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ABSTRACT 16 

Aquaculture is the fastest growing food sector globally and protein provisioning from 17 

aquaculture now exceeds that from wild capture fisheries. There is clear potential for the further 18 

expansion of marine aquaculture (mariculture), but there are associated risks. Some naturally 19 

occurring algae can proliferate under certain environmental conditions, causing deoxygenation 20 

of seawater, or releasing toxic compounds (phycotoxins), which can harm wild and cultured 21 

finfish and shellfish, and also human consumers. The impacts of these so-called ‘harmful algal 22 

blooms’ (HABs) amount to approximately 8 $billion/yr globally, due to mass mortalities in 23 

finfish, harvesting bans preventing the sale of shellfish that have accumulated unsafe levels of 24 

HAB phycotoxins, and unavoided human health costs. 25 

Here we provide a critical review and analysis of HAB impacts on mariculture (and wild 26 

capture fisheries) and recommend research to identify ways to minimise  their  impacts  to the 27 

industry. We examine causal factors for HAB development in inshore versus offshore locations 28 

and consider how mariculture itself, in its various forms, may exacerbate or mitigate HAB risk. 29 
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From a management perspective, there is considerable scope for strategic siting of offshore 30 

mariculture and holistic Environmental Approaches for Aquaculture, such as offsetting nutrient 31 

outputs from finfish farming, via the co-location of extractive shellfish and macroalgae. Such 32 

pre-emptive, ecosystem-based approaches are preferable to reactive physical, chemical or 33 

microbiological control measures aiming to remove or neutralise HABs and their phycotxins. 34 

To facilitate mariculture expansion and long-term sustainability, it is also essential to evaluate 35 

HAB risk in conjunction with climate change. 36 
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1) INTRODUCTION 40 

Managing global food security is one of the greatest challenges of the 21st century. Currently, 41 

around 820 million people (1 in 9 people) suffer from malnutrition (FAO, IFAD, UNICEF, 42 

WFP & WHO, 2018) and this is projected to rise as the human population grows from 7.6 to a 43 

projected 11.2 billion  by 2100 (UN, 2017). While agricultural productivity and yields from 44 

wild capture fisheries have plateaued or are in decline, aquaculture has grown substantially 45 

over the last forty years, particularly in Asia, a region which now supplies ~90% of the global 46 

aquaculture market (FAO, 2018). Future food production in all sectors, however, may be 47 

limited by increasing climate variability, including extremes in rainfall intensity and 48 

temperature. These changes in climate in combination with increasing human population 49 

numbers, pollution events, impaired nutrient cycling, outbreaks of disease and pestilence are 50 

likely to result in future shortfalls in food production (FAO, 2018; FAO, IFAD, UNICEF, WFP 51 

& WHO, 2018). For aquaculture production, one of the most critical threats is the occurrence 52 

of harmful algal blooms (HABs). Increasing frequency of HABs is associated with climate 53 
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change, nutrient enrichment and habitat disturbance, and is leading to growing impacts, 54 

including the poisoning or asphyxiation of finfish, shellfish and poisoning of human consumers 55 

(Hallegraeff, 1993; GESAMP, 2001; Smayda, 2004; Anderson, 2012; Berdalet et al., 2016). 56 

HABs can also cause a variety of other impacts affecting water quality, water flow and amenity 57 

value. Therefore estimating the economic costs of HABs is complex and requires consideration 58 

of many different issues (see reviews by Berdalet et al., 2016; Adams et al., 2018). Among the 59 

biggest economic impacts of HABs are precautionary closures of fisheries and aquaculture 60 

farms to prevent human poisoning (see Section 2.2 on human poisoning). Annual costs of 61 

precautionary closures (US$ at first point of sale) are estimated at $3-4 billion: >$0.03 billion 62 

in the UK (ASIMUTH, 2014); $0.9-1.2 billion in the EU (Hoagland & Scatasta, 2006; S-3 63 

EuroHAB, 2019); $0.1-1.0 billion in Korea, Japan and China (Kim, 2006; Trainer & Yoshida, 64 

2014); >$0.10 billion in the USA (Hoagland et al., 2002).  Furthermore, the worldwide 65 

economic impacts of marine phycotoxins on human health are estimated to be approximately 66 

$4 billion a year (GESAMP, 2001; references in Berdalet et al., 2016). These estimates are 67 

very much “best approximations” rather than detailed economic assessments (as conceded by 68 

some of the authors e.g. Hoagland and Scatasta 2006; Adams et al., 2018). According to 69 

conservative epidemiological assessments, around 2000 cases of HAB-related food poisonings 70 

occur each year globally following human consumption of contaminated finfish or shellfish, 71 

and around 15% of these cases prove fatal (FAO, 2012; CTA, 2013). The proportion of farmed 72 

versus wild-caught finfish and shellfish that contain phycotoxins and subsequently poison 73 

human consumers is not currently known. 74 

Food fish production from aquaculture (80 million tonnes, US$232 billion per year) now 75 

exceeds capture fisheries (Table 1, adapted from FAO, 2018). Growth projections see this 76 

production from aquaculture rising by 37%, from 70 million tonnes to 109 million tonnes, by 77 

2030 (FAO, 2018), with a significant contribution coming from the global expansion of 78 
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mariculture (Kapetsky et al., 2013). Food fish production from mariculture currently amounts 79 

to 28.7 million tonnes, of which more than half comes from bivalve shellfish. Bivalves are 80 

among the most sustainable mariculture products, since they derive their food entirely from 81 

naturally occurring food sources, predominantly marine planktonic microalgae. The growth of 82 

these algae is fuelled by natural (and anthropogenic) nutrient supplies from land runoff and 83 

coastal upwelling (Huston & Wolverton, 2009). Farming of aquatic plants and algae, 84 

dominated by seaweeds (macroalgae), has also increased recently to >30 million tonnes (FAO, 85 

2018), worth an estimated  US$11.7 billion. The largest share of seaweed production is for 86 

human food products (polysaccharide carbohydrates and micronutrients), the remainder is for 87 

animal feeds, fertilizers and biopolymers (Nayar & Bott, 2014). 88 

Around 200 marine species are currently farmed, with the greatest variety in tropical seas 89 

(FAO, 2015; Froehlich et al., 2016). Species can be divided into two broad categories: i) fed 90 

species, including finfish and some crustaceans; ii) ‘extractive’ species, including, a) unfed 91 

filter-feeding bivalves, algal grazers, detritivores and, b) autotrophic plants, mainly 92 

macroalgae. Each of these categories have different environmental susceptibilities, interactions 93 

and installation planning issues (Gentry et al., 2016), particularly at inshore sites (≤1 km from 94 

the coast). At inshore sites mariculture is directly influenced by anthropogenic activities 95 

(agricultural and urban runoff, municipal and industrial effluent inputs, ships, and mariculture 96 

itself), which potentially increase HAB risk (Anderson et al. 2008; Anderson, 2012). Recent 97 

calculations have suggested that current seafood consumption could be met by extending 98 

mariculture offshore, into less than 1% of Exclusive Economic Zones belonging to coastal 99 

states (Gentry et al. 2017). Some HABs, however, originate in open oceanic waters (Davidson 100 

et al., 2009; Trainer et al., 2012; Shutler et al., 2015; Davidson et al., 2016; Gobler et al., 2017), 101 

indicating that some algal species may present similar or even greater risks as mariculture 102 

moves offshore. 103 
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Mariculture represents the nexus of environment–food–health systems; with food productivity 104 

and quality depending on clean coastal waters and healthy intact marine ecosystems (FAO, 105 

IFAD, UNICEF, WFP & WHO, 2018). To ensure long-term sustainable growth of the industry, 106 

a collection of interconnecting issues covering biosecurity, economic, and environmental 107 

aspects (including climate change and HABs) need to be addressed (De Silva & Soto, 2009; 108 

Lovatelli et al., 2013). Here, we critically review national and international HAB monitoring 109 

data records and published literature, to evaluate the occurrences, causes and impacts of HABs 110 

on shellfish and finfish mariculture in inshore and offshore waters. We identify environmental 111 

factors contributing to HAB risk  and establish whether mariculture practices themselves can 112 

influence (increase or reduce) risks of HAB occurrence and impact. Methods for predicting 113 

and mitigating HAB risk are then reviewed. The risks of HABs to wild capture fisheries, as 114 

well as mariculture, are considered in this review also, since mariculture has the potential to 115 

attract and promote aggregations of wild finfish and shellfish. Building improved 116 

understanding of HAB risk for these related industries is of paramount importance to ensure 117 

future marine food security and safety. 118 

 119 

2) IMPACTS OF HABs ON MARINE FISHERIES AND MARICULTURE  120 

2.1) Nature of HABs and their impacts 121 

HABs are proliferations of certain microalgae, macroalgae or blue/green algae (cyanobacteria), 122 

which, under favourable environmental conditions reach certain levels that can have negative 123 

impacts on humans or the aquatic environment (Hallegraeff, 1993; Anderson, 2012; Bresnan 124 

et al., 2013; GlobalHAB, 2017). Some HAB species or strains synthesize phycotoxins that are 125 

ingested by marine plankton grazers and potentially bioaccumulate in higher food chain 126 

organisms, including humans. Ephiphytic HAB species including Prorocentrum lima, 127 
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Ostreopsis spp., Gambierdiscus spp., have the potential to contaminate seaweeds, but human 128 

poisonings are generally caused by the consumption of seaweed grazing herbivorous shellfish, 129 

finfish or their predators, rather than from direct consumption of seaweeds. Globally, around 130 

