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Summary 
 
Omega-3 (ω3 or n-3) long-chain polyunsaturated fatty acids (PUFA) including eicosapentaenoic acid and 
docosahexaenoic acid (DHA), play physiologically important roles in vertebrates. These compounds have long 
been believed to be originated almost exclusively from aquatic (mostly marine) single-cell organisms. Yet, a 
recent study has discovered that many invertebrates possess a type of enzymes called methyl-end desaturases 
(ωx) that enables them to endogenously produce n-3 long-chain PUFA and could make a significant 
contribution to production of these compounds in the marine environment. Polychaetes are major components 
of benthic fauna and thus important to maintain a robust food web as a recycler of organic matter and a prey 
item for higher trophic level species like fish. In the present study, we investigated the ωx enzymes from the 
common ragworm Hediste diversicolor, a common inhabitant in sedimentary littoral ecosystems of the North 
Atlantic. Functional assays of the H. diversicolor ωx demonstrated unique desaturation capacities. An ω3 
desaturase mediated the conversion of n-6 fatty acid substrates into their corresponding n-3 products 
including DHA. A further enzyme possessed unique regioselectivities combining both ω6 and ω3 desaturase 
activities. These results illustrate that the long-chain PUFA biosynthetic enzymatic machinery of aquatic 
invertebrates such as polychaetes is highly diverse and clarify that invertebrates can be major contributors to 
fatty acid trophic upgrading in aquatic food webs. 
 
