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Abstract: Vitamin D3 is the precursor of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), a pleiotropic
hormone that is a major regulator of the human genome. 1,25(OH)2D3 modulates the phenotype and
physiology of many cell types by controlling the expression of hundreds of genes in a tissue- and
cell-specific fashion. Vitamin D deficiency is common among cancer patients and numerous studies
have reported that 1,25(OH)2D3 promotes the differentiation of a wide panel of cultured carcinoma
cells, frequently associated with a reduction in cell proliferation and survival. A major mechanism of
this action is inhibition of the epithelial–mesenchymal transition, which in turn is largely based on
antagonism of the Wnt/β-catenin, TGF-β and EGF signaling pathways. In addition, 1,25(OH)2D3

controls the gene expression profile and phenotype of cancer-associated fibroblasts (CAFs), which
are important players in the tumorigenic process. Moreover, recent data suggest a regulatory role
of 1,25(OH)2D3 in the biology of normal and cancer stem cells (CSCs). Here, we revise the current
knowledge of the molecular and genetic basis of the regulation by 1,25(OH)2D3 of the differentiation
and stemness of human carcinoma cells, CAFs and CSCs. These effects support a homeostatic
non-cytotoxic anticancer action of 1,25(OH)2D3 based on reprogramming of the phenotype of several
cell types.
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1. Introduction

Vitamin D3, or cholecalciferol, is a secosteroid molecule synthesized in the human skin by the action
of solar UV-B light on 7-dehydrocholesterol. A second, limited source (around 10%) of vitamin D3 in the
human organism is the diet, particularly fatty fish such as salmon, herring and sardines. Cholecalciferol
is biologically inert. It enters the bloodstream and is hydroxylated at position C-25 in the liver by
cytochrome CYP2R1 to render 25-hydroxyvitamin D3 (25(OH)D3, calcidiol or calcifediol). 25(OH)D3 is
then subjected to another hydroxylation at position C-1 by cytochrome CYP27B1, mainly by kidney
tubular cells and also by several types of epithelial and immune cells, to form 1α,25-dihydroxyvitamin
D3 (1,25(OH)2D3, calcitriol) [1–3]. Both 25(OH)D3 and 1,25(OH)2D3 bind to the vitamin D receptor
(VDR) protein, one of the 48 members of the ligand-activated transcription factor superfamily of
nuclear hormone receptors. Although some controversy exists, 1,25(OH)2D3 appears to bind VDR
with higher affinity and efficacy in terms of gene regulation than 25(OH)D3. Ligand binding promotes
the formation of heterodimers between VDR and RXR, the receptor for 9-cis-retinoic acid, and the
binding of these VDR-RXR heterodimers to DNA [1–3].
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Chromatin immunoprecipitation sequencing assays have revealed the presence of around ten
thousand VDR DNA binding sites in the human genome [4]. They are distributed throughout the
whole genome. A subset is located close to the transcription initiation site of the genes that are directly
regulated by 1,25(OH)2D3, but in many cases they are located upstream of the transcription initiation
site or in introns, in the coding sequence, or downstream target genes. In line with the high number of
VDR DNA binding sites, 1,25(OH)2D3 regulates the expression of hundreds of genes that vary between
tissues, cell types and context [5,6]. Accordingly, 1,25(OH)2D3 displays a whole set of functions in
the organism. The long-term knowledge of the association of vitamin D deficiency with rickets in
children and osteomalacia in adults led to the consideration of calcium and phosphate metabolism
and bone biology as the main roles of vitamin D in humans. However, during evolution, VDR was
probably involved first in energy metabolism and defense against infections, and 1,25(OH)2D3 is today
considered an important multifaceted regulator of the immune system [7].

1,25(OH)2D3 was initially linked to cancer in 1981, when the groups of D. Feldman and T. Suda
reported its effect of inhibiting the proliferation of cultured human melanoma cells and inducing the
differentiation of mouse myeloid leukemic cells, respectively [8,9]. During the last four decades, many
studies have confirmed that 1,25(OH)2D3 attenuates the proliferation rate of many types of cancer
cells, usually in association with a differentiation-inducing effect. In recent years, it has been shown
that 1,25(OH)2D3 regulates the gene expression profile and phenotype of stromal fibroblasts present in
the tumor microenvironment. Moreover, several studies have indicated that 1,25(OH)2D3 modulates
cell stemness in a few cancer systems. Here, we review this set of actions, positing 1,25(OH)2D3 as
a crucial regulator of homeostasis in the organism and as a candidate for non-cytotoxic anticancer
therapies based on the regulation of cancer cell differentiation and stemness.

