Formation of thin layers of phytoplankton in the upwelling region off NW Iberia: biological growth versus physical accumulation

Esperanza Broullón, Enrique Crespo, Paloma Chouciño, Antonio Comesaña, Bieito Fernández-Castro, Emilio Fernández, Antonio Fuentes-Lema, Miguel Gilcoto, Enrique Nogueira, María Pérez-Lorenzo, Rosa Reboreda, Beatriz Reguera, Carlos Souto, Esther Velasco-Senovilla, Marina Villamaña, Sandra Villar and Beatriz Mouriño-Carballido

Universida_{de}Vigo

EPFL

Ocean Sciences Meeting 2020

INSTITUTO DE INVESTIGACIONES MARINAS

What are thin layers of phytoplankton?

*Thickness < 3 m

*Intensity > 2 x Background

*TL can extent horizontally over several km and persist for several days

Motivation

Motivation

Motivation

Questions

*What are the **dynamics** of a thin layer of phytoplankton?

*What is the **spatial extent**?

*What is the contribution of **physical and biological processes** to their formation?

Research design

Research design

- * 4 SURVEY samplings through the 84 stations
- ***** 3 INTENSIVE samplings at station 222
 - minutes (total = 1674 profiles)
 - depths every 6 hours

Variables

INTENSIVE SAMPLINGS (222)

- High resolution CTD
 - *** Temperature**
 - ***** Chlorophyll *a* (from fluorescence)
- Niskin bottles
 - *** Nitrate**
 - * Chlorophyll a
 - ***** Primary production ¹⁴C

SURVEY SAMPLINGS

- 1 CTD cast per station
 - *** Fluorescence** profiles -> thin layers detection

Main goals

cruise?

*What is the **spatial extent** of the thin layer of phytoplankton?

*What is the contribution of **physical and biological processes**?

*What are the **dynamics** of the thin layer detected during the REMEDIOS-TLP

Main goals

*What are the **dynamics** of the thin layer detected during the REMEDIOS-TLP cruise?

*What is the **spatial extent** of the thin layer of phytoplankton?

*What is the contribution of **physical and biological processes**?

What is the temporal variability?

Temperature 222 st

Main goals

*What is the **spatial extent** of the thin layer of phytoplankton?

Spatial extent

Chlorophyll a

Main goals

*What is the contribution of **physical and biological processes**?

How did it form?

 $\frac{\partial chl a}{\partial t} = \left(\frac{\partial chl a}{\partial t}\right)_{ading} - \left(\frac{\partial chl a}{\partial t}\right)_{bases}$

 $\frac{\partial chl \ a}{\partial t} = \left(\frac{\partial chl \ a}{\partial t}\right)_{biological} + \left(\frac{\partial chl \ a}{\partial t}\right)_{physical} - \left(\frac{\partial chl \ a}{\partial t}\right)_{biological} - \left(\frac{\partial chl \ a}{\partial t}\right)_{physical}$

$$-\left(\frac{\partial chl \ a}{\partial t}\right)_{biological} - \left(\frac{\partial chl \ a}{\partial t}\right)_{phy}$$

Net rate

Chlorophyll values at 26.4 isopycnal between PP experiments

Net rate

Chlorophyll a values at 26.4 isopycnal between PP experiments

9Jul 00h

SURVEY 2

INTENSIVE 2

SURVEY 3 **INTENSIVE 3**

Net rate physical + biological Chlorophyll *a* values at 26.4 isopycnal between PP experiments

9Jul 00h

SURVEY 2

INTENSIVE 2

 $N(t) = N_0 e^{rt}$ r = 0.7 ± 0.01 d⁻¹

11Jul 00h

SURVEY 3

INTENSIVE 3

Biological processes

Biological processes

Biological processes

Growth rate

Growth rate

2 Growth rate = $0.95 \pm 0.11 \ d^{-1}$

What was the contra-
biological
$$\frac{\partial chl \ a}{\partial t} = \left(\frac{\partial chl \ a}{\partial t}\right)_{biological} + \left(\frac{\partial chl \ a}{\partial t}\right)_{p}$$

- If... Growth rate = Net rate Biological processes could explain net accumulation
- → Both combination If... Growth rate < Net rate
- Physical processes are decreasing concentration If... Growth rate > Net rate

Growth rate $= 0.95 \pm 0.11 \ d^{-1}$

ibution of physical and al processes?

$$-\left(\frac{\partial chl \ a}{\partial t}\right)_{biological} - \left(\frac{\partial chl \ a}{\partial t}\right)_{physical}$$

physical

Net rate vs Growth rate

Net rate = $0.7 \pm 0.01d^{-1}$

Conclusions

- Thin layer was formed during the transition from downwelling to upwelling over a period less than two days
- 2. It was a **local feature** present in only one station
- 3. Our analyses are not enough to explain which processes were the main responsible of the thin layer formation

Next step

To apply a model that can reproduce the thin layer to know what mechanisms are forming this features in this region

Acknowledgments

Grant «Programa de axudas á etapa predoutoral da Xunta de Galicia» XUNTA DE GALICIA co-funded by FSE to E. Broullón

Grant CTM2016-75451-C2-1-R by Spanish Ministry of Economy and Competitiveness to B. Mouriño-Carballido

http://proyectoremedios.com

CONTACT: ebroullon@gmail.com

Growth rate calculations:

Growth rate = $\frac{PPnet \times 0.8}{extracted \ chl \ a \times (C : chl \ a \ ratio)}$