Introduction 

 
     The omega-3 (ω3 or n-3) long-chain (≥C20) polyunsaturated fatty acids (PUFA) including eicosapentaenoic 
acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have beneficial roles in human health [1-3]. 
Virtually all n-3 long-chain PUFA are produced in the marine environment, with single-cell microorganisms 
including photosynthetic microalgae, heterotrophic protists and bacteria, being historically regarded as 
primary producers since they feature all enzymatic activities required for de novo biosynthesis of these 
compounds [4,5]. Long-chain PUFA can be biosynthesised through either anaerobic or aerobic pathways 
involving distinct enzymatic machineries. The former is achieved by the polyketide synthase (PKS) complex 
existing in prokaryotes and some eukaryotic microorganisms [6]. However, the majority of eukaryotes 
synthesise long-chain PUFA aerobically, pathways in which desaturase enzymes enabling insertion of double-
bonds into fatty acyl chain are key components [7]. A ∆9 desaturase, which exists in all living organisms [8], 
introduces the first double bond (unsaturation) into a saturated fatty acid such as 16:0 (palmitic acid) and 18:0 
(stearic acid) to produce 16:1n-7 (palmitoleic acid) and 18:1n-9 (oleic acid), respectively (figure 1). Introduction 
of a second double bond to biosynthesise PUFA (i.e. two or more unsaturations) is, with some exceptions (e.g. 
[9]), achieved via a different type of desaturase named “methyl-end desaturase” (ωx) since they insert the 
double bond between a pre-existing one and the methyl-end of carbon chain. In particular, two desaturase 
types are crucially important to produce PUFA de novo. First, an ωx enzyme with ∆12 desaturase activity 
catalyses the reaction leading to the production of 18:2n-6 (linoleic acid; LA) from 18:1n-9 (figure 1). Second, 
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an ωx enzyme with ∆15 desaturase activity enables the biosynthesis of 18:3n-3 (α-linolenic acid; ALA) from 
18:2n-6 [10] (figure 1). The C18 PUFA LA and ALA can further be desaturated by front-end desaturases, and 
elongated by elongation of very long chain fatty acids (Elovl) proteins to produce various long-chain PUFA 
including EPA and DHA (figure 1) [11-13]. Interestingly, ωx enzymes with ∆15 activity often possess also ∆17 
and ∆19 desaturase activities and consequently have the capacity to convert a variety of n-6 PUFA into the 
corresponding n-3 PUFA (figure 1). For this reason, these enzymes are commonly termed “ω3 desaturases”. 
However, the term “ω6 desaturase” typically refers to methyl-end desaturases that have 18:1n-9 as the sole n-9 
substrate that can be converted into an n-6 product (i.e. 18:2n-6) (figure 1) [14]. 
     Vertebrates including fish do not possess ωx enzymes and hence, the C18 PUFA LA and ALA are dietary 
essential fatty acids. Fish, however, have front-end desaturase and Elovl enzymes that can operate towards 
LA and ALA and consequently, fish can contribute to “trophic upgrading”, a phenomenon by which primary 
produced C18 PUFA acquired via diet can be modified to the physiologically important long-chain PUFA [15-
17]. In the marine ecosystem, the trophic levels between the primary producers and fish are largely occupied 
by invertebrates, and current evidence confirms that many invertebrates have enzymes enabling them to 
contribute not only to trophic upgrading as mentioned above for fish [18,19] but also to produce PUFA de 
novo via ωx enzymes. Indeed, a recent study revealed that a variety of species within Cnidaria, Nematoda, 
Annelida, Mollusca, Rotifera and Arthropoda possess ωx enzymes enabling them to synthesise LA and ALA 
de novo [20]. Additionally, invertebrates with ω3 desaturases can convert a range of n-6 PUFA into n-3 
products including long-chain PUFA [20-22]. Interestingly, while biosynthesis of EPA from arachidonic acid 
(ARA; 20:4n-6) has been demonstrated in animal ω3 desaturases, production of DHA from osbond acid (22:5n-
6) has not yet been reported [20-22].  
     Occurrence of ωx enzymes in marine invertebrates has important ecological implications associated with 
primary production of essential nutrients at a global scale [20]. Estimating the quantitative contribution of n-3 
long-chain PUFA production by marine invertebrates is at present not possible due to, among other reasons, 
the lack of an accurate quantification of group abundance as occurs in the terrestrial environment [23]. 
Nevertheless, certain invertebrate groups clearly arise as major contributors to such production given their 
abundance and wide-spread distribution in the ocean. Among them, polychaetes have active PUFA 
biosynthesising systems as shown in the lugworm Arenicola marina [24,25], the ragworm Alitta (Nereis) virens 
[25] and the clamworm Perinereis aibuhitensis [26]. Genes responsible for such capacities have been studied in 
the deep-sea giant tubeworm Riftia pachyptila [21] and the nereid polychaete Platynereis dumerilii [20]. The 
common ragworm Hediste (formerly known as Nereis) diversicolor, an important inhabitant in sedimentary 
littoral ecosystems of the North Atlantic, has been suggested to have some ability to synthesise n-3 long-chain 
PUFA [27,28]. The present study aimed to investigate the presence of ωx enzymes in H. diversicolor as a first 
step to establish the potential of this species to contribute to n-3 PUFA production. Our results demonstrated 
that H. diversicolor ωx enzymes have unique and novel desaturation capabilities that enable this species to 
produce PUFA de novo and, from them, n-3 long-chain PUFA including EPA and DHA. 
 
Methods 
 
Sample collection, total RNA extraction and cDNA synthesis 
     One single H. diversicolor individual collected from the wild from a tidal flat at Leangenbukta in 
Trondheim, Norway (63°26′24.5″N, 10°28′27.7″E) was used in this study. Total RNA was extracted from a 
whole-body sample (~100 mg) using TRI Reagent (Sigma-Aldrich, Gillingham, UK) following the 
manufacturer’s recommendations. Subsequently, complementary DNA (cDNA) was synthesised from the 2 µg 
of total RNA using High Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, 
USA) according to the manufacturer’s instructions.  
 