300 HAB species have been identified, of which more than a third, mainly in the dinoflagellate 131 

group, are known to produce toxins that are harmful to aquatic organisms and/or to humans 132 

consuming them (http://www.marinespecies.org/hab/index.php) (Anderson, 2012). Toxin 133 

production can vary between different genetic strains for some HAB species (e.g. Touzet et al., 134 

2010; Cochlan et al., 2012) and/or different environmental conditions (Fehling et al. 2004; 135 

Wells et al. 2005). Poisoning syndromes in humans, responsible HAB genera, phycotoxin 136 

groups, and shellfish, finfish and macro-algal vectors of these phycotoxins are summarized in 137 

Section 2.2 (Table 2). Other metabolites may also be generated from these toxins, many of 138 

which have not been characterized in terms of chemical structure, potency or public health 139 

significance (Weise et al. 2010; Anderson, 2012). Other HAB species cause harm to fish 140 

through gill clogging or via the production of fish toxins (ichthyotoxins). Also, when the 141 

blooms decay, the degradation of the accumulated algal biomass by bacteria results in oxygen 142 

depletion affecting aquatic ecosystems as a whole (Smayda, 2004; Svendsen et al. 2018).  143 

2.2) Global distribution and characterisation of HABs affecting human health through 144 

seafood consumption 145 

Information concerning the global occurrence and impact of HAB events is recorded in the 146 

Harmful Algae Event Database (HAEDAT, http://haedat.iode.org). Bivalve molluscs which 147 

filter and feed directly on microalgae, including HAB species, are the principal vectors for 148 

shellfish poisoning in humans. Crustaceans that prey upon intoxicated bivalves, including crabs 149 

and lobsters (Shumway, 1995; James et al., 2010) and also carnivorous finfish (Friedman et 150 

al., 2017) can also bioaccumulate and in turn act as important vectors for phycotoxins. Table 2 151 
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summarises the principal poisoning syndromes that result from humans ingesting intoxicated 152 

shellfish or finfish, and the respective geographical areas of highest incidence.  153 

The phycotoxins associated with each poisoning syndrome (column 1 of table 2) are 154 

neurotoxins and they are heat-stable (and thus unaffected by cooking), underlining their risk to 155 

human health. Global maps of reported shellfish poisonings  are illustrated in Manfrin et al. 156 

(2012) and selected references on poisoning syndromes can be found in Berdalet et al. (2016). 157 

Microalgae can produce a broader spectrum of toxic compounds than illustrated in Table 2 and 158 

include yessotoxins (YTXs) and pectenotoxins (PTXs) that mainly cause diarrhea (Reguera et 159 

al., 2014). An increasing number of toxic compounds derived from algae are being detected as 160 

monitoring and analytical tools become more advanced, including brevetoxins (Turner et al. 161 

2015) and cyclic imines (Davidson et al., 2015).  162 

2.3) Occurrences and impacts of HABs on marine organisms in fisheries and mariculture 163 

Evidence on the occurrence and impacts of HAB on marine fisheries and mariculture is being 164 

gathered by ongoing regional programmes (e.g. Maguire et al., 2016), national programme (e.g. 165 

UK FSA, https://www.food.gov.uk/business-guidance/biotoxin-and-phytoplankton-166 

monitoring), and global (GlobalHAB, 2017) programmes (see section 5.1). However, despite 167 

the increasing coordination and integration of HAB monitoring programmes and research, not 168 

all incidents are captured and records may not always tally between local and global databases 169 

(e.g. HAEDAT). Some HABs are difficult to detect, notably for species which bloom below 170 

the sea surface and evade in situ monitoring and satellite imaging (Shutler et al., 2015). It is 171 

also often difficult to attribute cause(s) to observed impacts on complex marine systems, 172 

particularly when they involve cryptic species and  non-specific mechanisms, such as the 173 

depletion of dissolved oxygen and suffocation of (shell)fish by HABs such as Karenia 174 

mikimotoi (Davidson et al., 2009; Shutler et al., 2015). Since the 1960s, the number of hypoxic 175 
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or anoxic ‘dead zones’ in coastal waters has doubled every decade (Diaz & Rosenberg, 2008). 176 

This has occurred in conjunction with  increasing eutrophication caused by nutrient enrichment 177 

and excessive algal growth. In some cases notable asphyxiation impacts on finfish and shellfish 178 

have been attributed to high biomass blooming HAB species such as Phaeocystis spp., Karenia 179 

spp., Aureococcus anophagefferens (Peperzak & Poelman, 2008; Davidson et al., 2009; Gobler 180 

et al., 2011). 181 

2.3.1) Evidence of  acute toxicity from HABs on finfish and shellfish in wild fisheries and 182 

mariculture 183 

HAB species from different taxonomic groups with few commonalities (dinoflagellates, 184 

dictyophytes, haptophytes, prymnesiophytes, raphidophytes) have been implicated in major 185 

finfish kills in marine fisheries and mariculture. In some cases, the toxicity can be transmitted 186 

up the food chain to seabirds and marine mammals. Widely cultured finfish species affected 187 

by HABs include Atlantic salmon (Salmo salar), Rainbow trout (Onchorhynchus mykiss) and 188 

Yellowtail amberjack/kingfish (Seriola quinqueradiata) (reviewed by Landsberg 2002; 189 

Clément et al. 2016). Nevertheless, the mechanisms of toxicity for ‘fish killing HABs’ are not 190 

well understood. An example illustrating the complexity associated with HAB toxicity in 191 

finfish is presented for Heterosigma akashiwo. Here effects may be due to the production of 192 

reactive oxygen species, brevetoxin-like compound(s), excessive mucus production that 193 

impedes oxygen exchange, gill tissue damage by mucocysts and/or haemolytic activity. 194 

Uncertainties arise when there are differences in the toxicity of wild HAB populations versus 195 

laboratory cultures, for example reduced toxicity has been shown to result from the long-term 196 

culturing of H. akashiwo (Cochlan et al., 2012). There may also bevariability in mucocyst 197 

production by different strains of microalgae (in the case of Pseudochattonella farcimen, 198 

Andersen et al., 2015).  199 
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Marine fisheries (and other wildlife) 200 

Some of the largest and most regular finfish (and other wildlife) kills occur annually along 201 

Florida’s Gulf coast. Here epidemiological assessments have attributed these to brevetoxin 202 

poisonings from blooms of the dinoflagellate Karenia brevis (Landsberg et al., 2009; Flaherty 203 

& Landsberg, 2011). A recent bloom of  K. brevis lasted over a year, beginning in November 204 

2017, extending for a distance of 150-200 miles along Florida’s Gulf coast and  killed hundreds 205 

of tonnes of marine life, including thousands of small fish, numerous large  fish (including 206 

groupers and a 21-ft whale shark) and marine mammals, including dolphins (Pickett, 2018). 207 

The 2017-2018 bloom is one of the longest and most severe outbreaks recorded over the last 208 

70 years and illustrates the scale of impacts possible from a single HAB outbreak (Krimsky et 209 

al., 2018). Elsewhere, for example in the UK (1978, 1980) and Ireland (1976, 1978, 1979 and 210 

2005), major finfish and shellfish kills have been attributed to Karenia mikimotoi (a.k.a. 211 

Gyrodinium (or Gymnodinium) aureolum) (e.g. Silke et al. 2005, Mitchell & Rodgers 2007). 212 

These blooms have caused widespread death of wild and cultured fish, through either acute 213 

toxicity attributed to phycotoxins with neurotoxic, haemolytic or cytotoxic effects, or via 214 

oxygen depletion caused by decaying blooms (e.g. Boalch 1979, Jenkinson & Connors 1980, 215 

Jones et al. 1982).  216 

Saxitoxin produced by Alexandrium spp. may also be lethal to larvae and juveniles of 217 

commercially important finfish and shellfish species, such as Atlantic mackerel (Scomber 218 

scombrus) and American lobster (Homarus americanus) (Robineau et al. 1991). 219 

Biomagnification of saxitoxin in the marine food chain has also been linked to significant fish 220 

kills, and both seabird and marine mammal deaths (Pitcher & Calder 2000; Sephton et al. 221 

2007). 222 

 223 
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Mariculture 224 

HABs often leads to finfish kills in caged environments, where the fish cannot escape 225 

phycotoxins or oxygen depletion from the decaying algal biomass. Risks from HABs are 226 

particularly high for finfish confined in sheltered inshore embayments, where the HABs may 227 

be concentrated by onshore winds and currents.  As an example of this,  between 1972 and 228 

1982 in the Seto Inland Sea, Japan, at least 21.8 million cultured yellowtail amberjack (Seriola 229 

quinqueradiata) were killed by the raphidophyte Chatonella antiqua (Okaichi, 1989). In 1972 230 

the economic loss for the summer outbreak  amounted to US$70 million. Since then, annual 231 

losses have been lower, but recurring severe impacts have continued (Fukuyo et al., 2002). 232 

Recurring threats have been reported also from another toxic raphidophyte, H. akashiwo, 233 

causing finfish kills in Iceland, Spain, British Columbia and Chile (Landsberg, 2002). The 234 

losses caused by outbreaks of H. akashiwo  to  wild and net-penned finfish off Puget Sound, 235 

