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Abstract

Lead intoxication is an important threat to human health and a large number of 

wildlife species. Animals are exposed to several sources of lead highlighting hunting 

ammunition and lead that is bioavailable in topsoil. Disentangling the role of each in 

lead exposure is an important conservation issue, particularly for species potentially 

affected by lead poisoning, such as vultures.  The identification of lead sources in 

vultures and other species has been classically addressed by means of stable-isotope 

comparisons, but the extremely varied isotope signatures found in ammunition hinders 

this identification when it overlaps with topsoil signatures. In addition, assumptions 

related to the exposure of individual vultures to lead sources have been made without 

knowledge of the actual feeding grounds exploited by the birds.  Here, we combine lead

concentration analysis in blood, novel stable isotope approaches to assign the origin of 

the lead and GPS tracking data to investigate the main foraging grounds of two Iberian 

griffon vulture populations (N=58) whose foraging ranges differ in terms of topsoil lead

concentration and intensity of big game hunting activity. We found that the lead 

signature in vultures was closer to topsoil than to ammunition, but this similarity 

decreased significantly in the area with higher big game hunting activity. In addition, 

attending to the individual home ranges of the tracked birds, models accounting for the 

intensity of hunting activity better explained the higher blood lead concentration in 

vultures than topsoil exposure. In spite of that, our finding also show that lead exposure 

from topsoil is more important than previously thought.

Key words: 

Lead, ammunition, ecotoxicology, GPS, vultures, stable isotopes 
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1. Introduction

Lead is a heavy metal whose toxic effects in humans have been known for millennia

(Papanikolau et al., 2005). Its consequences in wildlife, however, were not described 

until the 19th century (Calvert 1876). Since then, direct mortality due to lead toxicity 

has been frequently reported for many avian species (Pain et al., 2019). There are, 

nonetheless, more subtle and bearly detectable sub-lethal effects that often go 

unnoticed, such as alterations in behavior, morphology, and breeding success or 

physiological functions (Espín et al., 2015; Golden et al., 2016; Vallverdú-Coll et al., 

2016). Consequently, the study of the impact of lead pollution on wildlife has become 

an extremely active field in conservation of threatened populations (Pain et al., 2019).

   

Vultures are one of the bird groups most sensitive to lead intoxication to the extent 

that it has been noted as a significant conservation problem for many vulture species 

worldwide (Golden et al., 2016; Plaza & Lambertucci 2019), threatening entire 

populations and compromising the success of costly conservation programs (Finkelstein

et al., 2012). The obligate scavenging habits of vultures make them very prone to 

ingesting ammunition from big game hunting remains (Mateo et al., 1997; García-

Fernández et al., 2005; Krone 2018). Carcasses and remains of  shot animals are 

frequently abandoned in nature (Hunt et al., 2006; Legagneux et al., 2014) and can 

contain up to hundreds of fragments of metallic lead that can be bioavailable for 

vultures because of the characteristic extremely acidic gastric fluid of these species 

(Hunt et al., 2006; Hunt et al., 2009; Knot et al., 2010). 

Ammunition is not the only source of lead that could affect vultures. Alternative 

sources of lead such as paint, contaminated water or soils have also been described as 

possible causes of intoxication in wildlife (Katzner et al 2018).  Some of them, such as 
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lead-based paint, are of little relevance to scavengers because of their low exposure 

occurrence (Finkelstein et al., 2102). On the contrary, lead in soil is naturally 

widespread, and mining activities have led to its bioavailability to wildlife. This is 

relevant because wild and domestic ungulates, whose carcasses are the main food 

source for vultures, accumulate lead from the soil in their tissues triggering potential 

trophic transfer processes affecting higher trophic levels (García-Fernández, 2014; 

Mateo-Tomás et al., 2016; Naidoo et al., 2017). 

Starting from this scenario, it is crucial to identify the role that ammunition and 

topsoil lead play in vulture intoxication, not only to counteract resistance to global 

regulations on lead hunting ammunition (Cromie et al., 2014), but also to rule out 

possible underestimates of the risk posed by topsoil lead. Thus far, the most direct 

approaches have made use of stable isotope signatures (Church et al 2006; Mateo-

Tomás et al., 2016; Naidoo et al., 2017). In addition, the application of stable isotope 

mixing models goes one step further, allowing a detailed assessment of the contribution 

of potential lead sources (Longman et al., 2018). This approach alone, however, is 

incomplete. It is well known that large avian scavengers perform huge long-distance 

movements (Alarcón & Lambertucci 2018), which makes it difficult to determine where

the individuals may have been exposed to lead in topsoil and/or game carcasses 

(Binkowski et al., 2016). In addition, from a population point of view, individual 

foraging decisions are highly variable (Alarcón & Lambertucci 2018), which implies the

possibility that different birds in the same breeding area could be unequally exposed to 

different lead sources. Recent studies have tried to deal with this but have been based on

direct observations (Church et al., 2006; Mateo-Tomás et al., 2016; Naidoo et al., 2017),

which can introduce important biases when the home ranges are very large or include 

poorly accessible areas.  
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Here, taking advantage of GPS tracking of 58 griffon vultures of two Spanish 

populations differently exposed to topsoil and ammunition, we aim to identify the 

contribution of topsoil and ammunition sources to lead concentrations in the blood of 

the tracked birds. Spain is an excellent place to address this issue because it holds 90% 

of the European population and shows a high prevalence of abnormal blood lead levels 

(García-Fernández et al., 2005;Mateo-Tomás et al. 2016; Descalzo and Mateo 2018). 