Molecular cloning of ωx cDNAs from H. diversicolor 
     Degenerate primers for the amplification of the first fragment of the H. diversicolor wx genes were designed 
using homologous sequences from closely related species as follows. Using amino acid (aa) sequences of 
functionally characterised ∆12 and ω3 desaturases from Platynereis dumerilii (NCBI accession no. KY658238 
and KY707886, respectively) as queries [20], tblastn was carried out against the transcriptome shotgun 
assembly (TSA) database from Perinereis aibuhitensis (NCBI BioProject No. PRJNA277901). Two ωx-like 
sequences with high similarity to the P. dumerilii ∆12 and ω3 desaturases, namely GDAF01019395 and 
GDAF01005096, were identified. Given that both P. dumerilii and P. aibuhitensis appear to have two ωx genes 
[20], we expected that H. diversicolor also possesses two ωx genes that were named as ωx1 (homologous to P. 
dumerilii KY658238 and P. aibuhitensis GDAF01019395) and ωx2 (homologous to P. dumerilii KY707886 and P. 
aibuhitensis GDAF01005096) in the present study. 
     Alignment (CLC Sequence Viewer 7, QIAGEN Bioinformatics, Aarhus, Denmark) of the homologous 
sequence pairs from P. dumerilii and the P. aibuhitensis enabled the design of degenerate primers for 
amplification of a fragment of the H. diversicolor ωx1 and ωx2 (Table S1). The condition of polymerase chain 
reactions (PCR) were described in Table S1. The amplified products were run on a 1% (w/v) agarose gel and 
purified by using IllustraTM GFX PCR DNA and Gel Band Purification Kits (GE Healthcare Life Sciences, Little 
Chalfont, UK). Subsequently, samples were sent for DNA sequencing (GATC Biotech, Konstanz, Germany). 



     In order to obtain the full-length open reading frame (ORF) sequences of the H. diversicolor ωx1 and ωx2, 
Rapid Amplification of cDNA Ends (RACE) PCR was performed (FirstChoice® RLM-RACE Kit, Thermo 
Fisher Scientific). Two (nested) PCR rounds (GoTaq® Green Master Mix, Promega) were carried out using 
RACE primers provided with the kit and corresponding gene specific primers designed on the first fragment 
sequences (Table S1). All the PCR conditions and primer pairs used were described in Table S1. RACE PCR 
products were purified and sequenced as above, and the resulting positive fragments were assembled with 
the corresponding first fragment sequences using CLC Main Workbench 8 (QIAGEN Bioinformatics) to 
produce putative full-length cDNA sequences of the H. diversicolor ωx1 and ωx2. 
 
Phylogenetic analysis 
     The deduced aa sequences of H. diversicolor ωx1 and ωx2 were aligned with 58 ωx sequences isolated from 
Lophotrochozoa/Arthropoda with the addition of functionally characterised ωx enzymes from Acropora 
millepora (Cnidaria) and Caenorhabditis elegans (Nematoda) [20,29,30] using MAFFT version 7 [31]. 
Subsequently, the resulting alignment was filtered through TrimAl software to remove the columns 
containing gaps [32]. The maximum likelihood phylogenetic analysis was then carried out using PhyML v3.0 
server [33]. The protein evolutionary model was LG+G+I selected by Smart Model Selection with Akaike’s 
information criterion [34]. The number of bootstrap replicates was set to 1000, and the resulting tree was 
visualised using CLC Main Workbench 8 (QIAGEN Bioinformatics).  
 