2. Effects of 1,25(OH)2D3 on Cancer Cell Differentiation

2.1. Carcinomas: The Epithelial–Mesenchymal Transition

Carcinomas are the most frequent (around 90%) type of solid cancer. They arise from epithelial cells
that, in the early steps of the tumorigenic process, lose control of their proliferation and two features of
their differentiated phenotype: (i) apical–basal polarity, which is the differential distribution of proteins
and lipids at distinct cell surface areas that in this way are functionally diverse, and (ii) adhesiveness,
which is the ability to bind strongly to neighboring epithelial cells and to the extracellular matrix
(ECM) by means of a series of specialized cell adhesion structures. The loss of epithelial differentiation
results from the acquisition of a cellular program called epithelial–mesenchymal transition (EMT). EMT
involves drastic changes in the pattern of gene expression, triggered by a group of transcription factors
(EMT-TFs: mainly SNAIL1, SNAIL2, ZEB1, ZEB2 and TWIST1) that cause repression of the epithelial
phenotype and the induction of a mesenchymal state [10,11]. Thus, diverse epithelial cell surface
proteins responsible for adhesiveness—including components of adherens junctions such as E-cadherin
(considered a hallmark of the adhesive differentiated epithelial phenotype), tight junctions such as
claudins and occludin, and desmosomes, as well as cytoskeletal components (cytokeratins), some
ECM-binding integrins and polarity regulators (such as the Crumbs, Par and Scribble complexes)—are
replaced by others typical of motile fibroblastic cells. These include N-cadherin, a distinct panel of
integrins, vimentin and ECM-degrading metalloproteases (MMP). As a result, epithelial cells remodel
their cytoskeletons, lose cell–cell and cell–ECM adhesion, change to a front–back polarity and acquire
a fibroblastic-like phenotype with motility and basal membrane invasion capacities [11,12]. EMT
provides tumor cells with other features of malignancy, such as stemness and diminished apoptosis,
which causes resistance to cytotoxic chemo- and radiotherapies and to immunotherapy [11].

Thus, the appearance of a carcinoma involves an initial increased proliferation capacity and also
the loss of the differentiated phenotype by epithelial cells that is mostly associated with the EMT
program. The increased proliferation capacity gives rise to a mass of initially benign tumor cells
growing at their original tissue location, whereas the loss of the differentiated phenotype gives these
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cells the ability to migrate (the first requirement for cancer dissemination and metastasis) and a higher
survival capacity. The EMT process is activated by a variety of agents and signals that induce or activate
the EMT-TFs such as transforming growth factor (TGF)-β, Wnt, Notch and ligands of several receptors
with tyrosine kinase activity and cytokine receptors. These signals usually act cooperatively and in
many cases are produced by stromal cells of the tumor microenvironment [11]. EMT is a reversible and
usually a partial phenomenon. It does not affect all cells in a tumor and does not completely abrogate
cell polarity and adhesiveness; thus, it generates intratumoral phenotypic heterogeneity. Later during
tumorigenesis, EMT is reversed by the opposite process of mesenchymal–epithelial transition (MET).
By restoring cell aggregation and binding to ECM, MET probably facilitates the survival of tumor cells
during circulation in the bloodstream and the initial colonization of metastatic niches [10,11].

2.2. Effects of 1,25(OH)2D3 on the Differentiation of Carcinoma Cells

Many studies on the effects of 1,25(OH)2D3 on carcinoma cells have been performed in colon
and breast cancer due to their high incidence and mortality and due to abundant reports pointing
to these two neoplasias as those that are most commonly associated with vitamin D deficiency [13].
As in most cancer cell types, 1,25(OH)2D3 reduces proliferation at the cell cycle G0–G1 transition via
the inhibition of retinoblastoma protein phosphorylation by cyclin/cyclin-dependent kinase (CDK)
complexes, in part through the induction of CDK inhibitors and the repression of the c-MYC gene [1–3].
Usually, the inhibition of proliferation is accompanied by a reduction in cell survival due to sensitization
to apoptotic stimuli, and both effects are linked to the induction of cell differentiation.

2.2.1. Colon Cancer

1,25(OH)2D3 Induces Epithelial Differentiation and Inhibits EMT

In line with its physiological role in the intestine, promoting the absorption of calcium and
phosphate, the intestinal epithelium barrier function and xenobiotic metabolism, 1,25(OH)2D3 induces
the differentiation of normal colon epithelial cells through the upregulation of many epithelial
enzymes and markers and through maintaining the morphology typical of the epithelial differentiated
phenotype [14,15]. Concordantly, in colon carcinoma cells 1,25(OH)2D3 induces a change in morphology
that increases cell–cell adhesion and cell flattening (Figure 1a), which is paralleled by a decrease
in proliferation. This effect is variably profound and directly related to the level of expression of
VDR [16,17]. Immunofluorescence and global gene expression analyses showed that 1,25(OH)2D3

upregulates an array of intercellular adhesion molecules, including E-cadherin (Figure 1a), occludin,
claudin-2 and -12, and zonula occludens/tight junction protein-1 and -2 [16,18]. 1,25(OH)2D3 induces
and/or redistributes several cytokeratins, F-actin, vinculin, plectin, filamin A and paxillin, which
modulate the actin cytoskeleton and the intermediate filament network, changing stress fibers and the
ECM binding structures (focal adhesion contacts and hemidesmosomes) [16,17]. Thus, by controlling
a large set of genes and proteins, 1,25(OH)2D3 increases cell–cell and cell–ECM adhesion (Figure 2).
1,25(OH)2D3 also induces expression of the calcium sensing receptor (CASR) that regulates calcium
homeostasis and the differentiation of colon normal epithelium and carcinoma cells [19–23]. Curiously,
1,25(OH)2D3 has distinct effects on inhibitors of differentiation (ID)-1 and -2, two members of the ID
family of proteins that control the differentiation, proliferation, migration and invasion of multiple cell
types. Thus, in SW480-ADH human colon carcinoma cells, 1,25(OH)2D3 induces ID-1 but decreases
ID-2 expression [24].