Washington have been estimated to cost in the region of  US$2-6 million per episode. The 236 

outbreaks of H. akashiwo are believed to have been increasing generally in scope and 237 

magnitude in various global regions over the past two decades (Landsberg, 2002).  238 

Originating offshore around the UK (Davidson et al., 2009; Shutler et al., 2015), high biomass 239 

blooms (>1000 cells/mL) of Karenia mikimotoi have been increasingly frequent and have been 240 

associated with significant finfish kills, including for caged fish in inshore waters (Jenkinson 241 

& Connors 1980; Silke et al., 2005; Davidson et al., 2009). Farmed shellfish including mussels, 242 

oysters and clams (Tapes semidecussatta) in the UK and Ireland, and hatchery raised juvenile 243 

bivalve spat have also periodically suffered significant mortalities, along with crustaceans and 244 

other benthic invertebrates, in conjunction with K. mikimotoi blooms (Raine et al. 2001; Silke 245 

et al., 2005). 246 

 247 
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2.3.2) Evidence of chronic toxicity from HABs in wild fisheries and mariculture 248 

Symptoms of chronic toxicity in finfish are wide ranging for different HABs. These symptoms 249 

include liver pathologies caused by ciguatoxins released from Gambierdiscus spp. and 250 

microcystins produced by Microcystis spp., gill pathologies caused by cytotoxins from e.g. 251 

Prymnesium spp. and Heterosigma spp., narcosis (loss of balance and swimming ability) 252 

caused by neurotoxins from Karenia spp. and paralysing saxitoxin from Alexandrium spp., and 253 

excess gill mucus production e.g. caused by Chaetoceros spp. (review by Burkholder, 1998; 254 

Svendsen et al., 2018).  255 

Chronic sub-lethal effects of HAB toxins in bivalve molluscs include reduction in feeding rates 256 

in scallops and oysters (e.g. caused by  exposure to Prorocentrum minimum),  reduction in 257 

growth and byssus production in blue mussels (Mytilus edulis),  growth reduction in Eastern 258 

oysters (Crassostrea virginica), e.g. caused by Gymnodinium aurelium/ Karenia mikimotoi 259 

(Burkholder, 1998) and by Alexandrium tamarense (Li et al., 2002), reproductive impairment 260 

in blue mussels and Bay scallops (Argopecten irradians), e.g. caused by Chrysochromulina 261 

polylepis, reduction in the recruitment of juvenile Bay scallops e.g. casued by Karenia brevis 262 

(reviewed by Burkholder, 1998; Basti et al., 2018). Thus, in addition to toxin accumulation 263 

rendering shellfish unsafe for harvesting for human consumption, toxin presence can have a 264 

longer term effect, impacting on shellfish abundance and time taken to grow to marketable size. 265 

Slower pumping and filtering rates are also likely to increase the time taken to evacuate toxic 266 

material from shellfish tissues. Most shellfish species can eliminate phycotoxins within a few 267 

weeks, but retention of some toxins (e.g. saxitoxins) in some species, such as sea scallops 268 

(Placopecten magellanicus) and Atlantic surfclams (Spisula solidissima), can last up to 5 years 269 

(Shumway et al. 1990, Landsberg, 2002). HABs also have the potential to impact adversely  on  270 

the supply of larval ‘seed’ or ‘spat’ for aquaculture. Examples of this include  Karenia brevis  271 

impacting on larval recruitment in Bay scallops (Burkholder, 1998), Pacific oysters 272 
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(Crassostrea gigas) and Northern quahog (Mercenaria mercenaria) (Rolton et al., 2018). For 273 

these shellfisheries the estimated annual economic losses due to K. brevis along Florida’s Gulf 274 

coast alone are estimated to be up to US$6 million (NOAA 2004; Adams, 2017). Karenia 275 

brevisulcata has also been shown to be toxic to larvae of Greenshell mussel (Perna 276 

canaliculus), Pacific oyster and New Zealand abalone (Haliotis iris) (Shi et al 2012).  277 

Consumption of intoxicated finfish and shellfish can also lead to chronic toxicity in organisms 278 

higher in marine  food chains. For example, domoic acid derived from Pseudo-nitzschia sp. 279 

can cause neuropathic injury in both finfish and shellfish eating mammals and birds (Lefebvre 280 

et al., 2007; Ramsdell & Zabka, 2008; Soliño et al., 2019). 281 

 282 

3) ENVIRONMENTAL FACTORS CONTRIBUTING TO HAB RISK 283 

3.1) Environmental factors promoting HABs 284 

HABs are natural phenomena within the seasonal cycles of planktonic micro-organisms in 285 

aquatic ecosystems (Glibert et al., 2005; Shumway et al., 2018). In recent decades harmful 286 

events appear to be increasing in frequency, duration and impact globally. Verifying them is a 287 

research priority (GlobalHAB, 2017; e.g. Wells et al., 2015; Wells et al., 2019). Apparent 288 

increased frequencies of HABs may be due to a combination of factors (see Figure 1) including: 289 

i) Warming sea surface temperatures, and associated water column stratification and range 290 

extensions of tropical organisms, including toxic species; ii) Increased frequency and intensity 291 

of storm events and flooding and associated increasing nutrient inputs, upwelling intensities 292 

and wider HAB dispersal; iii) Increasing anthropogenic pressures on the marine environment, 293 

notably land- and sea- based nutrient enrichment, and  disturbance of coastal habitats; iv) 294 

Increased awareness and improvements in HAB monitoring systems (Hallegraeff, 1993; Raine 295 
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et al., 2008; Anderson, 2012; Bresnan et al., 2013; Wells et al., 2015; Gobler et al., 2017; 296 

Anderson et al., 2019).   297 

Evaluating HAB risk in any ‘system’ is highly challenging, since environmental drivers include 298 

a range of physical, chemical and biological factors, which can combine to influence i) the 299 

initiation/ development of a HAB; ii) its impact/toxicity and iii) the  termination of a HAB 300 

(Roelke & Buyukates 2001; Anderson et al., 2012a). These factors operate from micro- (mm) 301 

to meso- (10-100 km) to macro (>100 km) spatial scales and over a range of temporal scales 302 

(from seconds to minutes and from days to months) (Dickey, 2001). For example, an abundant 303 

supply of dissolved nutrients, calm sea state increasing stratification) and increased sunlight 304 

over a period of weeks may allow the algae to grow in high concentrations, and then dramatic 305 

and significantly increased turbulent sea state (causing increased vertical mixing) over several 306 

hours can result in bloom termination (e.g. Shutler et al., 2015). The challenge of understanding 307 

HAB occurrence and toxity is further complicated by ecological interactions between HAB 308 

species and other members of plankton communities, which vary both spatially and temporally 309 

in species composition, genetic diversity and physiological status (Anderson et al., 2012a; 310 

Davidson, 2014). Despite these complexities, some of the key factors driving HAB dynamics 311 

are well characterised and are outlined in sections 3.2 – 3.4 below. 312 

3.2) Environmental factors contributing to HAB initiation and toxicity 313 

The pre-requisites for any HAB event are: the presence of algal cells, spores or cysts; suitable 314 

conditions of light and nutrients for their growth and reproduction; and physical conditions that 315 

facilitate their accumulation in favourable growing conditions. Cells can accumulate either by 316 

horizontal transport (advection) in water bodies by wind and/or tide, or by resuspension from 317 

sediments by wave action, or upwelling of bottom water (e.g., Farrell et al., 2012; Pitcher et 318 

al., 2017). The source of propagules that initiate blooms may be local, or distant, though the 319 
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origin of propagules for any particular harmful bloom is typically difficult to determine. There 320 

is evidence that HABs in some areas originate in the ocean, rather than in coastal embayments 321 

(Hinder et al., 2011; Whyte et al. 2014; Pitcher et al., 2017; Berdalet et al. 2017). The majority 322 

of HABs, including dinoflagellates and diatoms, are holoplanktonic, relying on vegetative cells 323 

to survive inhospitable conditions and to seed blooms. In some cases, when growth conditions 324 

are suboptimal, highly toxic HABs such as Alexandrium spp. reproduce sexually and form 325 

resting cysts. These cysts  settle on sediments (Smayda & Trainer, 2010) and then undergo 326 

resuspension during storms or coastal upwelling, enabling (re)colonization of existing and new 327 

areas (e.g. Anderson et al. 1994, Pitcher et al., 2017).   328 

Nutrient availability is another key requirement for HAB initiation and maintenance. Most 329 

HAB species are primarily photoautotrophs, and their requirments for autotrophic growth 330 

include inorganic nitrogen (N), phosphorus (P) and silicate (Si, in the case of diatoms). High-331 

biomass HABs in estuaries and coastal zones have been linked to elevated inorganic nutrient 332 

inputs (eutrophication; Paerl et al., 2014; Rabalais et al., 2010) and organic nutrients (e.g. urea 333 

from fertilizers, following heavy precipitation and land runoff , Heisler et al., 2008). However, 334 

the effects of nutrient inputs may be confounded by many other factors, including natural 335 

occurrence of HABs, transport of HAB species via mariculture and other marine activities, 336 

variable meteorological forcing, and longer-term climate change (Callaway et al., 2012; Gowen 337 

et al. 2012). There is increasing evidence that many HAB species can use dissolved and 338 

particulate organic forms of N and P (through prey ingestion), in addition to autotrophy; this 339 

combination of trophic modes is termed mixotrophy (Burkholder, 1998; Anderson et al., 2002; 340 