Moreover, Spanish vultures are exposed to both target lead sources. Whereas elevated 

lead exposure has been  reported in wild ungulates, as well as in livestock, because of 

topsoil contamination in some Spanish regions (Reglero et al., 2009, Taggart et al., 

2011, Pareja-Carrera et al., 2014), the populations of these game species are recovering 

across most of the country, with the number of animals hunted being one of the largest 

in Europe (Apollonio et al 2010). Our aim is to estimate for the first time, linkages 

between sources of lead in the environment and that found in griffon vultures and the 

spatial scale at which this species may be exposed to lead. We specifically predict that 

1) blood lead in individual vultures derives from two different sources, ammunition and 

topsoil; 2) lead in the blood of vultures differs between populations based on the 

individual level of exposure to topsoil and ammunition; and 3) exposure to big game 

hunting is the major driver of high levels of blood lead concentration. 

2. Methods

2.1. Focus species and study area

The European griffon vulture is a large body-sized (up to 12 kg) obligate scavenger. 

It is the most abundant European vulture (Margalida et al., 2010). The bulk (90%) of the

European populations are concentrated in Spain (Margalida et al., 2010) where a 2018 

census estimated 30.946 breeding pairs (del Moral and Molina 2018). They nest on 
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cliffs and their main source of food is domestic and wild ungulates (Margalida et al., 

2011). They feed over areas covering thousands of square kilometers (Arrondo et al., 

2018) and thus rely on social information (Cortés-Avizanda et al 2014).  

We captured and tagged 58 adult (more than seven years old) griffon vultures in two

distant populations (hereafter “southern” and “northern”) of the Iberian Peninsula (see 

Arrondo et al 2019). Captures were done at baited sites by means of cannon-nets. Thirty

birds were trapped in Sierra de Segura Cazorla y las Villas Natural Park, Southern Spain

(Figure 1) in December 2014. The movements of these vultures extend mainly 

westwards to the Portuguese border (see Arrondo et al., 2018). This area is dominated 

by Mediterranean woodlands and “dehesas”, which are traditional silvopastoral 

landscapes where two of the main economic activities are traditional livestock 

(including free-ranging herds of sheep and pigs) and big game hunting (Acevedo et al., 

2011). In addition, this area has hosted significant lead-mining operations for centuries 

(Reglero et al., 2009). The other 28 vultures were captured in Bardenas Reales Natural 

Park, Northern Spain (Figure 1) in December 2015. In this area, griffon vultures are 

mainly concentrated around Ebro Valley, a relatively flat area mainly characterized by 

irrigated crops and intensive livestock farms and surrounded by mountain ranges with 

Mediterranean woodlands and pastures (Lecina et al., 2005; Martín-Queller et al., 

2010). Big game hunting is common but less intense than in the southern area (Acevedo

et al., 2014). In addition, there is no history of lead mining activity, but natural lead is 

present at high concentrations in mountain topsoil (Locutura et al., 2012). Additionally, 

griffon vultures from this population also travel long distances to Southwestern Iberia, 

where they share some foraging zones with vultures from the southern population 

(Arrondo et al., 2018, 2020 and Figure 1).
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Trapping and handling were carried out with the proper permits and bioethical 

authorizations. During handling, safety protocols were followed to avoid stressing the 

animals. Until the moment of the tagging, the individuals were isolated and safe. The 

tagging was always done by at least two people and never lasted more than twenty 

minutes.

All the individuals were tagged with 90 g GPS/GPRS-GSM backpack devices from 

E-OBS Digital Telemetry (https://www.e-obs.de/http://www.e-obs.de). Devices were 

equipped as backpacks using a Y type harness made of Teflon following the procedures 

described in Kenward (2000). The devices were programmed to record variable 

numbers of locations depending on weather conditions and the power level of the 

batteries. During spring and summer, devices recorded one fix every 5 minutes if the 

battery was full, every 20 minutes if the battery was half-full and every 30 minutes if 

the battery was close to empty. In autumn and winter, the devices recorded every 10 

minutes if the battery was full, every 30 minutes if the battery was half-full and every 

60 minutes if the battery was close to empty. Throughout the year, if the batteries were 

discharged below the safety level, the device would only record one fix per day. We 

compiled movement data for all birds since the capture until December 2018 unless the 

animal died or the device failed (Table S.1.). 

