured (n = 18), organic
compounds risk was higher at majority of the sites in 2010 (Fig. S6)
due to the presence of highly toxic pesticides in water. This could be
related to the hydrometeorological situation of that year characterized
by intense precipitation that could have triggered runoff of pesticides
from the surrounding agricultural fields. On the contrary, in 2011 metals
risk was higher at majority of sites in Ebro, Llobregat and Guadalqivir
due to higher concentrations of metals in water and the lower concen-
trations of some pesticides.

Among metals measured, copper and zinc contributed mostly to the
overall toxicity. The acute risk threshold (TUetas = — 1) was exceeded
at 11% of the sites in 2010 and at 44% of the sites in 2011. It was found in
previous studies based on routine monitoring that metals (especially
zinc and copper) were the most important compounds in terms of
toxic units in the studied area, while organic chemicals monitored
only slightly contributed to the risk (Lopez-Doval et al., 2012). These
findings should be taken with some caution since the number of organic
micropollutants analyzed was limited. A study of Catalan river basins
based on the species sensitivity distribution (Carafa et al., 2011) and
routine monitoring data carried out by the local authorities found an
increase of toxic risk associated with urban and industrial areas of
the Llobregat river basin was likely attributable to metals, surfactants
(e.g. nonylphenol) and the pesticide chlorpyrifos (Carafa et al., 2011).

Again, this study only included a limited number of organic pollutants
(mostly priority compounds).

3.4. Biological status

Both diversity indexes (Shannon and Margalef) showed similar
trends, decreasing downstream (Table 1) as a result of the reduction
of the number and the abundance of species. The same trend was also
observed in previous studies in the case of Llobregat river basin
(Lépez-Doval et al., 2010; Ginebreda et al., 2013).

In addition to the general tendency to decrease downstream, low
values of diversity were also found in some sites located relatively
upstream (e.g. EBR2, JUC2 and GUA2). According to SPEAR index,
biological status of most of the sampling sites was moderate to bad
(Fig. S7). However, this general status should be taken with caution.
SPEAR metric has been developed to evaluate the risk of the whole
invertebrate community inhabiting all the habitats present in the
river. In this study, we sampled only the sediment and only few species
living in this habitat are actually classified “at risk” in the SPEAR metric.
Most of the species found in our sediments are part of the family
Chironomidae and the order Oligochaeta. The SPEAR determines both
taxonomical groups as “not at risk” without distinction between species.
Even though the described limitations, SPEAR index has been used
previously to assess biological status of sediment community with satis-
factory results (Wolfram et al., 2012).

The invertebrates TU for the different compounds are suggesting
several degrees of risk for biological communities and this could explain
the community impairment observed with the biological indexes in
all the sampling sites. Changes in the community structure due to
priority and emerging pollutants have been described previously in
Mediterranean rivers (Brix et al., 2012; Mufoz et al., 2009; Ricart
et al., 2010), indicating the general biological impairment in relation
to pollution.

3.4.1. Relationship between toxic stress and biological status

The only statistically significant correlation (Spearman, p < 0.05)
between toxic stress of organic compounds and biological community
descriptors was between SPEARyganic and TUgganic (I = —0.490) and
TUpesticides (I = —0.431) (Table 2). Neither Shannon nor Margalef
indexes were showing significant correlation with TUgganic (Table 2).
Moreover, diversity indexes were not correlated with SPEAResticides
and SPEARganic. It has been reported in several studies, that Shannon
and similar biodiversity indexes were not suitable to identify the effects
of pesticides at community level (Ippolito et al., 2012) and are influ-
enced by different natural and anthropogenic factors (Beketov and

Table 1
Biological descriptors for macroinvertebrates in sediment at the different sampling sites (EBR: Ebro; LLO: Llobregat; JUC: Jucar; GUA: Guadalquivir).

2010 d H’ SPEAR rganic SPEAR pesticides 2011 d H’ SPEAR rganic SPEARpesticides
EBR1 2.08 3.29 —0.92 0 2EBR1 2.38 2.78 / /
EBR2 0.32 1.25 —0.93 0 2EBR2 1.10 2.72 —0.74 0
EBR3 1.04 297 —0.61 0 2EBR3 0.69 1.92 —0.76 0
EBR4 / / / / 2EBR4 0.45 1.69 —039 0
EBR5 0.50 1.92 —0.78 0 2EBR5 0.58 1.63 —047 2247
LLO3 1.45 2.57 —0.61 8.13 2LLO3 2.02 3.76 —0.77 11.82
LLO4 0.57 2.16 —0.55 19.23 2LLO4 0.78 247 —0.56 24.99
LLO5 0.61 1.80 —0.83 0 2LLO5 0.92 2.40 —035 44.54
LLO6 0.17 0.81 —0.93 0 2LLO6 0.44 1.49 —0.61 0
LLO7 0.46 1.81 —0.64 2227 2LLO7 0.34 1.50 —0.93 0
Juct 3.06 3.73 —0.88 6.35 2Juct 244 2.61 —1.09 10.52
Jjuc2 0.79 1.40 —0.92 0 2Juc2 0.70 1.35 —1.22 0
Jjuc4 1.57 3.24 —0.78 14.37 2Jjuc4 1.12 2.76 —0.69 0
Jucs 1.06 2.55 —0.85 19.02 2Jucs 1.44 2.58 —0.86 13.12
Juce 0.34 1.50 —1.34 0 2GUA2 0.57 1.98 —0.74 0
GUA1 2.82 3.74 —0.71 0 2GUA3 1.34 3.30 —0.46 20.82
GUA4 0.72 2.28 —0.52 0 2GUA4 091 248 —0.62 0