Lin et al., 2018). Mixotrophic HAB species are therefore able to proliferate both under high 341 

organic N concentrations and  by engulfing prey under nutrient limited conditions. Examples 342 

of mixotrophic HAB species include low biomass (100-1000 cells/L) blooming dinoflagellates, 343 

such as Alexandrium spp. (Anderson et al., 2012b; Lee et al., 2016) and Dinophysis spp. 344 
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(Jacobson & Andersen, 1994), and also high biomass (>10,000 cells/L) blooming species such 345 

as Pseudo-nitzschia spp. (Loureiro et al., 2008) and A. anophagefferens (Gobler et al., 2011). 346 

Furthermore, changes in nutrient ratios (far from the classic stoichiometric Redfield N:P ratio 347 

of 16:1) may be important in stimulating the growth of some HABs and influencing their toxin 348 

content (Anderson et al., 2002; Kudela et al., 2010; Glibert et al., 2014a) and responses may 349 

be highly species-specific (Wells et al., 2015).  350 

Reduced turbulent mixing and increased thermal stratification are key factors promoting 351 

HABs, especially those comprised of dinoflagellates. Water column stratification and nutrient 352 

enrichment caused by  river plumes, jets, upwelling areas and tidal fronts are also particularly 353 

conducive for HAB development (Pitcher et al., 2017). Phytoplankton and other planktonic 354 

organisms tend to collect passively in boundary layers in stratified water bodies - motile 355 

dinoflagellate HAB species have the added advantage of being able to visit both nutrient-rich 356 

deeper water and irradiance-saturated shallower water either side of these boundary layers (e.g. 357 

Smayda 1997). HABs are also more likely to occur in sheltered zones of lagoons, estuaries and 358 

coasts, as a result of increased water residence times, warmer temperatures and increased 359 

penetration of photosynthetically active radiation (PAR) (e.g. Smayda, 1989). Although strong 360 

turbulent mixing may be disadvantageous to bloom development by causing the break up of 361 

chains of individuals and by inhibiting cell division (Estrada & Berdalet, 1997), low level 362 

turbulence can enhance nutrient availability by facilitating increased transfer of molecules in 363 

or out of plankton cells, especially in passively floating diatoms (Peters et al., 2006). Other 364 

biological processes, including inter-cell quorum sensing and encounter rates with competitors 365 

and grazers (Gowen et al. 2012), are also modulated by fine scale turbulence and this can also 366 

favour HABs (e.g. Berdalet et al. 2017).  367 

3.3) Environmental factors contributing to HAB termination 368 
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Advection and dispersion of HABs, increasing turbulent shear forces breaking up cells, and/or 369 

nutrient limitation are all understood to contribute to the termination of HABs (Gentien et al. 370 

2007; Lenes et al., 2013) and consequently HAB prediction models are often driven by these 371 

physical processes and biogeochemical fluxes. However, models that only include these 372 

processes often ‘over-predict’ HAB duration, indicating that inter-species biotic interactions 373 

play important roles in in terminating harmful blooms (Roelke & Buyukates, 2001; Lenes et 374 

al., 2013; Davidson et al., 2016). 375 

Plankton grazers or predators play an important role in regulating the abundance of marine 376 

planktonic micro-algae, including HAB species. In nutrient limited (oligotrophic) offshore 377 

marine environments meso-zooplankton (e.g. copepods 0.2-20 mm) consume 10-40% of 378 

marine phytoplankton, while micro-zooplankton (20–200 µm) consume around 60-70% 379 

(Calbet, 2008). In temperate nutrient rich (eutrophic) upwelling and estuarine ecosystems 380 

micro-sized heterotrophic and mixotrophic dinoflagellates (including HAB species) can 381 

dominate phytoplankton grazing (Calbet, 2008). More detailed, mechanistic understanding 382 

concerning how and to what extent grazers regulate or terminate HABs is lacking. Plankton 383 

community interactions can vary markedly in temperate waters displaying a seasonal 384 

succession of different blooming species, and also in (sub)tropical waters with relative constant 385 

standing stocks of microplankton. In both cases food web dynamics can alternate between 386 

resource (bottom-up) and predatory (top-down) control (Calbet, 2008) and outcomes for HABs 387 

are highly situation-specific (Turner & Tester, 1997).  388 

Marine parasitic microbes (micro and nano-sized protists 10-100 µm, pico-sized bacteria 0.2-389 

10 µm and femto-sized viruses ≤0.1 µm) target all of the main phytoplankton groups (Gachon 390 

et al., 2010). They have been shown to play a significant role in terminating some major algal 391 

blooms (Wilson et al., 2002), and have also been linked to the decline of HABs (Chambouvet 392 

et al., 2008; Roth et al., 2008; Jones et al., 2011).  In turn  this has prompted research into the 393 
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microbial control and bioremediation of HABs (Brussaard, 2004; Sun et al., 2018) (See section 394 

6.1). Larger micro-sized parasites such as the dinoflagellate Amoebophyra spp. may also be 395 

responsible for the termination (Rosetta & McManus 2003; Montagnes et al., 2008) or 396 

regulation (Nishitani et al. 1985) of dinoflagellate HABs such as Alexandrium spp.  397 

Adaptive responses in HAB species to avoid or combat grazers and parasites include: sensing 398 

and moving away from grazers (Wolrhab, 2013); adapting/optimising colony size (chain 399 

length) versus swimming speed (Selander et al. 2012); synthesising and releasing phycotoxins 400 

and/or other allelochemicals (Stüken et al., 2011; Anderson, 2012); undergoing/prolonging 401 

encystment (Rengefors et al., 1998; Toth et al. 2004); undergoing auto-lysis (i.e. programmed 402 

cell death) (Franklin et al., 2006; Lenes et al., 2013). Combinations of mechanisms underlying 403 

predator-prey and host-parasite interactions can vary greatly since algal prey/hosts and 404 

predator/parasite niches are highly species-specific (Amin et al., 2015; Ramanan et al., 2016).  405 

3.4) Regulation of HABs by filter feeding shellfish 406 

Filter-feeding shellfish can exert considerable (top-down) grazing pressure, limiting 407 

phytoplankton (and zooplankton) biomass, particularly in shallow, well mixed estuaries and 408 

coastal waters, where bottom-living bivalves can come into contact with and filter the majority 409 

of the water column (Newell, 2004; Lucas et al., 2016). Bivalves, such as mussels, suspended 410 

on ropes hanging vertically in the water column can also be effective at filtering plankton at 411 

deeper water sites (Stadmark & Conley, 2011; Hedberg et al., 2018). Physical factors such as 412 

water column exchange, turbulent mixing, temperature and stratification, and the influence of 413 

mariculture infrastructures on each of these (see Section 4.4), can be important in modulating 414 

shellfish grazing, sinking, and phytoplankton community composition – e.g. reduced vertical 415 

mixing favours motile dinoflagellates, while non-motile phytoplankton such as diatoms sink 416 

below the euphotic zone and are more easily intercepted by grazers (Lucas et al., 2016). The 417 
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influence of selective filter feeding by shellfish on plankton community structure, including  418 

HABs species, is relatively poorly understood (Newell, 2004; Petersen et al., 2008; Lucas et 419 

al., 2016). Simple size selection for nano-sized plankton and above (>4 µm) and higher 420 

filtration rates in the warmer summer months may serve to reinforce seasonal succession from 421 

nano- to pico- plankton dominated communities (Newell, 2004). Sensing of food particles and 422 

their surface chemistry have been suggested to play a role in selective filtering of nutritious 423 

plankton in preference to detrital and mineral particles (Ward & Shumway 2004; Espinosa et 424 

al. 2009; Yahel et al. 2009). Phycotoxins, particularly paralytic shellfish toxins (PSTs) as well 425 

as  other toxin classes (e.g. NSTs and ASTs) are capable of inducing valve closure and/or 426 

reducing filtration rate in bivalves, as well as impairing growth and reproduction and inhibiting 427 

byssus production (Burkholder, 1998; Landsberg, 2002; Manfrin et al., 2012). Nevertheless, 428 

some bivalves show preferential uptake of harmful algal cells. This has been shown in the 429 

laboratory in five bivalve species (Bay scallop, Eastern oyster, Northern quahog, softshell clam 430 

(Mya arenaria), and the blue mussel. All bivalves, with the exception of softshell clam, ejected 431 

intact cells of three HAB species (Prorocentrum minimum (PST and DST), Alexandrium 432 

fundyense (PST), and Heterosigma akashiwo (NST)) in their faeces or pseudo-faeces. Only 433 

oysters exposed to H. akashiwo, showed partial or complete valve closure and reduction in 434 

filtration rate. These results confirm that feeding responses of bivalves in the presence of HABs 435 

can be highly species-specific. Furthermore,  clearance of HABs from the water by bivalves 436 

may simply result in the transfer of  intact/live cells to the sediment, from which they could be 437 

resuspended (Hégaret et al., 2007). 438 

 439 

4) ENVIRONMENTAL IMPACTS OF MARICULTURE AND CONTRIBUTION TO 440 

HAB RISK 441 



 19 

Long-term time-series data are required to demonstrate the influence of finfish, shellfish and/or 442 

macro-algal mariculture on HAB risk as recognized in the Science Plan of the international 443 

programme on HABs (GlobalHAB, 2017). Accumulating evidence from China, which has the 444 

longest running, largest and highest concentration of mariculture in the world, indicates that 445 

the frequency and extent of HABs has been increasing concurrently with the industry growth 446 

since 1960 (Wang et al. 2008; Lu et al. 2014; Wartenberg et al., 2017).  The occurrence of 447 