Functional characterisation of the H. diversicolor ωx1 and ωx2 in yeast 
     The high fidelity Pfu DNA Polymerase (Promega) was used to amplify the full-length ORF sequences of 
ωx1 and ωx2 using H. diversicolor whole-body cDNA as a template. The PCR conditions and primers used 
were described in Table S1. The PCR products were purified and subsequently digested with HindIII and XbaI 
(New England Biolabs, Hitchin, UK). The restricted ωx1 and ωx2 ORF fragments were ligated (T4 DNA 
Ligase, Promega) into a similarly restricted pYES2 yeast expression vector (Thermo Fisher Scientific) to 
produce the plasmid constructs pYES2-ωx1 or pYES2-ωx2. 
     Yeast Saccharomyces cerevisiae competent cells InvSc1 (Invitrogen) were transformed with pYES2-ωx1 or 
pYES2-ωx2 using the S.c. EasyCompTM transformation kit (Invitrogen). The details of yeast transformation and 
culture were described in [35]. One of the following fatty acid substrates, supplied as sodium salts, was used 
for the yeast culture: 20:1n-9, 20:3n-9, 22:1n-9, 18:2n-6, 18:3n-6, 20:2n-6, 20:3n-6, 20:4n-6, 22:4n-6 or 22:5n-6. 
Final concentrations of exogenously supplemented FA substrates were 0.5 (C18), 0.75 (C20), and 1 mM (C22) to 
compensate for uptake efficiency decreases with increasing chain length [36]. The yeast transformed with 
pYES2-ωx1 or pYES2-ωx2 were also grown in the absence of exogenously added fatty acid substrates to 
determine desaturase activities towards the yeast endogenous fatty acids. After 48 h of incubation, the yeast 
cells were harvested and homogenised in chloroform/methanol (2:1, v/v) containing 0.01% (w/v) butylated 
hydroxytoluene (BHT) as antioxidant, and stored at -20 °C until further analysis. Controls consisting of yeast 
transformed with the empty pYES2 vector were also run as described above. All fatty acid substrates, except 
20:3n-9 and 22:1n-9, were from Nu-Chek Prep, Inc. (Elysian, MN, USA). Both 20:3n-9 and 22:1n-9 were 
purchased from Cayman Chemical (Ann Arbor, MI, USA) and Sigma-Aldrich, respectively. Reagents used to 
prepare SCMM-ura were from Sigma-Aldrich, except for the bacteriological agar obtained from Oxoid Ltd. 
(Hants, UK). 
 
FAME analysis of the transgenic yeast by GC 
     Total lipids were extracted with chloroform:methanol (2:1, v/v) according to [37]. Fatty acid methyl esters 
(FAME) were prepared through acid-catalysed transesterification [38]. FAME were subsequently purified by 
thin layer chromatography [35] prior to injection on a Fisons GC-8160 (Thermo Fisher Scientific) gas 
chromatograph equipped with a 60 m x 0.32 mm i.d. x 0.25 µm ZB-wax column (Phenomenex, Cheshire, UK) 
and a flame ionisation detector (GC-FID). FAME were identified by comparing their retention times with 
those from commercial FA standards (Marine Oil FAME Mix, Restek Corporation, Bellefonte, PA, USA; 
Supelco 37 Component FAME Mix, Sigma-Aldrich), run under the same conditions. When needed, further 
identification of peaks was carried out by injecting the yeast FAME on a GC (Agilent 6850-5975 Series MSD) 
equipped with a mass spectrometry detector (GC-MS) and comparing the spectra against those from the NIST 
library. The desaturase conversions were calculated according to the formula [(product area / (product area+ 
substrate area)) x 100] [39]. 
 
Results 
 
Sequence and phylogenetics of the two putative ωx from H. diversicolor 
     Two full-length ωx-like sequences (ωx1 and ωx2) were successfully isolated from H. diversicolor. The 
sequences were deposited to the NCBI as accession numbers MH469733 for ωx1 and MH469734 for ωx2. The 
ωx1 and ωx2 ORF sequences consist of 1167 and 1185 base pairs (bp), respectively, encoding putative proteins 
of 388 aa and 395 aa, respectively. The deduced aa sequences of ωx1 and ωx2 contain three histidine boxes 
(HXXXH, HXXHH and HXXHH) and lack cytochrome b5 domain, both typical features of the ωx enzymes 
[5,40] (figure S1). 



     Our phylogenetic analysis showed that both ωx1 and ωx2 clustered together within a well-supported 
group (93% bootstrap) that includes ωx sequences from Lophotrochozoa (Rotifera, Mollusca and Annelida) 
and Arthropoda (figure 2). This clade, termed Clade 3 by [20], was clearly separated from those containing ωx 
sequences isolated from A. millepora (Cnidaria) (Clade 2) and C. elegans (Nematoda) (Clade 1) (figure 2). 
Within Clade 3 (Lophotrochozoa/Arthropoda), sequences isolated from Annelida did not form a single 
monophyletic group but two moderately supported clades (77% and 86% bootstrap) (figure 2). One includes 
ωx1 with the functionally characterised ∆12 desaturase from P. dumerilii [20] and another includes ωx2 with 
the functionally characterised ω3 desaturases from P. dumerilii and R. pachyptila [20,21] (figure 2). 
 