2.2. Lead analysis and isotopic determination

We took blood samples by brachial puncture from all of the individuals. Whole blood 

without anticoagulant was stored at -20 ºC until the analyses of blood lead concentration

and isotope composition. Blood samples were also used to determine the sex of the 

birds by molecular procedures (Wink et al., 1998).
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Blood samples (0.4-1.0 g) were digested with 3 ml of HNO3 (69% Analytical 

Grade), 1ml of H2O2 (30% v/v Suprapur) and 4 ml of H2O (Milli-Q grade) with a 

microwave oven (Ethos E, Milestone) (Reglero et al., 2009). Lead concentrations and 

the proportion of the stable isotopes 206Pb, 207Pb, and 208Pb were measured in the 

digested solutions by inductively coupled plasma quadrupole mass spectrometry (ICP-

MS) following Martínez-Haro et al., (2011).

Stable lead isotope composition was also analyzed in the topsoil of mining sites of 

Sierra Madrona-Valle de Alcudia (Table S.2). Here, elevated lead concentrations have 

been detected in soil (average values of different sites: 7.78-8897 µg/g; Reglero et al., 

2008; Rodríguez-Estival et al., 2014) and in wild ungulates (red deer and wild boar 

muscle showed geometric means with 95%CI of 0.483 (0.32-0.73) and 2.63 (1.13-6.15) 

µg/g) and the livestock (sheep liver showed 6.16 (4.12-9.23) µg/g; Reglero et al., 2009, 

Taggart et al., 2011, Pareja-Carrera et al., 2014). Additionally, vultures from both 

populations usually forage in this area (Figure 1). The isotope ratios in topsoil lead of 

this region are very similar to that found in the northern study area (Monna et al 2004). 

Soil samples (≈ 100 g) were taken at a depth of 0-5 cm using a shovel and stored in 

independent ziplock polyethylene bags. Soil samples were oven-dried, disaggregated in 

a mortar and sieved through a 250 µm-aperture nylon mesh before being acid-digested 

(0.2 g) as described above.

We also determined the isotopic composition of the most frequently used lead-

based bullets in Spain. For this purpose, we obtained 17 bullets and 3 cartridges of 6 

commercial brands (Table S.2). 

Blanks and a certified reference material of lobster hepatopancreas (TORT-2) with 

0.39 µg/g of lead were processed in each batch of digestions. The limit of detection 

(LODs) of lead in blood was 0.32 µg/dl. We calculated blood lead concentration in 
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µg/dl considering blood density at 1.06 g/ml to make our results more comparable with 

the available literature. The mean (± %RSD) lead recovery in the reference material 

TORT-2 was 94.7% (± 5.8%, n = 12). The precision expressed as %RSD was lower 

than 5.5% for lead concentration data (n=12).

Key operating conditions for isotope determination were quadrupole dwell time (10

ms for 206Pb and 207Pb and 5 ms for 208Pb), number of scans per sample (800 sweeps), 

and dead time correction factor (35 ns). Both internal (203Tl/205Tl ratio) and external 

(NIST SRM 981, certified isotopic composition (mean ± 95%) of 24.144 ± 0.006% for 

206Pb, of 22.083 ± 0.003% for 207Pb, and of 52.347 ± 0.009% for 208Pb) standards were 

used for mass discrimination correction. All isotope ratios determined for SRM 981 

during analysis were within an uncertainty <1% of the certified value (before a nominal 

rolling correction was applied to all data). For isotopic analysis, six replicates of each 

sample were run. Variability in isotopic data expressed as %RSD (n=6) was in all cases 

lower than 0.28%. Detailed values for each lead isotope ratio and type of sample are 

shown in Table S.3.

2.3. Spatial variables

We estimated the home ranges of GPS-tracked griffon vultures exclusively during 

the big game hunting period (October to March). Since the birds were captured in the 

middle of this period (in December, see above), we assume that the lead concentration 

levels recorded are representative of the lead exposure during whole hunting period. To 

ensure that core and foraging areas do not show a significant spatial variation during the

study period, we assessed the stability of home ranges. According to Fieberg and 

Kochanny (2005), we used the Bhattacharyya’s affinity (BA) index and the home range 

estimators overlap (HRE). 
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Before performing home range estimations, we standardized our data by resampling

the dataset until we obtained for each individual a fix every 30 minutes. Home range 

and overlapping analyses were done by means of bivariate kernel functions using the 

adehabitatHR package (Calenge & Fortmann-Roe 2013) run in R version 3.5.1 (R 

development core team 2018). Fixed 95% and 50% kernel density contours were 

calculated to estimate the majority of the foraging areas, KDE 95%, and the core 

(intensive use) areas, KDE 50%. We used as a smoothing parameter the ad hoc method 

with a resolution of one ha (Margalida et al., 2016). 