HAB events in China increased sharply in 2009 with ~80 episodes , covering >15,000 km2 of 448 

China’s coastline in just one year. The increasing trend however, also follows increasing 449 

urbanisation of coastal fringes (Liu & Su, 2015). Potential environmental effects of mariculture 450 

are listed in Table 3 and the tendencies for these effects to promote HAB formation and impact 451 

(either directly or indirectly) are discussed in Sections 4.1 - 4.5. 452 

 453 

4.1) Nutrient emission versus assimilation   454 

Nutrient emissions from mariculture operations are predicted to increase substantially due to 455 

industry expansion (up to six-fold by 2050). The majority of these emissions comprise nutrient 456 

waste, primarily from finfish (fed mariculture) and also from shellfish, released in a dissolved 457 

form directly to the water column (Bouman et al., 2013). These nutrient emissions may promote 458 

the growth of harmful algal species in the vicinity of mariculture farms (Anderson et al., 2002; 459 

Hallegraeff et al., 2003). However, causal linkages between fish farming and eutrophication 460 

(Pitta et al., 2005; Modica et al., 2006) and HABs (Anderson et al., 2008) are often not clear 461 

(Smayda, 2004; Gowen et al. 2012). In some cases (e.g. farming of extractive shellfish) 462 

mariculture can cause net assimilation of nutrients leading to deficits (Ferreira et al., 2014), 463 

while elsewhere nutrient emissions may exceed local environmental assimilation capacities 464 

(Bouwman et al., 2013). Problems are likely to be more acute for farms with higher stocking 465 

densities (Sellner et al., 2003; Bouwman et al. 2013). Intensive bivalve cultivation can alter the 466 



 20 

nitrogen:phosphorus (N:P) nutrient stoichiometry and change the major N species to reduced 467 

forms, especially ammonia, as well as particulate organic nitrogen, and these N forms are 468 

preferred by various harmful algae – predominated by dinoflagellates (e.g. Arzul et al. 2001; 469 

Glibert et al. 2014a, but see Davidson et al., 2012). Conversely, diatoms have also been shown 470 

to decline as a result of nutrient excretion by bivalves (Lucas et al., 2016). A further concern 471 

arises because of low assimilation efficiencies (typically 30-40% for N, or less under bloom 472 

conditions), such that shellfish can become point sources of regenerated nutrients. Benthic 473 

regeneration of the accumulated faeces and decomposing feed can be significant in shallow 474 

well mixed coastal waters. (Bouwman et al., 2013).  475 

4.2 Chemical treatments used to control pathogens and parasites - Infections by pathogens 476 

and infestations of parasites, exacerbated by aggregations of wild fish around mariculture 477 

installations (Dempster et al., 2004), present a risk to human and (shell)fish health and have 478 

similar financial impacts to those for HABs (e.g. impacts of white spot virus on shrimp farming 479 

in South East Asia ~6 US$ billion/yr) (Lafferty et al., 2015). Consequently a range of 480 

antimicrobial chemicals and pesticides are licenced for use in mariculture, specifically for 481 

finfish culture (Johnstone & Santillo, 2002; Read & Fernandes, 2003). Cumulative 482 

environmental exposures to these chemicals can be signficant in some coastal waters (Baker-483 

Austin et al., 2008; Uyaguari et al., 2013) and may exceed environmental quality standards 484 

(EQSs), which can be as low as 1 part in 1 trillion for some highly potent compounds (Gilliom, 485 

2007; Watts et al., 2017). Impacts of antimicrobial chemicals on beneficial microbes and 486 

associated ecosystem services (e.g. nutrient cycling, water quality and HAB regulation) could 487 

be significant (Woolhouse & Ward, 2013; Watts et al., 2017). Research on the impacts of 488 

chemicals on HAB regulation has been extremely limited to date and has generally focused on 489 

the effects of pesticides on HABs in freshwater systems (Relyea, 2009; Beketov et al., 2013; 490 

Harris & Smith, 2015; Stayley et al., 2015). 491 
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4.3 Escapees and introduction of invasive and/or harmful species - Macro-algal blooms 492 

(seaweed blooms) leading to oxygen depletion, alteration of ecosystem biodiversity and 493 

production of certain toxins (Anderson, 2009) have been shown to originate from open water 494 

suspended culture systems.  For example, significant escapes may occur from Porphyra 495 

culturing spanning more than 40,000 km2 in some instances in the South China Sea. Bloom-496 

forming species including sea lettuce (Ulva spp.) and gutweed (Enteromorpha spp.) can cause 497 

major economic loss by inundating waterways and beaches, leading to widespread 498 

asphyxiation of organisms when the blooms biodegrade (Liu et al. 2017). 499 

4.4 Physical alteration of habitats and hydrodynamic regimes - Reduced hydrodynamic 500 

flows are known to lead to reduced turbulence, which in turn tends to promote the blooming of 501 

dinoflagellate species, including HAB species (Smayda & Reynolds, 2001).  Mariculture 502 

structures, including longlines for shellfish and kelp and net pens for finfish can significantly 503 

change surface current speed and direction, induce down-welling, increase stratification and 504 

reduce water exchange in sheltered and enclosed bays (Zeng et al. 2015; Lin et al., 2016; 505 

Wartenberg et al., 2017). Expansion of suspended mariculture in Sanggou Bay reduced the 506 

average speed of currents by 40% and the average half-life of water exchange was prolonged 507 

by ~70% (Shi & Wei, 2009). It is also possible that disturbance of sediments by aquaculture 508 

and fishing operations may promote the resuspension of HAB cysts. 509 

4.5 Transmission of HAB species and alteration in the abundance and composition of 510 

plankton communities - Risks of HAB impacts may increase directly with the future 511 

expansion of mariculture, via the movement (relaying) of ‘contaminated’ shellfish stocks and 512 

equipment between sites (Hégaret et al., 2008), including from the coast to offshore and vice 513 

versa, or via regular aquaculture operations and ballast water transfers (Hallegraeff and Bolch, 514 

1991; 1992). Indirect impacts include alteration of the abundance and composition of plankton 515 

communities, including HAB competitors, parasites and grazers (Roth et al., 2008; Eckford-516 
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Soper et al., 2016).  Over intensification of mariculture can also lead to depletion of planktonic 517 

larvae (including finfish, shellfish and other invertebrates) and reduced food availability for 518 

wild shellfish populations (Gibbs, 2004; Ferreira et al., 2014; Pastres et al., 2018), especially 519 

in regions with low primary productivity (Gibbs, 2004; Grant et al., 2007). This may have 520 

consequences for negative feedback control of the abundance and composition of plankton 521 

communities by native filter feeders.  522 

 523 

5) DETECTING AND FORECASTING HAB EVENTS 524 

Maximising the profitability and environmental sustainability of mariculture requires 525 

surveillance monitoring and early warning systems, forecast-based financing, and strong risk 526 

governance structures (FAO, IFAD, UNICEF, WFP & WHO, 2018). The following systems 527 

are outlined in sections 5.1-5.3 below: i) in situ monitoring of HAB species abundance and 528 

phycotoxins in (shell)fish; ii) remote sensing of HABs via satellite imaging of ocean colour; 529 

iii) predictive modelling of HABs based on meteorological/oceanogrpahical and 530 

biogeochemical factors. 531 

5.1) In situ monitoring 532 

In situ monitoring for HAB species abundance and phycotoxin concentrations in (shell)fish is 533 

the principal method for ‘official control’ monitoring and safeguarding of food fish safety for 534 

human consumption in Europe, North America, Asia and Australasia. In situ monitoring is 535 

generally conducted via the collection and analysis of representative field samples; using 536 

microscopic analysis for phytoplankton identification and enumeration, and using mass 537 

spectrometric analysis for phycotoxin identification and quantitation. The use of autonomous 538 

in situ molecular (qPCR) and flow cytometry methods have also proved capable of real-time 539 

sensing of algal blooms (e.g. Campbell et al. 2013). These in situ devices can be located on 540 
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smart buoys or underwater gliders (Davidson et al., 2014). Integrative solid-phase adsorption 541 

toxin tracking (SPATT) deployed in the field for the passive sampling of algal toxins has also 542 

been validated recently, and improved Enzyme Linked Immuno-Sorbent Assay (ELISA)-based 543 

methods with lower detection limits for more toxins have become commercially available for 544 

both screening and routine monitoring purposes (Zhang & Zhang, 2015). 545 

In Europe routine HAB monitoring (EU Directives 2006/113/EC and 2000/60/EC) quantifies 546 

HAB species abundance and phytotoxin levels (Higman et al. 2014). Shellfish toxin 547 

concentrations are evaluated against EU action levels triggering harvesting bans (ASP >20 mg 548 

Domoic/epi-Domoic acid; PSP >800 µg STX equivalents (eq.); Lipophilic toxins (DSP) 549 