An in-depth study revealed that the induction of the E-cadherin protein by 1,25(OH)2D3 depends
on the activation of an extranuclear signaling pathway involving the entry of Ca2+ from the external
medium into the cytosol and the cascade activation of the RhoA small GTPase and the kinases ROCK,
p38MAPK and MSK1. The activation of this pathway potentiates transcription of the CDH1/E-cadherin
gene promoted by ligand-activated VDR, leading to the accumulation of the E-cadherin protein at
the adherens junctions, along with the enhancement of cell–cell adhesion [17]. In a separate study,
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the kinase PIP4K2B has been reported to be necessary for E-cadherin induction by 1,25(OH)2D3 in
colon carcinoma cells [25].Cancers 2020, 12, x 5 of 20 
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treated with 100 nM 1,25(OH)2D3 or vehicle for 72 h. Scale bars, 50 μm. (c) Electron microscopy 

images of human colon tumor organoids treated with 100 nM 1,25(OH)2D3 or vehicle for 96 h. Scale 

bars, 2 μm. A, autophagic vacuoles; G, Golgi complexes; L, lumen; N, nucleus; RER, rough 

endoplasmic reticulum; arrows, desmosomes; asterisks, heterochromatin aggregates.  
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Figure 1. Effects of 1,25(OH)2D3 on the phenotype of human colon and breast carcinoma cells and
colon tumor organoids. (a) Phase-contrast and immunofluorescence confocal microscopy images of
SW480-ADH human colon carcinoma cells treated with 100 nM 1,25(OH)2D3 or vehicle for 72 h. Scale
bars, 50 µm. (b) Phase-contrast microscopy images of MDA-MB-453 human breast carcinoma cells
treated with 100 nM 1,25(OH)2D3 or vehicle for 72 h. Scale bars, 50 µm. (c) Electron microscopy images
of human colon tumor organoids treated with 100 nM 1,25(OH)2D3 or vehicle for 96 h. Scale bars, 2 µm.
A, autophagic vacuoles; G, Golgi complexes; L, lumen; N, nucleus; RER, rough endoplasmic reticulum;
arrows, desmosomes; asterisks, heterochromatin aggregates.
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Figure 2. Schematic representation of the mechanisms by which 1,25(OH)2D3 regulates the
differentiation of human colon carcinoma cells, cancer-associated fibroblasts (CAFs) and cancer
stem cells (CSCs).

TGF-β is a strong inhibitor of epithelial cell proliferation and a major inducer of EMT-TFs in
many cell systems. 1,25(OH)2D3 inhibits the induction of EMT by TGF-β in normal epithelial cells,
which prevents the downregulation of E-cadherin [26]. Notably, TGF-β signaling is inactivated by
mutation of TGFBR2/TGF-β receptor type II in around 30% of colon cancers or, less frequently, by that
of the signal transducers SMAD2 or SMAD4, which limits the EMT-promoting role of TGF-β in this
neoplasia. However, Chen et al. reported that 1,25(OH)2D3 attenuates the induction of EMT by TGF-β
in colon carcinoma cells and inhibits SNAIL1 and SNAIL2 expression, the E-cadherin/N-cadherin
switch, and the secretion of MMP2 and MMP9 [27]. Likewise, 1,25(OH)2D3 reduces the induction of
EMT by interleukin-1β via repression of the long noncoding RNA lncTCF7 [28].

Antagonism of the Wnt/β -Catenin Signaling Pathway by 1,25(OH)2D3

The Wnt/β-catenin signaling pathway is abnormally activated by mutations in APC, or less
frequently in CTNNB1/β-catenin or other genes, in nearly all primary human colon tumors and their
metastases [29,30]. In addition, autocrine or paracrine stimulation by Wnt factors and diminished
expression of Wnt inhibitors, such as members of the dickkopf (DKK) and secreted frizzled-related
protein families, may potentiate this pathway [31]. As a result of these alterations, β-catenin protein
accumulates within the cell nucleus of colon epithelial cells and acts as a transcriptional regulator,
forming complexes with members of the T-cell factor (TCF) family and activating a specific gene
expression program that largely coincides with that of normal intestinal stem cells [32]. This leads
to epithelial dedifferentiation, induction of EMT and acquisition of stemness. Thus, abnormal
Wnt/β-catenin pathway activation is responsible for the initiation and probably also for the progression
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of colon cancer via the increase in colon epithelial cell survival and proliferation and the loss of the
differentiated phenotype [31–33].

First in colon carcinoma cells and later in other types of cancer cells, 1,25(OH)2D3 has been shown to
antagonize the activation of the Wnt/β-catenin pathway at several levels [34]. Ligand-activated nuclear
VDR binds to the β-catenin protein, which hampers the formation of transcriptionally competent
β-catenin-TCF complexes and thus blocks the expression of their target genes [16,35]. In addition,
1,25(OH)2D3 induces DKK-1 gene expression, which encodes an extracellular inhibitor of Wnt signaling
that acts on Wnt receptor complexes at the cell surface [36]. Another mechanism of Wnt/β-catenin
pathway inactivation by 1,25(OH)2D3 derives from increased accumulation of the E-cadherin protein,
which, due to its high affinity, sequesters the newly synthesized cytosolic β-catenin protein at the
subcortical/surface adherens junctions [16] (Figure 1a). However, this mechanism is non-essential, as
1,25(OH)2D3 inhibits the Wnt/β-catenin pathway even in cells that lack E-cadherin expression [16].