Potential topsoil and ammunition exposures were estimated by means of proxy 

variables. In the first case, and on the basis of the national geochemical atlas (resolution 

1x1m) elaborated by the Spanish Geological and Mining Institute (Locutura et al., 

2012), we calculated the median lead concentration (mg/kg) at the superficial ground 

inside the KDE 50 and KDE 95 areas of each individual. Exposure to ammunition was 

estimated in relation to hunting statistics. We defined the hunting intensity in KDE50 

and KDE95 as the sum of wild boars (Sus scrofa) and red deer (Cervus elaphus) culled  

(https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/) in a 10 x10 km cell covering

all of peninsular Spain (https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-

nacionales/inventario-especies-terrestres/inventario-nacional-de-biodiversidad/bdn-ieet-

atlas-vert-mamif.aspxhttps://www.miteco.gob.es/es/biodiversidad/temas/inventarios-

nacionales/inventario-especies-terrestres/inventario-nacional-de-biodiversidad/bdn-ieet-

atlas-vert-mamif.aspx).

Statistical details of both variables are described in Table S.4.

2.4. Statistical analyses 
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2.4.1. Lead sources in individual vultures

To infer the potential origin of the lead present in the blood of vultures, we applied 

stable isotopic Bayesian mixing models (MixSIAR, Stock et al., 2018) using three lead 

stable isotopic ratios, 206Pb/207Pb, 207Pb/208Pb, and 206Pb/208Pb, in the blood of each GPS-

tracked vultures. We avoided the use of 204Pb isotope because of its low presence in the 

isotopic signature, which could introduce analytical biases in the calculations of isotope 

ratios in biological samples with low lead levels. MixSIAR Bayesian isotopic mixing 

models estimate the potential contribution of each isotopically distinct potential origin 

of lead (in our case topsoil and ammunition sources) in the diet of the consumer (in our 

case griffon vultures) based on the lead isotopic values of the consumer and its potential

source. MixSIAR estimates probability density functions using Markov chain Monte 

Carlo methods, and each model was run with identical parameters. Model convergence 

was determined using Gelman-Rubin and Geweke diagnostic tests (Stock & Semmens, 

2016; Stock et al., 2018). Bayesian mixing models have been developed to allow 

flexible model specification in a rigorous Bayesian statistical framework (Phillips et al., 

2014). We did not use trophic enrichment factors between vulture’s blood and sources 

of lead because no trophic enrichment factor occurs with lead as occurs with nitrogen 

(Longman et al 2018).

2.4.2.Factors associated with blood lead concentration in vultures

We related the blood lead concentration, transformed by logarithm in base 10, to 

the explanatory variables using General Linear Models (Gaussian error distribution and 

identity linkage). The explanatory variables selected were: a) median topsoil lead 

concentration at KDE 50; b) median topsoil lead concentration at KDE 95; c) big game 
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hunting intensity at KDE 50; d) big game hunting intensity at KDE 95, e) area of 

KDE50, f) area of KDE95 and g) sex. 

The two spatial scales analyzed (KDE50 and KDE95) were highly correlated in all 

variables (topsoil lead concentration: t = 6.94, df = 58, p< 0.001, r =0.67; big game 

hunting intensity: t = 50.90, df = 58, p<0.001, r = 0.99; area: t = 9.82, df = 58, p<0.001, 

r = 0.79). In addition, topsoil lead concentration and big game hunting intensity were 

correlated at both scales KDE50 and KDE95 (KDE50:  t = 6.52, df = 58, p<0.001, r = 

0.65; KDE95: t = 21.02, df = 58, p<0.001, r = 0.96). All correlated variables were 

modeled independently.

Model selection was done by means of the Akaike’s information criterion corrected

for small sample size (AICc). Models with ΔAICc<2 were considered equivalents. We 

discarded models including uninformative parameters, i.e. parameters whose 85% 

confidence interval overlapped with 0 (Burnham and Anderson, 2002).

3. Results

Lead values above the background and toxic levels (>20 µg/dl and > 50 µg/dl, Pain 

et al. 2019) appeared in 93.3% and 78.6 % of individuals from the southern population 

and 66.7% and 28.6 % of individuals from the northern population, respectively (Table 

1).  Vultures from the southern population showed significantly higher mean lead 

concentrations than those from the northern population (mean ± SD respectively: 64.0 ±

29.9 vs. 40.1 ± 25.3 µg/dl; t = -3.324, df = 54.718, p = 0.002). Females tended to show 

higher frequencies of toxic (> 50 µg/dl) lead concentrations than males: 72.7% vs. 

63.2% and 37.5% vs. 28.6% of the birds in southern and northern populations, 

respectively (Table 1). 
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3.1. Stable isotopic results 

We found higher stable isotope ratios of 207Pb/208Pb and 206Pb/208Pb in vultures 

sampled in the southern compared to the northern area (Figure 2; T-Student Tests; 

207Pb/208Pb, t=2.21, p=0.03; 206Pb/208Pb, t=2.26, p=0.02). In contrast, both populations 

showed similar stable isotope ratios of 206Pb/207Pb (Figure 2; t=2.21, p=0.03). In the case

of lead sources, ammunition always showed higher stable isotope ratios of 207Pb/208Pb, 

206Pb/208Pb and 206Pb/207Pb than topsoil (Figure 2). 