OA/DTXs/PTXs together >160 µg OA eq.; AZAs >160 µg AZA eq.; YTXs >3.75 mg YTX 550 

eq. – see Table 2 and underlying text for expansion of abbreviations), allowing for cross-border 551 

trade of aquaculture products. While individual HABs and their toxins vary in concentration 552 

on a seasonal basis, HAB events can occur year-round, as can aquaculture harvesting. 553 

Responsibility for ‘official control’ resides with respective statutory authorities within EU 554 

member countries and results are published online for each designated site.  In-situ HAB 555 

monitoring data can be combined with satellite imagery (Section 5.2) and numerical models 556 

(Section 5.3) to give a better indication of HAB risk, as implemented in Ireland (Leadbetter et 557 

al., 2018). In some cases more proactive monitoring can occur, such as in Scotland where a 558 

group of finfish farmers collectively pay for weekly satellite remote sensing observations of 559 

Karenia mikimotoi surface distributions (Davidson et al., 2016). 560 

In the USA, both the National Oceanic and Atmospheric Administration (NOAA) and the 561 

Environmental Protection Agency (EPA) monitor for, and provide some indication of, 562 

impending HABs. In the Gulf of Mexico a twice-weekly risk assessment is provided during 563 

the summer-autumn HAB season, based a regular in situ monitoring programme (and using 564 

meteorological models, particularly to provide warning of toxic aerosol events e.g. caused by 565 
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Karenia brevis). The rest of the USA coastline is monitored routinely for HAB events by a 566 

volunteer network; the ‘National Phytoplankton Monitoring Network’, sampling twice 567 

monthly. In some locations in the US more intensive programmes are in place, such as the 568 

SoundToxins programme which is funded by NOAA and Washington Sea Grant and monitors 569 

31 sites on a weekly basis in Puget Sound in Washington State, or the California Harmful Algal 570 

Bloom Monitoring and Alert Program (CalHABMAP) funded by US Congress and the 571 

National Aeronautics and Space Administration (NASA) (Kudela et al. 2015).  572 

Across South East Asia, some countries operate a regular programme of shellfish monitoring 573 

(e.g. Japan, Indonesia, Vietnam, Korea), while other countries lack the resources to have a 574 

robust programme or initiate sampling when blooms are detected (e.g. Laos, Myanmar) (Eong 575 

& Sulit, 2015). In Australasia monitoring effort varies, with frequent sampling of high risk 576 

locations in western Australia (Dias et al. 2015), but overall being less well sampled and 577 

leading to high instances of human poisonings (Hallegraeff et al. 2017). In Chile and wider 578 

Latin America, after many intoxication events, a standardised sampling programme was 579 

developed across the region in 2009, although maintaining the network and regular sampling 580 

is dependent on continued resource availability (Cuellar-Martinez et al. 2018). 581 

In scaling up from regional monitoring to a Global Ocean Observing System (GOOS) for 582 

HABs, it is recognised that there is no universal “one-size-fits-all” solution, but that 583 

communication is key and stakeholders require affordable, easy to understand, real-time 584 

information, for example, in the form of spatial and temporal risk mapping (Anderson et al., 585 

2019). 586 

5.2) Satellite remote sensing (Earth observation) 587 

The use of satellite remote sensing, alongside in situ sensing or ground truthing, has wide-scale 588 

potential for detecting increases in potential surface dwelling HAB species or high 589 
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concentrations of all surface algae (reviewed by IOCCG, 2014; Davidson et al. 2016) in 590 

relation to fisheries and aquaculture/mariculture (IOCCG, 2009). Images of ocean colour from 591 

visible and infrared spectrum wavelengths can be correlated statistically with HABs events or 592 

in some cases the HAB species can be observed if they are spectrally distinct 593 

(https://www.shelleye.org/index; https://www.s3eurohab.eu/en/). For example,  correlations 594 

have been found between ocean colour, chlorophyll and algal biomass (Sourisseau et al. 2016), 595 

with some correlations incorporating the use of artificial neural networks (El-Habashi et al., 596 

2017) and K. mikimotoi and K. brevis are both species that have spectral signatures that allow 597 

successful identification when in large concentrations (Kurekin et al., 2014; Shutler et al., 2015; 598 

El-Habashi et al., 2017). In general HAB species that are detectable by remote sensing are those 599 

that form significant blooms of >1000 cells/mL at the sea surface or near-surface (e.g. Karenia 600 

mikimotoi - Kurekin et al., 2014; Karenia brevis - El-Habashi et al., 2017). Satellite imaging 601 

however cannot detect species that form harmful blooms at low densities of ~100 cells/L (e.g. 602 

Dinophysis spp.) (Reguera et al., 2014). Remote sensing techniques are also unable to detect 603 

HABs when observation of ocean colour is obscured by cloud cover (Maguire et al. 2016).   604 

5.3) Predictive modelling 605 

Early warning of the onset of HAB events over time scales of several days, and their likely 606 

movement and changing magnitude (i.e. relative to safe limits), would be highly beneficial to 607 

the mariculture industry, allowing proactive, rather than reactive, responses to minimise 608 

impacts on businesses, customer confidence, human health (Davidson et al., 2016). Immediate 609 

responses may include: advanced (or delayed) harvesting of stock (limited by storage capacity 610 

and by supply chain logistics) or deployment of mitigation measures (Section 6). Longer-term, 611 

more strategic business planning is dependent on knowing when harvesting bans imposed by 612 

HAB outbreaks are likely to be lifted, in order to better manage business operations, staffing 613 

and supply chains. HAB predictions based on readily available physical (hydrographical and 614 
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meteorological) data offer a simple, tractable solution for forewarning mariculture operators in 615 

locations where these physical ‘forcing factors’ are principle drivers of HAB initiation. These 616 

physical models are generally better at predicting HAB initiation than HAB termination, but in 617 

any event forecasting is generally limited to 1 week in advance (Davidson et al., 2009; Cusack 618 

et al., 2016; Schmidt et al., 2018), which corresponds with general extent and accuracy of 619 

meteorological forecasting (Davidson et al. 2016). Furthermore, the majority of models, which 620 

are driven predominantly by meteorological and hydrographical processes, often ‘over-predict’ 621 

HAB duration (Davidson et al., 2016). This is reassuring for human safety, but not so appealing 622 

for businesses desperate for harvesting bans to be lifted, as soon as it is safe to do so. 623 

Hydrophysical models coupled with HAB population models, which also incorporate 624 

biological and geochemical processes, can improve HAB predictions, by taking into account 625 

life-history data and environmental and physiological optima for HAB species (Roelke & 626 

Buyukates, 2001, McGillicuddy et al. 2005; Glibert et al., 2014b; Aleynik et al. 2016; 627 

Gillibrand et al., 2016). Modelling changes in trophic mode (autotrophy versus mixotrophy) 628 

(Lee et al., 2016) and interactions with other plankters, including HAB parasites and grazers 629 

(Lenes et al., 2013) can also help to improve predictions of bloom duration. However, 630 

increasing trophic complexity in community and ecosystem models can lead to reduced 631 

resolution of species-specific dynamics, including HAB population dynamics (Flynn & 632 

McGillicuddy, 2018). Other trade-offs in implementing more elaborate ecosystem models 633 

include greater specificity (spatial limitation) of model predictions and increasing requirements 634 

for input data for model parameterisation, computational processing power and expert 635 

operators (Butenschön et al., 2016).  636 

Combining bio-physical modelling of HABs with satellite remote sensing data has been used 637 

successfully in short-term national forecasting systems for public health and aquaculture 638 

protection in the US and EU for example (Kudela et al., 2015; Shutler et al., 2015; Davidson 639 
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et al., 2016; Ruiz-Villarreal et al., 2016) with the potential for wider detection of HABs 640 

(Anderson et al., 2019). There is also the potential to extend forecasting of HAB events from 641 

days to several weeks or even months in advance, by tracking successional changes in plankton 642 

community composition over time, in conjunction with traditional in situ monitoring and real-643 

time sensing of impending blooms (Campbell et al. 2013). Inter-annual predictions of HAB 644 

trends and the identification of hotspots prone to recurring HAB events are also highly 645 

beneficial for strategic marine spatial planning, including for new or expanding mariculture 646 

infrastructure. These longer-term predictions are more circumspect, as the bio-geographical 647 

niches of different HAB genera or species are likely to shift with a changing climate and/or 648 

become more variable (Callaway et al., 2102; Wells et al., 2015; GlobalHABs, 2017).  649 

 650 

6) ANALYSIS OF OPTIONS FOR MITIGATING HAB RISK TO MARICULTURE  651 

Options for mitigating HAB impacts to mariculture fall into three basic categories: 1) spatial 652 

and temporal planning of mariculture operations to avoid or minimise the risk of HABs; 2) 653 

holistic environmental management options to minimise local HAB risk around mariculture 654 

farms (e.g. multi-species, multi-trophic, ecosystem-based options favouring nutrient 655 

assimilation and recycling and/or cultivation of species which are more resistant to, or less 656 

prone to accumulate, HAB toxins); 3) direct interventions for controlling the presence or 657 

abundance of HAB species (physical, chemical, biological control options). The advantages of 658 

various options in each of these categories and their state of readiness for application in 659 

commercial mariculture are discussed below (Sections 6.1-6.3). 660 

6.1) Spatial and temporal planning to minimise HAB risk 661 

Spatial planning for new mariculture infrastructure can be targeted to avoid HAB hotspots, 662 

while planning harvesting outside peak HAB risk periods can be implemented at already 663 
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established/ licenced mariculture farms, with both options being informed by existing HAB 664 

detection and forecasting systems (outlined in Section 5). Development of offshore sites with 665 

significant exposure to tides, wind and wave action (Drumm, 2010; Froehlich et al., 2017; Buck 666 

et al., 2018) can potentially mitigate HAB risks linked to mariculture itself e.g. elevation of 667 

nutrient levels, physical alteration of habitats and hydrodynamics and modification of local 668 

planktonic (and benthic) communities (Section 4). However, HABs often originate naturally 669 

offshore (independently from anthropogenic activities) (Whyte et al. 2014; Diaz et al. 2016; 670 