Other mechanisms of Wnt/β-catenin pathway deactivation by 1,25(OH)2D3 have been proposed:
the induction of TCF4 in colon and breast carcinoma cells [37], and a paracrine action decreasing
the production and release by stromal macrophages of interleukin-1β, a cytokine that inhibits
the phosphorylation-mediated degradation of β-catenin protein and so increases β-catenin-TCF
transcriptional activity in colon carcinoma cells [38]. In addition, in the non-malignant LT97
colon adenoma cell line, 1,25(OH)2D3 reduces the level of nuclear β-catenin and increases cellular
differentiation [39].

The relevance of the vitamin D system for Wnt/β-catenin activity in colon cancer in vivo was
first studied in animals. Larriba et al. [40] and Zheng et al. [41] reported that the absence of Vdr
(Vdr-deficient mice) increases colonic tumor burden and the amount of nuclear β-catenin protein
in colon cancer cells in the ApcMin/+ colon cancer mouse model. These findings support a role of
VDR/1,25(OH)2D3 in repressing the Wnt/β-catenin pathway and the growth of intestinal tumors. More
importantly, in a randomized, double-blinded, placebo-controlled clinical trial, Bostick et al. showed
that supplementation with vitamin D3 increases the expression of E-cadherin and CASR, as well as
other differentiation markers and potentially protective genes, in the healthy colon mucosa of patients
with colorectal adenomas [42,43]. These authors also found an increase in the APC/β-catenin ratio in
the colonic mucosa of the vitamin D3-supplemented group, which is compatible with an inhibitory
effect of vitamin D3 on the Wnt/β-catenin pathway [44].

Other 1,25(OH)2D3 Target Genes Are Involved in Colon Cancer Cell Differentiation

Work by our group has led to the identification of several mediators of the prodifferentiation
action of 1,25(OH)2D3 in colon carcinoma cells. These mediators include cystatin D, miR-22, KDM6B
and Sprouty-2 (SPRY2).

Cystatin D is a multifunctional protein that acts as a cysteine protease inhibitor in the cytosol and
extracellular region and as a transcriptional regulator within the cell nucleus [45]. The transcription of
the CST5 gene, encoding cystatin D, is strongly induced by 1,25(OH)2D3 in colon carcinoma cells via
direct binding of VDR to its promoter region [46]. Remarkably, cystatin D overexpression induces the
expression of E-cadherin, occludin and other adhesion proteins, and represses that of several genes
encoding EMT-TFs (SNAI1, SNAI2, ZEB1, ZEB2). Moreover, cystatin D antagonizes the Wnt/β-catenin
pathway and inhibits colon carcinoma cell proliferation and migration [46].

In a microarray-based study, we identified several microRNAs (miRs) regulated by 1,25(OH)2D3

in SW480-ADH human colon carcinoma cells. One of these targets is miR-22, which is induced by
1,25(OH)2D3 and contributes to the effects of 1,25(OH)2D3 on gene expression and cell proliferation
and migration [47]. Subsequently, other groups have reported that miR-22 inhibits EMT, invasiveness
and tumor growth in colon cancer and a few other cancer systems [48,49].

KDM6B is an enzyme that demethylates di- and tri-methyl-lysine 27 on histone H3 (H3K27me2/3),
an epigenetic mark that usually correlates with gene repression. Thus, KDM6B is expected to enable
the activation of genes, although this histone demethylase appears to have additional transcriptional



Cancers 2020, 12, 2413 7 of 19

effects unrelated to histone demethylation. We found that 1,25(OH)2D3 upregulates the KDM6B gene
by activating its promoter, and that KDM6B knockdown reduces the induction of E-cadherin and cell
differentiation and the inhibition of β-catenin transcriptional activity promoted by 1,25(OH)2D3 in
colon carcinoma cells [50]. KDM6B knockdown also upregulates SNAIL1 and ZEB1, the latter possibly
through the decrease of miR-200b and miR-200c, and it downregulates the adhesion proteins E-cadherin,
claudin-1 and -7 [50,51].

SPRY2 was found to be a gene that is strongly repressed by 1,25(OH)2D3 in a microarray analysis
performed in SW480-ADH cells [18]. Its encoded protein is a modulator of tyrosine kinase receptor
signaling, with receptor- and cell type-dependent inhibitory or enhancing effects. Thus, SPRY2 inhibits
fibroblast growth factor signaling but potentiates the activation of RAS-ERK by epidermal growth
factor (EGF). In human colon carcinoma cells, SPRY2 promotes EMT through the upregulation of
ZEB1 and the downregulation of epithelial splicing regulator ESRP1. Consequently, SPRY2 represses
CDH1/E-cadherin and genes encoding the tight junction proteins claudin-7 and occludin, as well as
the important regulators of the polarized epithelial phenotype LLGL2, PATJ and ST14 [52,53]. SPRY2
expression is induced by β-catenin in cooperation with the transcription factor FOXO3a. Accordingly,
it correlates with nuclear β-catenin and FOXO3a colocalization in human colon carcinomas and is
indicative of poor prognosis [54]. In summary, our data indicate that repression of SPRY2 makes an
important contribution to the prodifferentiation action of 1,25(OH)2D3.