Functional characterisation of the H. diversicolor ωx in yeast 
     To test the desaturase activity that the newly cloned H. diversicolor ωx1 and ωx2 have towards yeast fatty 
acids, the fatty acid profiles of the yeast transformed with pYES2-ωx1 and pYES2-ωx2 were analysed and 
compared against those from control yeast (i.e. transformed with empty pYES2). Control yeast fatty acid 
profiles were characterised by prominent peaks corresponding to 16:0, 16:1 (isomers 16:1n-9 and 16:1n-7), 18:0, 
18:1 (isomers 18:1n-9 and 18:1n-7), consistently with lipid composition of wild type S. cerevisiae [41]. No 
activity towards yeast endogenous fatty acids was detected for the H. diversicolor ωx2 (data not shown). 
Interestingly, fatty acid composition of yeast expressing the H. diversicolor ωx1 revealed desaturase activity 
towards yeast endogenous fatty acids (Table S2). The H. diversicolor ωx1 demonstrated to have ∆12 desaturase 
activity as shown by the presence of peaks 16:2n-4 and 18:2n-6 (∆12 desaturation of 16:1n-7 and 18:1n-9, 
respectively) in transgenic yeast expressing ωx1 (figure 3, Table S2). Moreover, an additional peak identified 
as 18:3n-3 confirmed that the H. diversicolor ωx1 further has ∆15 desaturase activity towards 18:2n-6 (figure 3, 
Table S2). 
     To characterise further functions of the H. diversicolor ωx enzymes, transgenic yeast expressing the H. 
diversicolor ωx1 or ωx2 were grown in the presence of exogenously added fatty acid substrates, namely n-9 
(20:1n-9, 20:3n-9 and 22:1n-9) and n-6 substrates (18:2n-6, 18:3n-6, 20:2n-6, 20:3n-6, 20:4n-6, 22:4n-6). Yeast 
expressing the ωx1 were able to convert 20:1n-9 into 20:2n-6 and 20:3n-9 into 20:4n-6 (figure 3B and 3C), 
although no activity was observed towards 22:1n-9 (Table S3). These results suggested that the H. diversicolor 
ωx1 is a ω6 desaturase with the ability to convert various n-9 fatty acid substrates into their corresponding n-6 
products. Furthermore, yeast expressing the H. diversicolor ωx1 were also able to convert a variety of n-6 PUFA 
substrates into their corresponding n-3 desaturation products (Table S2), confirming that this enzyme also 
exhibits ω3 desaturase capacity. Among the n-3 products, the H. diversicolor ωx1 mediated the biosynthesis of 
EPA (20:5n-3) from ARA (20:4n-6) (figure 3D) but was unable to produce DHA from 22:5n-6 (Table S2). 
     Unlike ωx1, the H. diversicolor ωx2 had no activity towards n-9 substrates assayed (Table S2). Importantly, 
ωx2 was able to desaturate all n-6 fatty acid substrates tested and, in addition to the C18 and C20 n-6 PUFA that 
were also desaturated by ωx1, the H. diversicolor ωx2 also operated towards C22 compounds including 22:4n-6 
and 22:5n-6, which were converted into 22:5n-3 (docosapentaenoic acid) and 22:6n-3 (DHA), respectively 
(figure 4C and 4D, Table S2). Overall, these results demonstrate that the H. diversicolor ωx2 is an ω3 
desaturase. 
 