Davidson et al., 2016; Gobler et al., 2017) and there is some evidence that some HAB species 671 

may present even greater risk here compared to inshore areas (Trainer et al., 2012). Regulatory 672 

policy for sustainable offshore aquaculture has only recently been developed in the USA 673 

(NOAA, 2016), and is not yet formulated and published in other countries or continents, such 674 

as New Zealand, Australia and Europe (Froehlich et al., 2017). Emerging guidelines for 675 

assuring minimal impacts from offshore mariculture on water quality and pelagic and benthic 676 

communities relate to: minimum water depths (twice the depth of mariculture infrastructure) 677 

and minimum water flow rates (>0.05 m/s) (Belle and Nash, 2008; Froehlich et al., 2017). In 678 

such localities the probability of ecological effects on neighbouring natural habitats diminishes 679 

significantly beyond a distance of 90 m (Froehlich et al., 2017). This distance also provides a 680 

nominal guideline for the proximity/density of neighbouring offshore mariculture 681 

infrastructure. However, some ecosystem models predict significant trophic interactions 682 

between large offshore installations and more distant coastal mariculture sites, indicating wide-683 

ranging implications for nutrient budgets and biosecurity (spread of microbial pathogens). 684 

These ecological interactions have been modelled and verified for the large (15 km2) Ria 685 

Formosa Mariculture Park located >3 nm offshore from coastal sites in the Algarve region  of 686 

Portugal (Ferreira et al., 2014). Ecological linkages between extensive mariculture installations 687 

and the periodic occurrence of HABs along the Algarve coast have yet to be established. 688 
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6.2 Holistic environmental management options for minimising HAB impacts 689 

Holistic environmental management of HABs addressing causative factors (e.g. minimising 690 

nutrient inputs from land-based sources and from mariculture itself) or preserving habitats and 691 

ecosystem services that help regulate HABs, may be simpler, more effective and more 692 

environmentally friendly (WHO, 2003; Wells et al., 2019) than attempting to control HAB 693 

outbreaks directly (Section 6.3). For example, nutrient enrichment can be managed through the 694 

use of ‘extractive’ shellfish and macro-algal species. Furthermore, restoration of coastal 695 

habitats, for example with seagrass that harbor algicidal bacteria (Inaba et al., 2019), or 696 

cultivation of seaweeds that secrete algicidal chemicals (Zerrifi et al., 2018), can also help 697 

mitigate against HABs. This follows Ecosystem Approaches to Fisheries and Aquaculture 698 

(EAF/EAA) (Soto & Aguilar-Manjárrez, 2009; FAO, 2018), which covers 3 main aspects: (i) 699 

minimising environmental impacts and waste; (ii) sustaining wider ecosystem functions and 700 

services; (iii) promoting human well-being and equity among marine stakeholders. 701 

(i) Minimising environmental impacts and waste - Shellfish and macro-algal culturing can have 702 

a positive influence on the regulation of HABs, either by reduction of high biomass blooms 703 

through filter feeding or via nutrient removal (Stadmark & Conley 2011; Petersen et al., 2014). 704 

Nutrient removal by mariculture curbing eutrophication in EU coastal waters alone is valued 705 

at US$20 to 30 billion per year (Ferreira et al., 2009). Furthermore, mariculture reduces the 706 

exploitation of natural shellfish stocks, which can also help regulate HABs. For example, 707 

overfishing of shellfish around Long Island, USA, has coincided with the increased occurrence 708 

of Aerococcus anophagefferens brown tides (Glibert et al., 2005).  709 

(ii) Sustaining wider ecosystem functions and services – Mariculture farms can provide 710 

sheltered nursery habitats for marine/estuarine organisms, with the potential to enhance local 711 

fisheries and to support biodiversity in neighbouring marine protected areas (Le Gouvello et 712 
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al., 2017). Maintaining biodiversity is important, since impoverishment of planktonic species 713 

and reduced species succession have been correlated with increased HAB risk. In some cases 714 

such community changes can forewarn HAB outbreaks several months before the detection of 715 

the HAB species (e.g. Microsystis sp.) (Roelke & Buyukates, 2001). 716 

(iii) Promoting human well-being and equity among marine stakeholders - Marine spatial 717 

planning is required to effectively locate mariculture and fisheries conservation areas, and 718 

avoid conflicts with other uses of the marine environment. To facilitate planning, 719 

environmental models can be used to assess nutrient budgets, productivity versus 720 

eutrophication risk, the risk of transmission of pathogens, pests associated with mariculture 721 

(Ferreira et al., 2014; Pastres et al., 2018) and the risk of advection of HABs to mariculture 722 

sites (Dabrowski et al., 2016; Paterson et al., 2017). 723 

A promising approach for delivering on each of these EAA/EAF aspects, including the 724 

potential to minimise HAB risk, is Integrated multi-trophic aquaculture (IMTA) (Wartenburg 725 

et al., 2017). IMTA employs cultureable ‘extractive’ species (e.g. suspended bivalve shellfish 726 

and macroalgae, and benthic deposit feeders) to remove/reuse waste nutrient material discarded 727 

from the culturing of ‘fed’ species (finfish and crustaceans) thereby providing a self-sustaining 728 

and more productive food web (Figure 2) (Soto, 2009; Troell et al., 2009; Chopin et al., 2012). 729 

Macroalgae can also play a direct role in inhibiting the growth of microalgae, including HAB 730 

species, through competition for nutrients (Soto 2009; Holdt et al. 2014), inhibitory allelopathy 731 

(Tang & Gobler, 2011; Ben Gharbia et al., 2017; Zerrifi et al., 2018), and/or by reducing light 732 

penetration (Zhou et al., 2006; Wang et al., 2007; Yang et al., 2015). 733 

Further developments in IMTA, including deploying aquaculture species that are less sensitive 734 

to, or less likely to accumulate, toxins from locally re-occurring HAB species, are likely to be 735 

required to maximise benefits in terms of mitigating against HAB impacts. The long-term 736 
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sustainability of IMTA for mitigating HAB risk with climate change, also requires further 737 

research (Wells et al., 2019). For example, China has some of the world’s largest and longest 738 

established IMTA systems, including a multi-trophic system established in 1996 in Sanggou 739 

Bay, Yellow Sea (Fang et al., 2016). Since 2010 however, Sangou Bay has regularly 740 

experienced brown tides of A. anophagefferens (Kong et al., 2010). Coincidentally, large-scale 741 

A. anophagefferens brown tides extending over 3000 km2 have occurred in the north western 742 

Bohai Sea each year in early summer since 2009 and have caused significant negative impacts 743 

on scallop (Argopecten irradians) culture (Zhang et al. 2012). Other HAB species including 744 

Karenia mikimotoi and Prorocentrum donghaiense also continue to form annual blooms in 745 

nearshore waters of the Yellow Sea and neighbouring East China Sea (Li et al. 2009), with K. 746 

mikimotoi causing substantial losses to mariculture from 2005–2015 (Liu & Su, 2017).  747 

6.3) Direct interventions for controlling HAB impacts  748 

Physical and chemical control methods can remove HABs efficiently and are used 749 

operationally as a last resort in mariculture, but they can be costly, lack specificity to HABs, 750 

and are generally less effective in coastal situations in comparison to enclosed or semi-enclosed 751 

aquatic systems. Alternatively, biological control methods can be potentially more specific for 752 

individual HAB species, minimising impact on other non-target species, but they are more 753 

difficult to constrain in non-enclosed systems and have not progressed beyond laboratory or 754 

field trials for mariculture applications (Reviewed in NOAA, 2015; Sellner & Rensel, 2018; 755 

Sun et al., 2018; Gallardo-Rodríguez et al., 2019). 756 

Physical control methods include the use of barriers or skirts e.g. around fish net pens and/or 757 

the removal of HAB cells by water column mixing, filtering, flocculation, settlement, sediment 758 

burial and dredging, or HAB cell lysis using ultrasound (Sellner & Rensel, 2018). Water 759 

column mixing using water or air pumping systems, leads to disruption of thermal stratification 760 
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and impairment of algal buoyancy or alteration of their daily migration patterns, removing them 761 

from the photic zone and preventing photosynthesis. Direct cell removal from the water column 762 

can be achieved by hydrodynamic separation, centrifugation, pump filtration, plankton net 763 

trawling or membrane filtration. A measure which has proven effective for HAB control in the 764 

open sea has been the use of clays to induce bloom flocculation. As considerable quantities of 765 

clay are needed, from 100 to 400 g/m2 (Park et al., 2013), physical resuspension of local 766 

sediments or importation on ships are a practical solutions. Subsequent flocculation, sinking 767 

and burial of HAB cells and/or cysts can be followed by dredging and physical or chemical 768 

treatment before discharging the sediments back to the removal site (NOAA, 2015; Sellner & 769 