Crosstalk between 1,25(OH)2D3 and EMT

The above data clearly indicate that 1,25(OH)2D3 promotes epithelial differentiation and
inhibits EMT in colon carcinoma cells. Conversely, it has been shown that SNAIL1 and SNAIL2
repress VDR expression and abolish 1,25(OH)2D3 responsiveness [55–57]. Thus, 1,25(OH)2D3 and
EMT are reciprocally downregulated and the balance between 1,25(OH)2D3 and EMT-inducing
signals determines cell phenotype. Supporting this, VDR RNA expression correlates directly with
differentiation and inversely with SNAI1 and SNAI2 RNA expression in human colon tumors [55,57–60].
In addition to the mechanisms described in previous sections, the mutual antagonism between
1,25(OH)2D3 and EMT is probably also a consequence of the multilevel cross-inhibition of 1,25(OH)2D3

and the EMT-inducing pathways Wnt/β-catenin, TGF-β and EGF [34,61,62] (Figure 2). For example,
by repressing SPRY2 and inducing E-cadherin, which downregulates EGFR [63], 1,25(OH)2D3 may
inhibit EGF signaling. In addition, cross-inhibition of VDR and EGFR has been described in colon
carcinoma cells [64–66]. Similar functional crosstalk applies to 1,25(OH)2D3 and insulin-like growth
factor (IGF)-I [61].

2.2.2. Breast Cancer

Breast cancer is a highly heterogeneous disease. Two key studies have respectively proposed five
or ten molecular subtypes on the basis of a global gene expression study [67] or a more comprehensive
genomic and transcriptomic analysis [68]. Analyzing the expression of estrogen receptor (ER),
progesterone receptor (PR), and epidermal growth factor receptor 2 (ERBB2, NEU or HER2) is still the
basis for breast cancer stratification and an important determinant of breast carcinoma cell phenotype.
Cancers that lack or express very low levels of ER, PR and HER2 proteins (triple negative breast cancers
or TNBC) have the poorest prognosis and, concordantly, ER- PR- HER2- cells are highly dedifferentiated
(anaplastic). Interestingly, TNBC patients have very low 25(OH)D blood levels and some in vitro and
clinical studies suggest the possibility of a protective effect of 1,25(OH)2D3 against TNBC [69].

1,25(OH)2D3 contributes to the normal development and function of the mammary gland [70].
Accordingly, VDR is expressed in normal breast tissue and in many, but not all, breast carcinoma cell
lines and tumors [71–74]. Several excellent reviews have summarized the effects of 1,25(OH)2D3 on
breast cancer cells, animal models and patients [70,75–77]. The study of 1,25(OH)2D3 effects in a panel
of human breast carcinoma cell lines revealed that it induces a cell-specific change in morphology
(Figure 1b) and gene expression. In some cases, 1,25(OH)2D3 alters the cytoarchitecture of actin
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filaments and microtubules and induces cytoplasmic extensions (filopodia and lamellipodia). It also
increases adhesion to substrate by promoting the accumulation of focal adhesion kinase, paxillin
and αv- and β5-integrins in focal adhesion plaques. Additionally, in several cell lines 1,25(OH)2D3

upregulates E-cadherin and represses the myoepithelial proteins P-cadherin, smooth muscle α-actin
and α6- and β4-integrins [72,78]. Other studies have described the inhibition by 1,25(OH)2D3 of breast
carcinoma cell migration, invasion and metastatic capacities via a reduction in the expression and/or
the activity of N-cadherin, the ECM components tenascin C and periostin, several metalloproteases
(MMP-1, MMP-9) and serine proteases (plasminogen activator), as well as the induction of their
inhibitors [79–84]. In addition, upregulation of the actin cytoskeleton adaptor protein PDLIM2 is
crucial for the pro-adhesive, antimigratory and anti-invasive actions of 1,25(OH)2D3 in breast cancer
cells [85]. In contrast to its induction in colon carcinoma cells [24], 1,25(OH)2D3 suppresses the
expression of ID-1 in human breast carcinoma cells and xenografted tumors, which conceivably
contributes to promoting differentiation [86].

2.2.3. Other Solid Cancers

As in colon and breast cancers, 1,25(OH)2D3 induces cell differentiation, sensitizes to apoptosis
and inhibits proliferation, migration and invasion in a series of other solid neoplasias. Again, its effects
on differentiation are largely due to inhibition of the EMT and antagonism of the Wnt/β-catenin,
EGF and TGF-β pathways.