Lead source estimates derived from isotopic mixing models revealed that, for both 

populations the isotopic signature seems to be closer to topsoil tan ammunition (Figure 

3; T-Student tests; topsoil vs. ammunition; northern population, t=-9.33, p<0.001; 

southern population, t=-4.96, p<0.001). However, the importance of ammunition was 

higher in the southern than in the northern population (Figure 3; southern vs. northern 

population; topsoil, t=7.38, p<0.001; ammunition, t=-7.36, p<0.001). 

3.2. Modeling blood lead concentration 

Overlap between years of utilization distribution areas was high (60 ± 25%, BA index), 

while both KDE50% and KDE95% showed high stability (HRE:  index showed 42.41%

± 31.69% and 47.93% ± 32.60% (indiv= 46; indv-year=286)). 

We obtained three AIC-equivalent models explaining blood lead concentrations in 

vultures (Table S5 and Table 2). Two models showed an effect of exposure to 

ammunition from big game hunting based on the KDE50 and KDE95 with an additive 

effect of sex. The third model selected included an effect of topsoil lead concentration at

KDE50. In spite of the equivalence of the three models, the one that included big game 

hunting intensity at KDE50 and sex presented a weight of 44%, more than double the 

models that included big game hunting intensity at KDE595 and topsoil lead 
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concentration whose weights were 20% and 17%, respectively. That is, those 

individuals, especially females whose core areas are in areas with high intensities of big 

game hunting, have higher levels of lead in blood (Table. S.5) 

4. Discussion

Our results reveal that both topsoil and ammunition are important sources of lead 

found in the blood of griffon vultures, but their relative contribution is clearly 

asymmetric. Most of the vultures were exposed to background lead levels probably 

derived from both direct topsoil exposure (e.g. contaminated dust inhalation or 

ingestion) and a transfer between trophic levels. Toxic levels of lead is mainly 

explained, however, by the ingestion of hunting ammunition. Thus, our study, with the 

combination of GPS and isotopic signatures of blood lead analyses, is the first to 

provide a fine-tuned approach to disentangling how fine-scale foraging patterns 

determine individual variations in the contribution of different sources of lead.

4.1. Sources of lead exposure in griffon vultures

Our results showed that topsoil could has an important contribution to the lead 

found in vultures which could be explained by chronic exposure to this source 

compared to the exceptional exposure to ammunition. Topsoil lead is widely present in 

foraging areas of both northern and southern populations. The bulk of the vultures’ diet 

is domestic and wild ungulates that are consistently exposed to lead from the topsoil, 

especially in mining areas (Reglero et al., 2009; Taggart et al., 2011; Pareja-Carrera et 

al., 2014). Apart from this, the remains of hunted wild ungulates in regions with topsoil 

lead would contain lead from both sources (topsoil and ammunition). It should also be 

noted, that the average concentration of lead in the muscle of ungulates from mining 
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areas is relatively low (0.08-2.6 µg/g; Taggart et al., 2011; Pareja-Carrera et al., 2014), 

whereas a single piece of ammunition from a wounded animal can weigh more than 1 

mg (Nadjafzadeh et al., 2015). Consequently, vultures would be continuously 

incorporating small amounts of lead from the topsoil and exceptionally, large quantities 

from ammunition.

 This idea is reinforced by modeling procedures that showed that high levels of 

blood lead concentrations were related to exposure to ammunition lead. It is well known

that ammunition is an agent of clinical lead intoxications in birds of prey (García-

Fernández, 2014; Naidoo et al., 2017; Garbett et al., 2018; Krone et al., 2018). More 

recently, the presence of lead from topsoil and ammunition in griffon vultures has been 

described (Mateo-Tomás et al., 2016). Nevertheless, to our knowledge, this is the first 

time the relative contribution of both sources has been studied by integrating stable 

isotope analysis with fine-scale GPS monitoring. 

It could be argued that hunting intensity and topsoil lead exposure show high 

spatial covariance. These results could be obscuring an additive effect between topsoil 

and ammunition and can explain the striking differences found in lead concentrations 

between the two populations, which confirms the findings of Mateo-Tomás et al., 

(2016) in another region in Spain. Thus, the southern population would be more 

exposed not only to ammunition (Figure 1) but also to lead in the topsoil. In fact, tissues

from wild and domestic ungulates from our southern study area showed high 

concentrations of lead in contrast to the levels found in these species in other Spanish 

areas not affected by mining pollution (Santiago et al., 1998; Taggart et al., 2011; 

Pareja-Carrera et al., 2014).  For example, red deer and wild boar from southern study 

area have lead in muscle of 0.48 and 2.63 respectively. This contrasts with the levels 

found in these species in other areas not affected by lead mining pollution, where red 
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deer and wild boar showed 0.12 (0.08-0.19) and 0.32 (0.12-0.80) µg/g d.w. of lead in 

muscle, respectively (Taggart et al., 2011). Similarly, lead concentrations in liver of red 

deer and wild boar from the mining sites were higher in the southern area (0.43 and 1.92