d—Margalef richness index, H'—Shannon diversity index—SPEAR: Species at Risk Index.
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Table 2
Correlation matrix based on Spearman rank correlation test (in bold, p < 0.05).
Variables Urban Agricultural Natural d H’ SPEARpesticides  SPEARorganic  TUmetats  TUjoc TUpcp TUpharmaceuticals  TUpesticides  TUorganic
Urban 1 - - - - - - - - _ _ _ _
Agricultural 0.134 1 - - - - - - - - - - _
Natural —-0497 -03817 1 - - - - - - - - - _
d —0.672 —0.068 0.375 1 - — - - - - - - -
H' —0436 0.134 0.140 0.883 1 - - - - - - - -
SPEAResticides  0.120 0.014 0.028 0.232 0.269 1 - - - - - - -
SPEAR ganic 0.339 0.337 —0.306 0.088 0.286 0481 1 - - - - - -
TUmetals 0.600 0.010 —0.295 —0.515 —0.268 0.043 0.330 1 - - - _ _
TUioc 0.045 0.018 —0.063 0.004 —0.004 —-0.117 —0.127 0.007 1 - - - -
TUpcp 0.248 0.036 —0.151 —0.129 -—-0.092 0.061 0.105 0.210 —0585 1 - - -
TUpharmaceuticats  0.490 —0.010 —0.243 —0.232 —-0.151 0.344 0.303 0.492 —0.389 0674 1 - -
TUpesticides —0412 0.160 0.020 0.140 0.156 —0.229 —0431 —0405 0.323 —0404 —0.606 1 -
TUorganic —0394 —-0.012 0.128 0.175 0.155 —0.073 —0.490 —0459 / / / / 1

Liess, 2008). In this study they were negatively correlated with metals
(TUmetats) (Table 2). However, only Margalef index was significantly
correlated with the metals toxic units TUpetas (I = —0.515)
(Table 2). Metals toxic units were significantly and positively correlated
with urban land use type, while Shannon and Margalef indexes were
correlated negatively (Table 2). That is, we can relate the decrease of
macroinvertebrate biodiversity to urban areas. Nevertheless, urban
rivers are highly impacted by a variety of stressors and it is known
that in some cases, more environmental stressors can interact with
the toxicants (Liess et al., 2013). Besides chemical pollution, in urban
rivers there are often present habitat changes, temperature alterations
and other stressors (Vorosmarty et al., 2010). Also, the natural gradient
of environmental factors along the rivers is one of the most important
sources of differences between biological communities (Beketov and
Liess, 2008) and each site has its unique combination of natural factors
(Schdfer et al., 2007) it should be taken into account when interpreting
the macroinvertebrate biodiversity change along the river. The relation
between biodiversity indexes and urban land use could be reflecting the
response of the community to a variety of stressors present at the urban
areas that are acting together along with the pollution.

Linear regression line between SPEAR,ganic and total organic stress
at site (TUqrganic) Was significant with r = 0235 (p > 0.05) and a rela-
tionship between SPEARjesticides and TUpesticides With 1> = 0.104
(p>0.1). Scatter plots show the relationship between losses of sensitive
species with the increase of toxic stress of organic compound (Fig. 6A)
and pesticides (Fig. 6B). All the sites were characterized by medium to
high toxic stress (TU from-2.7 to 0) therefore the gradient of toxicity
was relatively low and we could not observe the communities composi-
tion in pollution free conditions (i.e., reference conditions).

Even though SPEARindex is designed to be a stressor specific indica-
tor it cannot be excluded that other stressors might have influenced the
loss of sensitive species. This could be the case, especially since studied
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rivers are impacted by a multitude of anthropogenic stressors and some
stressors are expected to cause similar changes in trait categories
(Rasmussen et al., 2013; Statzner and Béche, 2010). Besides, different
co-occurring stressors (Liess and Beketov, 2011) and their complex re-
lationships with biological communities (Liess et al., 2008) can mask
the effects of single toxicant. Naturally, the use of SPEARpesticides Was
showing the best results in agricultural streams where pesticides are
the predominant stressors (Beketov et al., 2013; Schafer et al., 2007).
However, since only macroinvertebrates in the sediment were sampled
in this study, the low values of SPEAR pesticides could be attributed to a
relatively large proportion of tolerant species in that habitat (von der
Ohe and Goedkoop, 2012; Wolfram et al., 2012) and the starting bias
in the data makes any conclusion difficult. However, SPEARganic as a
less specific indicator seems to be more suitable for the multi chemical
polluted rivers. In conclusion, when all four biological indexes used in
this study are compared, the most suitable to relate changes in biologi-
cal communities (i.e. decrease of sensitive species) to organic stress was
the SPEAR ganic indicator.