Discussion 
 
     Along marine microbes [10], it is now well established that many invertebrates, which are abundant mainly 
in aquatic ecosystems [20] but also in terrestrial environments [42], could contribute to the global production 
of n-3 long-chain PUFA, raising the question of how much such contribution can be. One key step in 
establishing the contribution of a particular group of invertebrates requires the understanding of the actual 
repertoire of ωx genes and associated functions of the encoded enzymes in representative species within a 
particular group. The common ragworm H. diversicolor was chosen as a model species in the present study 
since, in addition to having shown potential capacity of endogenous production of PUFA [27,43,44], it is a 
predominant species in sediments along the littoral areas of the North Atlantic. 
     The present study demonstrated the presence of two functionally active ωx enzymes (ωx1 and ωx2) in H. 
diversicolor. The phylogenetic analysis showed that both H. diversicolor ωx clustered within a well-supported 
ωx clade previously termed as Clade 3 [20], which encompassed sequences from Lophotrochozoan (molluscs, 
rotifers, and annelids) and Arthropoda (crustaceans). The resolution of the tree within Clade 3 does not allow 
us to clarify the phylogenetic relationship of the two herein characterised H. diversicolor ωx enzymes, although 
presence of two distinct ωx genes has been reported in many Lophotrochozoan species including nereid 
polychaetes such as P. dumerilii [20]. Possessing two ωx genes appears to be a remarkable physiological 
advantage particularly where the encoded enzymes exhibit distinct but complementary functions as 
demonstrated for H. diversicolor. 
     Our functional assays confirmed that H. diversicolor can de novo produce PUFA such as LA (18:2n-6) and 
ALA (18:3n-3) and, whereas the H. diversicolor ωx2 can contribute to some extent, such metabolic capacity can 
be exclusively accounted for by ωx1. Indeed, the H. diversicolor ωx1 can bioconvert 18:1n-9 into 18:2n-6 (∆12 
desaturation), and also 18:2n-6 into 18:3n-3 (∆15 desaturation). Despite ∆12∆15 bifunctional desaturases have 
been previously reported in several organisms [45-47], further activities also present in the H. diversicolor ωx1 
suggest this enzyme has unique desaturase capacity combining simultaneously ω6 and ω3 desaturase 



regioselectivities [48]. First, ωx1 has ω6 desaturase regioselectivity since, along 18:1n-9, can convert other n-9 
like 20:1n-9 and 20:3n-9 into the corresponding n-6 products. The ability to convert n-9 into n-6 products 
contrast with that reported in the vast majority of plant “ω6 desaturases”, which could do so exclusively 
towards 18:1n-9 [14,49]. One exception found in the literature is represented by the microsomal ∆12-fatty acid 
desaturase characterised in the diatom Phaeodactylum tricornutum, an enzyme with the ability to desaturate 
20:1n-9 to 20:2n-6 [50] but not 20:3n-9 as the H. diversicolor ωx1. Current data do not allow us to clarify why the 
H. diversicolor ωx1 acquired the capacity to utilise C20 n-9 substrates but it is tempting to hypothesise that such 
capacity allows this polychaete to take advantage of the highly available copepod-derived 20:1n-9 [51]. In 
agreement, the lipids of H. diversicolor contained unexpectedly high amounts of 20:2n-6, the desaturation 
product of 20:1n-9, with levels reaching up to ~10% of total fatty acids in winter [52]. Second, the H. diversicolor 
ωx1 showed the ability to convert both C18 and C20 n-6 PUFA into the corresponding n-3 products and therefore, 
has ω3 desaturase regioselectivity along the ω6 regioselectivity described above. However, the activity pattern 
of the H. diversicolor ωx1 is remarkably different from that of the ω3 desaturase of the deep-sea tubeworm R. 
pachyptila (active only towards C20 PUFA substrates) [21] or the two ωx enzymes characterised from the nereid 
polychaete P. dumerilii, one being a monofunctional ∆12 desaturase and the other being an ω3 desaturase with 
the ability to desaturate C18, C20 and C22 n-6 PUFA [20]. However, ω3 desaturase activity of the H. diversicolor ωx1 
does not include C22 n-6 PUFA as adequate substrates, which contrasts with the ω3 desaturase regioselectivity 
operated by the H. diversicolor ωx2 characterised in the present study. Indeed, the herein demonstrated ability 
of the H. diversicolor ωx2 to produce DHA from osbond acid (22:5n-6) is, to the best of our knowledge, unique 
among methyl-end desaturases reported in the literature. 
     The functional characterisation of the H. diversicolor ωx enzymes helped us to clarify that the capacity for 
PUFA biosynthesis suggested in previous studies [27,43,44] is indeed accounted for genes present in the 
animal rather than symbiotic microorganisms. Such capacity would therefore explain the increased contents of 
n-3 metabolic products including EPA and DHA in H. diversicolor fed on an n-6 rich soya-based diet [43]. In 
spite of the ability for DHA biosynthesis demonstrated by ωx2 in yeast, DHA still represents a relatively 
minor component (~1% of total fatty acids) of lipids of wild H. diversicolor [52,53] suggesting that capacity for 
DHA synthesis in vivo could be limited. From a trophic ecology standpoint, the presence of PUFA 
biosynthesising genes in H. diversicolor, as well as many other invertebrates, highlights the implications that 
such metabolic capacities have when selecting certain fatty acids as trophic markers, provided their 
ambiguous origin from diet and/or biosynthesis [51]. Predicting the PUFA biosynthesising capacity of the 
different invertebrate communities existing in a certain habitat would be helpful in this regard. However, our 
data clearly show that such predictions cannot be made judging from the obvious functional diversification 
found among animal methyl-end desaturases, which occurs even within the same animal group (e.g. nereid 
polychaetes). The specific evolutionary drivers accounting for such diversification still remain unknown but a 
recent study has clarified that PUFA biosynthesising capacity including de novo production occurs 
independently from trophic level in soil-dwelling nematodes [42]. Yet, it is becoming apparent that aquatic 
invertebrates represent an interesting source of enzymes with novel functionalities [20-22] that can be used for 
the biotechnological production of n-3-rich materials that help to alleviate the increasing demand of these 
compounds [54]. H. diversicolor represents a very illustrative example judging from the unique desaturase 
abilities demonstrated by the ωx enzymes characterised here. 
     In conclusion, in the present study we demonstrated that H. diversicolor possesses two functional ωx 
enzymes with distinct desaturase capacity. On one hand, ωx1 is an enzyme enabling de novo biosynthesis of 
C18 PUFA from 18:1n-9. In addition, the ωx1 showed the ability to desaturate n-9 and n-6 substrates into n-6 
and n-3 PUFA products, respectively. These results evidence this enzyme simultaneously operates ω6 and ω3 
desaturase regioselectivities. On the other, ωx2 is an ω3 desaturase and, among other capacities, this enzyme 
enables the biosynthesis of the physiologically essential long-chain PUFA EPA and DHA. 
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Figure captions 
Figure 1. General biosynthetic pathway of polyunsaturated fatty acids. 
 