µg/g) than in control sites (0.11 and 0.39 µg/g) These differences are also noticeable in 

domestic ungulates. Sheep southern area showed lead levels in liver and muscle of 6.16 

(4.12-9.23) and 0.08 (0.07-0.09) µg/g d.w., respectively, which are well above the levels

found in sheep from control sites of 0.21 (0.13-0.35) and 0.04 (0.03-0.05) µg/g d.w., in 

liver and muscle, respectively (Pareja-Carrera et al., 2014). All of this means that 

griffons feeding on carrion from the southern area can be exposed to lead levels 2 to 

8.3-fold greater through a diet of muscle and 4.9 to 29.3-fold higher from liver 

consumption, which may well partially explain the higher background blood lead 

concentrations found in griffon vultures from the southern area.

Our models showed that female vultures had higher lead levels that match previous 

studies in this species (Mateo-Tomás et al., 2016). Our blood samples were taken in 

winter, coinciding with the beginning of the breeding season and thanks to GPS, we 

were able to verify that at least 78% of the females and 65% of the males tagged bred 

during the season in which they were equipped with GPS. Thus, it is reasonable to 

hypothesize that the sex-based differences could be due to the mobilization of lead from

bones occurring during eggshell formation (Gangoso et al., 2009) but certainly further 

studies would be required to test this hypothesis. 

4.2.  Ecological/Physiological Consequences of high lead exposure in vultures

Almost 80% of the individuals from the southern population and 30% from the 

northern population were above the threshold value limit established for clinical toxicity

(50 µg/dl; Pain et al., 2019). These high lead concentrations are probably related to the 
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fact that the studied vultures were captured in winter, during the big game hunting 

season (Espín et al., 2014; Hernández & Margalida 2009; Mateo-Tomás et al., 2016; 

Krone 2018; Garbett et al 2018). In any case, these lead values were above the 

concentrations described in other species of large avian scavengers (Plaza & 

Lambertucci 2019; Krüger & Amar 2018) and were comparable to those found in the 

California condor (Gymnogyps californianus) undergoing chelation therapy to counter 

lead poisoning (Finkelstein et al., 2012). However, we did not detect any deaths 

attributable to lead intoxication (Arrondo et al., 2020), nor did we perceive intoxication 

symptoms such as anorexia, dropping head or vomiting in the sampled individuals 

during the handling process (Krone et al., 2018). This confirms the already described 

high resistance of griffon vultures to lead exposure (García-Fernandez et al., 2005; 

Espín et al., 2014). In fact, deaths due to lead exposure are known but seem 

comparatively rare in relation to other vultures and large body-sized facultative 

scavenger species (Mateo et al., 1997; Mateo 2009; Horowitz et al., 2014). Beyond the 

absence of direct mortality and visible symptoms of intoxication, we cannot discard 

hidden negative effects derived from chronic exposure such as alterations in bone 

mineralization (Gangoso et al., 2009), physiological effects such as the suppression of 

δ-ALAD (Espín et al., 2015) or behavioral alterations derived from sub lethal 

exposures. 

5. Further remarks

Topsoil lead can be found naturally (Locutura et al., 2012) but pollution derived 

from mining activity as occurs in our southern study area is a major problem for wildlife

and ecosystems, largely because lead mining activity in Europe has been occurring for 

millennia (Reglero et al., 2009, Taggart et al., 2011). Although for our target species, no
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consequences were detected, it is possible to hypothesize that other sensitive threatened 

species such as Egyptian vultures (Neophron percnopterus), red kites (Milvus milvus) or

Spanish imperial eagles (Aquila adalberti) can be affected if their territories and home 

ranges include highly contaminated mining areas. Consequently, detailed information 

on topsoil contamination at the level of the entire Iberian Peninsula is necessary to be 

able to predict damage to wildlife, livestock and human health.

Our results also reinforce the idea that ammunition is the main cause of toxic lead 

concentration in scavenger birds, such as vultures (García-Fernández 2014; Krone et al.,

2018; Pain et al., 2019). This finding is especially relevant in the current context of rural

abandonment in which wild ungulates are spreading across Europe as part of a passive 

rewilding process (Apollonio et al., 2010). In parallel to the growth of wild ungulates 

populations, hunting pressure is also increasing (Herruzo & Martínez-Jauregui 2013). 

This inevitably entails a greater exposure to lead and more risk of intoxication for 

vultures and other scavenger species that consume both the discarded remains of killed 

animals and the carcasses of mortally injured animals not collected by hunters. In 

addition, based on our results, exposure to ammunition could be occurring hundreds of 

kilometers away from the breeding colonies. This is especially relevant for large body-

sized scavenging species, which can fly long distances daily crossing administrative 

boundaries that expose them to different, and sometimes contradictory, legislation 

(Arrondo et al., 2018).  Therefore, the decision to ban lead ammunition partially or at 

the local scale (Avery & Watson 2009; Mateo & Kanstrup 2019) may be insufficient. It 

is obvious that a change in legislation regarding the replacement of lead with other 

materials requires European regulations to develop integral conservation strategies 

(Lambertucci et al., 2014; Arrondo et al., 2018). This might also contribute to 
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promoting hunting as a more sustainable activity within a rewilding Europe (Kanstrup 

et al., 2018). 
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Table 1: Number and percentage of individuals from the two study areas in each of the 

categories of lead exposure defined by Pain et al. (2019). 