3.5. Multivariate analysis: Biological descriptors and toxic units of chemical
groups

A principle components analysis was performed, including variables
representing the toxic stress of chemical families studied (i.e. sum of
toxic units of each group of chemicals), biological indexes and land
uses expressed in percentage of agricultural, urban and natural respec-
tively. The first two components were interpretable which explained
48% of the total variance (30.67% and 17.42% respectively).

The first component can be mainly related to pharmaceuticals,
metals and personal care products that were grouped together and
were related to urban land use type (Fig. 7). On the other hand, pesti-
cides, industrial organic compounds (IOC) and biodiversity contribute
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Fig. 6. Relationship between invertebrate communities in situ and the toxic stress. A) Expressed as SPEARganic and toxic units of organic compounds (TUqganic invertebrates). Linear
regression is significant with r? = 0.235, p > 0.05. B) Expressed as SPEAResticides and toxic units of pesticides (TUpesticides, invertebrates). Linear regression is significant with =

0.104 atp>0.1.
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Fig. 7. Biplot of the first two principal components. The first two components of the PCA
explain 48% of the total variance (30.67% and 17.42%, respectively).

negatively. This component could be tentatively interpreted as repre-
sentative of the stressors related to urban areas. Sites with higher diver-
sity indexes coincide with the upstream areas and natural land use type
(forests and grasslands). Second component roughly informs about bio-
logical quality with positive contributions of biological indexes (H’, d,
and SPEAR) and natural land use type, and negative contributions of in-
dustrial organic chemicals, pesticides and agricultural land use type. The
distribution of the sites is consistent with the above interpretation. Pol-
luted sites subjected to high urban pressure such as those in the lower
part of Llobregat (LLO6 and LLO7) are distributed along the first compo-
nent. SPEARpesticides and SPEARqganic were negatively correlated with
toxic stress of pesticides and industrial organic chemicals but were not
reflecting the effect of urban origin (pharmaceuticals and PCPs). There-
fore, we could assume pesticides and I0Cs were those the compounds
mostly influencing the decline of sensitive species.

4. Conclusions

In the present article we have assessed the environmental risk asso-
ciated to chemical pollution on the basis of their ecotoxicological prop-
erties. To that end the toxic units approach based on three trophic levels
(algae, invertebrates and fish) was used and applied to four Iberian river
basins. Spatial ecotoxicological risk was characterized using available
occurrence concentration data of more than 200 organic chemicals
and metals transformed into toxic units and subsequently aggregated
using widely accepted mixture toxicity criteria (i.e., concentration addi-
tion). This methodology enabled to quantify and depict in risk maps
both acute and chronic potential effects that can be of great value for
water management purposes. Both organic micropollutants (particular-
ly pesticides) and metals significantly contribute to acute ecotoxicolog-
ical risk.

The used methodology also enabled to differentiate the respective
contributions to environmental risk between regulated and unregulat-
ed compounds, thus showing that both categories of compounds need
to be taken into account for proper risk assessment. Banned pesticides
are still present in river water in high toxic units and could be causing
acute and chronic effects in biological communities. The unregulated
contaminants alone posed the chronic risk at 23% of the studied sites.
These findings have obvious management implications, for instance in
the design of adequate monitoring campaigns.

Chemical and ecological status of water ecosystems are key aspects
of the WFD and both are explicitly considered. However, their interrela-
tion is not always clear. Here we used ecotoxciological assessment as an
explanatory “bridge” between both. The combined use of toxicity index-
es, conventional diversity indexes and traits-based indexes helped
disentangle the relationships between macroinvertebrate communities

and the different co-occurring stressors. Specifically, we found that the
decline of aquatic macroinvertebrate sensitive species based on trait
indexes (SPEAR) was correlated with the increase of organic load
quantified in toxic units. Diversity indexes reflected in a general way
the multiple stress conditions that the studied rivers were subjected
to. These results were supported by multivariate statistical analysis in
which both biological, land use and pollutants' ecotoxicological risk
variables were used to satisfactorily to explain the observed variability
among sites.

However, more work needs to be done in order to better understand
the effects of co-occurring stressors in aquatic ecosystems. The appro-
priate combination of different community indicators and endpoints
(e.g. behavior or functioning) will help to improve toxicological risk
assessment of aquatic ecosystems.
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