Figure 2. Maximum likelihood phylogenetic tree comparing the deduced aa sequence of H. diversicolor ωx1 
and ωx2 with ωx desaturase from various animal species. The bootstrap support value (%) is given in each 
node. Clades 1 to 3 correspond to clusters established by [20]. 
 
Figure 3. Representative chromatograms of FAME samples prepared from the transgenic yeast transformed 
with the Hediste diversicolor ωx1. Transgenic yeast expressing the coding region of the H. diversicolor ωx1 were 
grown in the absence (A) and presence of exogenously supplemented fatty acid substrates including 20:1n-9 
(B), 20:3n-9 (C) and 20:4n-6 (D). The yeast endogenous fatty acids (16:0, 16:1 isomers, 18:0 and 18:1n-9) are 
indicated as 1-4 in all panels. Additional peaks corresponding to products resulting from ∆12 desaturation 
products of yeast endogenous fatty acids (16:2n-4 and 18:2n-6) and from ∆15 desaturation (18:3n-3) are 
indicated in all panels. Peaks corresponding to exogenously added fatty acids are indicated with an asterisk 
(“*”) (B-D). 
 
Figure 4. Representative chromatograms of FAME samples prepared from the transgenic yeast transformed 
with the Hediste diversicolor ωx2. Transgenic yeast expressing the coding region of the H. diversicolor ωx2 were 
grown in the presence of exogenously supplemented fatty acid substrates including 18:2n-6 (A), 20:4n-6 (B), 
22:4n-6 (C) and 22:5n-6 (D). Peaks corresponding to exogenously added fatty acids are indicated with an 
asterisk (“*”) in each panel. The yeast endogenous fatty acids (16:0, 16:1 isomers, 18:0 and 18:1n-9) are 
indicated as 1-4 in all panels. 
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