The antagonism of the Wnt/β-catenin pathway by 1,25(OH)2D3 has been described in several
solid cancers as a consequence of a variety of mechanisms: (1) by promoting the lysosomal degradation
of LRP6, a member of the Wnt surface receptor complex, in pancreatic adenocarcinoma cells [87];
(2) via ligand-activated VDR-β-catenin interaction in renal carcinoma cells [88] and mouse skin
tumorigenesis [89,90]; and (3) via ligand-activated VDR-β-catenin interaction and DKK-1 induction
in Kaposi’s sarcoma cells [91]. The inhibition of the TGF-β pathway by 1,25(OH)2D3 and other VDR
agonists and the subsequent repression of EMT-TFs and upregulation of epithelial markers have
been reported in anaplastic thyroid cancer cells [92], ovarian cancer cells [93], lung adenocarcinoma
cells [94] and renal carcinoma cells [88]. Likewise, VDR agonists repress EGF signaling in squamous
cell carcinoma cells [95], epidermoid cells [96] and psoriatic keratinocytes [97].

Altogether, these effects show that 1,25(OH)2D3 is a strong, multifaceted promotor of human
carcinoma cell differentiation. As discussed by Gocek and Studzinski [75], the prodifferentiation effect
of 1,25(OH)2D3 on carcinoma cells does not result in the restoration of a complete normal epithelial
phenotype, but it probably has an antitumor action due to the associated diminution of carcinoma cell
proliferation; survival; and migratory, invasive and metastatic capacities.

2.3. Effects of 1,25(OH)2D3 on the Differentiation of Hematological Cancer Cells

As in solid cancers, vitamin D deficiency is common among patients with hematological
malignancies, and 1,25(OH)2D3 and other VDR agonists inhibit the proliferation of leukemia, lymphoma
and myeloma cells, as well as favoring their apoptosis upon cytotoxic treatments. A widely reported
effect of 1,25(OH)2D3 in these cells is the inhibition of STAT-1 and STAT-3 signaling and the subsequent
repression of a large number of cytokines [75,98]. However, the induction of differentiation seems to
be a less important protective mechanism of 1,25(OH)2D3 in hematological malignancies than in solid
cancers. Although VDR is expressed by all immune cell types, 1,25(OH)2D3 induces differentiation
of myeloid leukemia cells almost exclusively [99,100]. Most results have been obtained in the acute
myeloid leukemia (AML) cell lines HL60, THP-1 and U937. Thus, 1,25(OH)2D3 increases the expression
of markers of the monocyte-macrophage phenotype, such as CD14 and some proteins involved in
phagocytosis and adherence to the substratum, including CD11b [75,98]. A number of genes and
proteins have been proposed as mediators of this prodifferentiation action of 1,25(OH)2D3, such as
CEBPB and CDKN1A, which respectively encode the CCAAT enhancer binding protein β transcription
factor and the p21CIP1 cyclin-dependent kinase inhibitor [101–103]. Other studies have proposed ERK,
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JNK, PI3K and PKC-α and -β as cytosolic mediators of these 1,25(OH)2D3 effects [104–106]. Notably,
Muto et al. reported that 1,25(OH)2D3 induces differentiation of the retinoic acid-resistant acute
promyelocytic leukemia UF-1 cell line, associated with the expression of the p21CIP1 and p27KIP1 cell
cycle inhibitors [107]. Prodifferentiation effects of VDR agonists have also been reported in follicular
non-Hodgkin’s lymphoma SU-DHL4 cells, with increased expression of mature B-cell markers [108].

3. Effects of 1,25(OH)2D3 on the Differentiation of Tumor Stromal Fibroblasts

Although the crucial importance of the tumor microenvironment during all stages of carcinogenesis
is today widely accepted, studies on the action of 1,25(OH)2D3 on tumor stromal cells are scarce.
Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment.
Recent data indicate that CAFs are a heterogeneous population of cells generated from diverse origins in
response to signals secreted by tumor cells or by other cells of the tumor stroma. Thus, they can originate
from the phenotypic change (activation) of resident fibroblasts, from the recruitment and activation of
bone marrow-derived fibrocytes and mesenchymal stem cells, or from the transdifferentiation of other
cell types (epithelial, endothelial or smooth muscle cells, adipocytes or pericytes) [109,110]. Usually,
but not always, CAFs have tumor promoter effects that favor the malignancy of cancer cells by altering
the ECM and secreting protumorigenic and drug-resistance factors [109,111].

Several strategies for CAF-directed anticancer therapy are possible [110]. Since CAF elimination
unexpectedly rendered an acceleration of pancreatic cancer [112,113], the option of their deactivation
or reprogramming to a less protumorigenic phenotype has become attractive. In this context, the VDR
agonist calcipotriol has been reported to inhibit pancreatic stellate cell activation and differentiation
into myofibroblasts, and thus to reduce inflammation and fibrosis in a pancreatitis mouse model
and to enhance the efficacy of anticancer therapy in a pancreatic cancer model [114]. Likewise,
calcipotriol reduces liver inflammation and fibrosis through the inhibition of hepatic stellate cell
activation [115,116]. Accordingly, other protective effects of 1,25(OH)2D3 against fibrosis have been
described and summarized elsewhere [62].