Table 2: Results of the Generalized Linear Models (Gaussian family) performed to 

determine sources of blood lead concentration in GPS-tagged vultures. 

Table S.1: Individual characteristics of the birds included in this study. In column Sex 

are represented males (M) and females (F).  Areas of KDE50 and KDE95 are expressed 

in km2. Column Alive indicates if the animals were alive at the end of the study period 

(December 2018). NA represents those birds whose GPS device failed. 

Table S.2: Ammunition and topsoil (control and contaminated) samples used to 

determine proportion of both lead sources in vultures blood.  

Table S.3: Mean and range values of %RSD for replicate analyses (n=6) of vulture 

blood, topsoil, and ammunition samples.

Table S.4: Statistical summary of the layers used to estimate ammunition and topsoil 

lead exposure.

Table S.5: AIC-based model selection to assess the lead concentration in vultures. Only

models with informative variables are included. 

Figure 1: Upper and lower panels show the KDE95 used by all the individuals from 

northern (blue contour) and southern populations (red contour). Left maps represent the 

lead concentration in the superficial topsoil (according to Locutura et al., 2012). Right 

panels show the number of animals hunted per year in 10x10 km2 cells including the 

two species most commonly hunted, wild boar and red deer (see methods). Black stars 

show trapping sites.
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Figure 2: Lead isotope ratios (A: 207Pb/208Pb - 206Pb/207Pb; B: 206Pb/208Pb - 206Pb/207Pb; C: 

206Pb/208Pb - 207Pb/208Pb) in blood of griffon vultures from northern and southern 

populations. Red and blue dotes represent southern and northern population individuals,

respectively.  Mean and standard deviation of lead isotope ratios of the two lead sources

(ammunition and topsoil) are also shown.  

Figure 3: Mean and 95% Confidence Interval of the estimated contribution of lead from

ammunition and topsoil to blood lead concentration in vultures from both northern and 

southern populations, based on the results of the MixSIAR models. 
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Table 1

Blood Pb concentration (µg/dl)
N(%)

Population Sex <20 
Background

20-50
Sublethal effects

50-100 
Clinical effects

>100 
Potentially lethal

Northern Female 2(12.5) 8(50.0) 5(31.3) 1(6.3)
Male 4(28.6) 6(42.9) 2(14.3) 0(0.0)
Total 6(21.4) 14(50.0) 7(25.0) 1(3.6)

Southern Female 0(0.0) 3(27.3) 5(45.5) 3(27.3)
Male 2(10.5) 5(26.3) 11(57.9) 1(5.3)
Total 2(6.7) 8(26.7) 16(53.3) 4(13.3)

Both Female 2(7.4) 11(40.7) 10(37.0) 4(14.8)
Male 6(18.2) 11(33.3) 13(39.4) 1(3.0)
Total 8(13.8) 22(37.9) 23(39.7) 5(8.6)
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Table 2

Variables Estimate±Std. Error p-value
(Intercept) 3.438±0.159 <0.001
exposure to ammunition from big game hunting at KDE 50 0.004±0.001 <0.001
males -0.337±0.153 0.003
(Intercept) 3.438±0.167 <0.001
exposure to ammunition from big game hunting at KDE 95 0.004±0.001 <0.001
males -0.327±0.155 0.004
(Intercept) 3.141±0.196 <0.001
exposure to topsoil lead at KDE95 0.022±0.006 <0.001
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Table S.1.

Individual Alive Population Sex KDE50 KDE95
L73 YES Southern M 70.88 1124.7916
L8J YES Southern M 243.41 4668.9676

T00 YES Southern F 207.61 3426.2532

T01 YES Southern F 318.63 5675.5555

T02 YES Southern M 172.82 2492.7401

T03 YES Southern M 519.83 6090.678

T05 YES Southern M 78.10 5457.2433

T06 NA Southern M 84.64 2768.1997

T07 NO Southern M 59.07 2666.8988

T08 YES Southern F 196.74 3326.8942

T09 YES Southern M 81.93 4137.2157

T0A YES Southern M 334.30 2798.9276

T0C YES Southern M 105.33 4678.9345

T0H YES Southern M 307.49 3596.8582

T0J YES Southern F 964.21 8335.799

T0L NA Southern M 55.26 3110.0696

T0U NO Southern F 187.80 3960.7735

T0V YES Southern M 231.85 2922.7373

T0W NA Southern F 57.60 2701.8798

T0X NA Southern M 164.98 5371.7382

T10 NA Southern F 464.65 5438.5837

T11 YES Southern M 51.72 5323.4727
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T12 NA Southern M 83.62 2455.8705