A global gene expression study, performed with human CAFs isolated from tumor biopsies of five
breast cancer patients, identified 123 genes regulated by 1,25(OH)2D3 [117]. This gene signature reflects
an antiproliferative and anti-inflammatory effect of 1,25(OH)2D3, as it includes the downregulation of
the growth factor NRG1 and other genes with proliferation promotion effects, as well as the upregulation
of DUSP1 (a phosphatase that inactivates MAPKs) and NFKBIA (an inhibitor of NFkB). In paired normal
fibroblasts (NFs), 1,25(OH)2D3 modulates the expression of 126 genes (55% of them are also regulated
by 1,25(OH)2D3 in CAFs), including among the upregulated genes a few involved in antiproliferative,
apoptosis and differentiation processes [117]. However, this study lacked functional analyses.

More recently, a study designed to characterize the effects of 1,25(OH)2D3 on colon cancer
stromal fibroblasts rendered some interesting data [118]. First, the analysis of tumor biopsies from
658 patients showed that high VDR expression in CAFs is associated with better patient overall and
progression-free survival, independently of the level of VDR expression in carcinoma cells. Second,
a global gene expression analysis of seven primary cultures of CAFs and NFs established from colon
cancer patient biopsies revealed that 1,25(OH)2D3 imposes in CAFs a 48-gene signature that correlates
with longer patient survival in several colon cancer cohorts. Around one thousand genes are regulated
by 1,25(OH)2D3 in CAFs and NFs, with a 21% overlap. The identified 1,25(OH)2D3 target genes are
involved in cell adhesion, differentiation and migration; tissue remodeling; blood vessel development
and inflammatory response. These genes encode mainly for ECM components and cytokines. Third,
1,25(OH)2D3 inhibits two protumoral properties in CAFs and in NFs: the paracrine promigratory
action on carcinoma cells and the capacity to contract collagen gels, which is considered a hallmark
of fibroblastic activation [118] (Figure 2). These results show that 1,25(OH)2D3 promotes profound
reprogramming of the CAF gene expression profile, which leads to inhibition of their protumoral
phenotype and contributes to protection against colon cancer. In addition, this study reveals that
1,25(OH)2D3 attenuates the malignant phenotype of colon carcinoma cells not only via a direct effect
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on these cells, but also indirectly through the de-activation of CAFs. Concordantly, the analysis of a
large cohort of colon cancer patients indicated that the expression of VDR in CAFs and carcinoma cells
has an additive protective effect, extending the overall survival of patients [118]. These findings are
clinically relevant, as they indicate that colon cancer patients may benefit from an adequate vitamin D
status or from treatment with VDR agonists, provided their CAFs express VDR, even though their
carcinoma cells may be VDR-deficient, for instance due to SNAIL1 and/or SNAIL2 upregulation.

Remarkably, the regulation by 1,25(OH)2D3 of signaling molecules (cytokines, growth factors)
secreted by CAFs suggests that it may also affect the biology of carcinoma cells and other cell types in
the tumor microenvironment, such as immune and endothelial cells, in a paracrine manner. In line with
these data, Kong et al. [119] reported that 1,25(OH)2D3 decreases the amount of miR-10a-5p found in the
exosomes secreted by human pancreatic CAFs, which attenuates the promigratory and pro-invasive
effects that these CAFs exert on pancreatic carcinoma cells. Notably, the possible interplay between
1,25(OH)2D3 and Wnt3A in colon fibroblasts has also been reported. Both agents are strong regulators
of the gene expression profile and phenotype of these cells. However, in contrast to the antagonism
reported in carcinoma cells, they have an additive and partially overlapping effect [120,121].

These results show that 1,25(OH)2D3 action extends to tumor stromal fibroblasts and that
1,25(OH)2D3 is an important regulator of CAF differentiation. Together with other findings
suggesting anti-inflammatory and anti-angiogenic effects of 1,25(OH)2D3 at the level of immune
and endothelial cells [122], they widen the prodifferentiation action of 1,25(OH)2D3 to cells of the
tumor microenvironment, which may have important consequences on cancer development.

4. Effects of 1,25(OH)2D3 on Cancer Stem Cells

The concept of cancer stem cells (CSCs) states that tumors are initiated, progress and probably
become resistant to therapies due to the accumulation of genetic and epigenetic alterations in tissue
stem cells that become CSCs. This has led to investigations focused on identifying markers of
undifferentiated stem cells in each tissue that could be used to isolate and specifically target CSCs
with appropriate drugs or antibodies. However, although some relatively selective markers have been
identified in a few cancer types, the idea of culturing or targeting tumor-specific CSCs has clashed
with the finding of stem cell plasticity. This term refers to the dedifferentiation of cells at intermediate
or even terminal differentiation stages, in order to restore the stem cell compartment following a lethal
injury in normal tissues, or as a consequence of the acquisition of genetic alterations, and/or in response
to signals from the tumor microenvironment in cancer [123–125]. Thus, stemness is today considered
a usually transient cellular state that is lost in the process of differentiation. Differentiated cells can
re-acquire stemness properties when the stem cell reservoir needs to be regenerated. Consequently,
no stable CSCs seem to exist within tumors that can be isolated and studied as optimal targets for
anticancer therapies [126].

Several studies have reported that VDR agonists inhibit the formation of floating spheroids called
mammospheres (a feature attributed to CSCs) in breast cancer stem-like cells obtained from established
cell lines. Interestingly, this effect could be overcome by β-catenin overexpression, which suggests that
the inhibition of the Wnt/β-catenin pathway mediates this action of VDR agonists [127]. Likewise, in
human triple negative and basal-like breast cancer cells, the 1,25(OH)2D3 analog BXL0124 reduces
mammosphere-forming efficiency and downregulates the expression of stemness markers (OCT4, CD44)
and Notch pathway genes (NOTCH1, JAG1/2) [128–130]. In addition, 1,25(OH)2D3 depleted the cancer
stem-like cell subpopulation present in a human ovarian cancer cell line, thus reducing cell capacity to
form spheres and initiate tumor formation. Additionally in this case, the main mechanism responsible
for these effects of 1,25(OH)2D3 is antagonism of the Wnt/β-catenin pathway [131]. 1,25(OH)2D3

reduced sphere formation and the RNA expression of several stem cell markers (Cd44, Nanog, Oct4,
Sox2, Klf4 and Abcg2) in a stem-like subpopulation of mouse malignant ovarian epithelial cells [132].
Similarly, 1,25(OH)2D3 downregulates NANOG and OCT4 in embryonal carcinoma and seminoma
cells [133].
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The above studies share the weakness of analyzing 1,25(OH)2D3 effects on cell populations which
are enriched in stem cell characteristics but which are isolated from immortalized cell lines that have
been growing in culture for a long time. Organoids clearly resemble the in vivo situation more closely,
as they are three-dimensional structures generated by primary normal or cancer stem cells isolated from
patients on culturing. Our group has recently described the effects of 1,25(OH)2D3 on human colon
normal and tumor organoids, generated from biopsies of healthy and tumor tissue obtained from colon
cancer patients [134]. Remarkably, 1,25(OH)2D3 induces cell differentiation in colon tumor organoids
by changing their typical blastic cell appearance to a more epithelial differentiated phenotype that
includes cell–cell adhesion structures, heterochromatin, villi, abundant rough endoplasmic reticulum,
Golgi complexes and autophagic vacuoles [134] (Figure 1c). Global transcriptomic RNA-seq analysis
revealed that 1,25(OH)2D3 promotes an enrichment in the colon differentiation signature EPHB2low

vs. EPHB2high in colon tumor organoids, as well as the repression of genes involved in proliferation
and tumorigenesis (Figure 2). However, unexpectedly, 1,25(OH)2D3 does not substantially modulate
the expression of stemness or Wnt/β-catenin target genes. Contrarily, in colon normal organoids,
1,25(OH)2D3 upregulates several key stemness genes (LGR5, SMOC2, LRIG1, MSI1, PTK7 and MEX3A)
and, concordantly, it does not affect the undifferentiated cell phenotype [134]. Importantly, recent
RNA-seq analyses showed that 1,25(OH)2D3 has very similar effects on the global pattern of gene
expression in colon and rectum normal organoids [135]. Likewise, the transcriptomic profiles induced
by 1,25(OH)2D3 in colon and rectal tumor organoids are highly comparable [135]. As occurs in
colon tissue [134], 1,25(OH)2D3 upregulates LGR5, LRIG1, SMOC2 and MSI1 stemness genes and
downregulates the differentiation genes MUC2 and TFF2 in normal rectum organoids, but not in
rectal tumor organoids, which indicates a homeostatic action of 1,25(OH)2D3 on the normal stem cell
population in both intestinal areas (colon and rectum) [135]. Accordingly, studies by Augenlicht’s
group have revealed that feeding mice with a low vitamin D3 and calcium diet or specific-inactivation
of Vdr in Lgr5+ intestinal stem cells compromises stem cell properties and function, and thus alters
the maturation of Lgr5+ progeny and intestinal homeostasis [136–138]. Interestingly, in human colon
carcinoma cell lines, the miR-372/373 cluster, which is upregulated by the Wnt/β-catenin pathway
and enhances stemness, has been found to downregulate VDR RNA and a panel of differentiation
genes [139]. Together, these results indicate that 1,25(OH)2D3 exerts a homeostatic action in colon
normal stem cells and a prodifferentiation effect on colon CSCs.

Recently, reduced VDR expression has been found to be associated with impaired myeloid
progenitor differentiation and a poor prognostic factor in AML. The observed VDR repression is
mainly due to gene promoter methylation, blocking differentiation and promoting self-renewal and
proliferation in myeloid precursor cells. Accordingly, VDR agonists inhibit cell stemness in normal
bone marrow and AML [140].

5. Conclusions

The active vitamin D metabolite 1,25(OH)2D3 and other synthetic VDR agonists are differentiation
agents that enforce an epithelial state in carcinoma cells largely through the induction of key epithelial
proteins and the inhibition of EMT. Work done predominantly in colon and breast cancer shows that the
latter is mainly a consequence of the antagonism that these molecules exert on Wnt/β-catenin, TGF-β
and EGF signaling pathways. Additionally, 1,25(OH)2D3 profoundly changes the gene expression
profile of tumor stromal fibroblasts. It attenuates their activated phenotype and decreases their
protumoral effects. It also exerts prodifferentiation actions on CSCs. Collectively, these data indicate
that 1,25(OH)2D3, or VDR agonists in general, are candidates for cancer differentiation strategies.
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