T14 YES Southern M 226.10 4117.9899

T15 YES Southern F 780.49 8514.226

T16 YES Southern M 92.43 1898.6661

T17 YES Southern M 247.02 7765.4193

T19 NO Southern F 309.69 3856.2093

T1C NA Southern F 462.86 3382.1542

T1J YES Southern F 780.26 7626.0972

T1L YES Northern M 57.71 1336.3249

T1N YES Northern F 86.82 871.3995

T1R YES Northern M 205.56 2111.6737

T1U NO Northern F 134.95 891.8856

T1W NO Northern M 46.04 1760.9609

T1X YES Northern F 209.66 2653.92

T21 YES Northern M 38.42 543.4831

T22 NO Northern M 25.55 233.7521

T24 YES Northern F 88.19 1029.8596

T25 YES Northern M 698.48 7775.0831

T2C NO Northern M 88.75 995.9196

T2F YES Northern F 73.39 791.1746

T2H YES Northern M 79.03 678.0347

T2L YES Northern F 191.61 3106.063

T2M YES Northern M 142.04 1890.6208

T2N NO Northern M 34.25 536.0871

T2R YES Northern F 738.00 7057.0544

T2T YES Northern F 128.09 908.3614

T2U YES Northern M 210.53 2475.1838

T2V YES Northern F 152.63 2338.3821

T2W YES Northern F 302.94 4039.008
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T2X NO Northern F 54.22 1311.9559

T30 YES Northern F 66.13 1967.6696

T31 YES Northern F 362.49 5181.7917

T33 YES Northern F 271.52 2665.2463

T35 NO Northern F 132.29 2478.3662

T36 YES Northern M 20.05 142.9229

T3T NO Northern F 71.20 518.6238

Table S.2.

ID N Kind of lead 206/207 207/208 206/208
Topsoil T05_10 A 1 Control topsoil 1.1934 0.4004 0.4778
Topsoil T05_10 B 1 Control topsoil 1.1945 0.3996 0.4773
Topsoil T05_10 C 1 Control topsoil 1.1711 0.4059 0.4754
Topsoil T05_9   1 Control topsoil 1.1931 0.4015 0.4790
Topsoil NM2   1 Contaminated topsoil 1.1711 0.4073 0.4770
Topsoil Pto 122 B 1 Contaminated topsoil 1.1626 0.4106 0.4774
Topsoil Pto 123 1 Contaminated topsoil 1.1580 0.4097 0.4744
Topsoil Pto 124 1 Contaminated topsoil 1.1536 0.4112 0.4743
Topsoil Pto 125 1 Contaminated topsoil 1.1542 0.4098 0.4730
Topsoil Pto 133 1 Contaminated topsoil 1.1549 0.4103 0.4738
Topsoil Pto 74  1 Contaminated topsoil 1.1526 0.4119 0.4748
Norma 3006 A 3 Bullet 1.1455 0.4141 0.4743
Norma 3006 B 3 Bullet 1.1544 0.4130 0.4768
S&B 3006 2 Bullet 1.1473 0.4118 0.4724
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REMINGTON 270 1 Bullet 1.2323 0.4051 0.4992
REMINGTON 300 A 2 Bullet 1.2241 0.4058 0.4968
REMINGTON 300 B 3 Bullet 1.2003 0.4087 0.4905
WINCHESTER 270 WSM 2 Bullet 1.2000 0.4091 0.4910
HORNADY 300 2 Bullet 1.2018 0.4094 0.4920
BROWING 12 3 Cartridge 1.1529 0.4132 0.4764

Table S.3

Sample 206/207 207/208 206/208
Vulture blood 0.124 (0.029-0.229)0.147 (0.035-0.279) 0.140 (0.004-0.271)
Topsoil 0.140 (0.080-0.245)0.134 (0.049-0.231) 0.127 (0.057-0.205)
Ammunition 0.138 (0.097-0.183)0.138 (0.064-0.277) 0.119 (0.067-0.193)
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Table S.4

Variables Minimum Maximu
m

Mean Standard Deviation

Hunting 
exposure

0 320 70.07 59.90

Topsoil lead 
exposure 

1 8545 27.22 54.32

Table S.5

Model AICc ΔAICc Cumulative weight
Weigh

t
R2

exposure to ammunition from big game hunting at KDE 50+sex 104.77 0 0.44 0.44 23.8
exposure to ammunition from big game hunting at KDE 95+sex 106.44 1.67 0.19 0.63 21.9
exposure to topsoil lead at KDE95 106.63 1.86 0.17 0.8 18.1
exposure to ammunition from big game hunting at KDE 50 107.36 2.59 0.12 0.92
exposure to ammunition from big game hunting at KDE 95+sex 108.66 3.89 0.06 0.98
exposure to topsoil lead at KDE50 111.53 6.76 0.01 1
NULL 116.02 11.25 0 1
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Figure 1791
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Figure 2794
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Figure 3
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