Rensel, 2018). Potential drawbacks include the removal of non-harmful algae. More efficient 770 

flocculation can be achieved by spraying the sea surface with modified clays containing 771 

inorganic- (e.g. aluminium sulphate or polyaluminum chloride) or organic- (e.g. 772 

polyacrylamide or chitosan) modifiers, which can be up to 100 times more efficient in 773 

adsorbing HAB cells (and other plankters) than natural clay sediments. This enables a reduction 774 

in application levels time windows – reducing the risk of clay build-up and helping to reduce 775 

impacts on non-blooming (non-HAB) species (reviewed in Gallardo-Rodríguez et al., 2019). 776 

Furthermore, modified clays have been shown to kill HAB cells (Beaulieu et al., 2003), adsorb 777 

and remove extracellular HAB toxins (Pierce et al., 2004; Seger et al., 2015; 2017) and 778 

particulate nutrients (Yu et al., 2017), and to also reduce HAB toxin accumulation in benthic 779 

filter-feeding bivalves (Yu et al., 2017). Consequently they have been used in Japan (Shirota, 780 

1989) and employed as a standard method for controlling HABs in China, since 2014 (Yu et 781 

al., 2017). A remaining concern, preventing uptake of these physical control methods in other 782 

countries, is their lack of specificity for controlling harmful species and possible unknown 783 

impacts on other phytoplankton and the ecosystem as a whole. 784 
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More direct chemical treatments for controlling HABs include the use of natural biosurfactants, 785 

biocides or allelochemicals (e.g. biochemical extracts from macroalgae), or the use of synthetic 786 

chemicals, including hydrogen peroxide and isolated algicidal compounds, or metallic 787 

compounds such as copper sulphate. These various chemicals (metals and organic compounds) 788 

can interfere with HAB cell survival (algicidal chemicals), growth and reproduction (algi-static 789 

chemicals) through a variety of mechanisms (NOAA, 2015; Gallardo-Rodríguez et al., 2019). 790 

Biochemicals are advantageous in terms of their higher diversity, biodegradability and, in some 791 

cases, specificity - and potentially lower toxicity to the wider environment (Ahn et al., 2003). 792 

Although many effective aqueous algicidal treatments exist, few are approved for use in open 793 

marine systems, due to environmental concerns, although some have restricted use in anti-794 

fouling paints and surface treatments (NOAA, 2015; Gallardo-Rodríguez et al., 2019). Several 795 

biocidal chemicals have been tested and approved for use in mariculture, for controlling 796 

shellfish and finfish pathogens or parasites (Johnstone & Santillo, 2002; Read & Fernandes, 797 

2003) and some of these may be effective in killing some HAB species. 798 

Biological control measures include the application of microbial (viral, bacterial, fungal and/or 799 

protistan) parasites that infect HABs and play a significant role in the natural termination of 800 

major blooms (Brussard, 2004; Chambouvet et al., 2008; Roth et al., 2008; Jones et al., 2011; 801 

Demuez et al., 2015; Pokrzywinski et al., 2017). Algicidal and growth inhibitory bacteria and 802 

viruses have potential for controlling HABs, due to their ability to replicate rapidly and target 803 

specific hosts (Bibak & Hosseini, 2013; Sun et al,. 2018). However, it is possible for these 804 

parasites to be too specific, rendering them unable to infect different genetic strains of HAB 805 

species, or adapt to changing environmental conditions (Sun et al., 2018; Gallardo-Rodríguez 806 

et al., 2019). Therefore, rather than using single cultured microbial species, employing a range 807 

of microbes may be more effective. Aggregates (biofilms) immobilized on substrates may be 808 

more effective in reducing HAB cell density (bioflocculation) by inhibiting HAB cell growth 809 
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via nutrient uptake and allelochemical secretion, and causing cell lysis (Alex et al., 2014; Sun 810 

et al., 2018). Research is needed to quantify the release of toxins following HAB cell lysis and 811 

the potential for microbes to degrade them. Further research is also needed to isolate, purify 812 

and identify microbial allelochemicals/exudates and to demonstrate their efficacy for 813 

controlling different HAB species and genetic strains, while incurring minimal effects on non-814 

harmful algae and other marine organisms, including cultured shellfish and finfish species 815 

(NOAA, 2015, Sun et al., 2018). Other potential biological interventions include selective 816 

breeding of shellfish with resistance to HAB toxins and using them as HAB biofilters and 817 

bioremediators (NOAA, 2015). Unquantified biosecurity risks for biological control measures 818 

currently prevent their operational use in controlling HABs at mariculture sites. 819 

 820 

7) CONCLUSIONS AND RECOMMENDATIONS 821 

Marine aquaculture (mariculture) is playing an increasingly important role in global food 822 

security. One of the most significant risks to mariculture expansion, both inshore and offshore, 823 

is the occurrence of Harmful Algal Blooms (HABs).  824 

Global impacts from HABs on mariculture (due to finfish or shellfish mortality, poisoning of 825 

human consumers and preventative harvesting bans) currently amount to something in the 826 

region of 8 US$ billion/yr, however, HAB risk assessment is not a standard requirement in the 827 

planning and classification of mariculture sites. This is, in part, because HABs are natural 828 

phenomena, and because risk factors are diverse, varying greatly both spatially and temporally. 829 

For example, HABs may originate offshore, far from anthropogenic activities, and can be 830 

advected over large distances to other areas conducive for HAB development. Further research 831 

is required to guide and enable pre-emptive measures for mitigating HAB risks, including the 832 

strategic siting of mariculture infrastructure and scheduling of harvests.  833 
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Adaptive management of HAB risk, involving the prediction of HAB events and the tactical 834 

use of appropriate and approved physical, chemical and/or biological control measures, is 835 

needed as part of the sustainable development of mariculture. However, successful application 836 

requires improved understanding on the efficacy and biosafety/specificity of the available 837 

options. There is a need also for improved understanding on the interactions among physical 838 

forcing factors (meteorological and oceanographical), and chemical (nutrient) and biological 839 

(community) factors, in order to predict where and when blooms are most likely to occur. In 840 

support of this, research should exploit the widespread occurrence of HABs, which provides 841 

opportunities for comparative assessments of HAB drivers around the world, including the 842 

extent to which HAB species, their population dynamics, and community interactions show 843 

similarities in responses within comparable ecosystem types. There is considerable scope to 844 

capitalise on advances in automation and (bio)sensor (DNA, RNA, protein and metabolite) -845 

based technologies, with applications in: real-time, in situ monitoring of HAB population 846 

dynamics; defining physiological processes and underlying regulatory gene networks linked to 847 

growth and/or toxin production in HAB species; building robust, mechanistic models for 848 

predicting HAB events. 849 

HAB risks are generally perceived to be higher at coastal sites, which experience nutrient 850 

enrichment from agricultural runoff and municipal effluent discharges. Winds and tides can 851 

also transport and accumulate HABs into coastal areas, including sheltered embayments, where 852 

less turbulent and warmer waters are conducive for the growth of various HAB species. In 853 

these and other areas with low water exchange rates, mariculture itself can have a significant 854 

influence on HAB risk by affecting local water quality (e.g. nutrient -eutrophication- levels), 855 

hydrodynamics (artificial structures reducing water circulation) and plankton communities 856 

(e.g. through selective filter feeding by shellfish). More studies are required to quantify HAB 857 
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risks against each of the above factors and their interactions, and the degree to which they are 858 

influenced by different types of mariculture. 859 

HAB risks associated with nutrient enrichment and eutrophication (from terrestrial sources and 860 

mariculture itself) may be mitigated by establishing mariculture sites offshore, away from the 861 

coast and/or in areas with high horizontal water exchange rates and vertical mixing. Greater 862 

understanding is required on how hydrodynamic conditions (e.g. influenced by wind, waves, 863 

tides) and bathymetry (water depth) influence dispersal versus local deposition and 864 

resuspension of nutrients and HAB propagules/cysts. 865 

Further capacity for HAB mitigation is offered by multi-trophic aquaculture (IMTA), which 866 

employs extractive bivalve shellfish and macroalgae alongside fed finfish and crustaceans, in 867 

order to recycle nutrients, thus maximising productivity and water quality simultaneously. 868 

Macroalgae (in addition to filter-feeding shellfish) can also have a direct influence on local 869 

plankton community composition and abundance - via nutrient competition, light shading and 870 

allelochemical mechanisms. Further research is required to understand how IMTAs could be 871 

further optimised for the additional purpose of HAB attenuation, through selection of suitable, 872 

resilient bivalve shellfish and macroalgal species, and appropriate spatial deployment and 873 

stocking densities.  874 

A key remaining question for mariculture, both inshore and offshore, is how will HAB risk 875 

transpire in a future warmer climate, typified by increased sea surface temperatures and water 876 

column stratification, or alternatively in a future characterised by increased atmospheric energy 877 

and more turbulent waters. Climate change is also likely to be accompanied by HAB range 878 

extensions towards the poles. To address these issues, collaborative effort is needed that seeks 879 

to unify  research themes on ‘HABs, climate change and aquaculture/mariculture’, as 880 

exemplified by GlobalHAB, an international programme sponsored jointly by the Scientific 881 
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Committee on Oceanic Research (SCOR) and the Intergovernmental Oceanographic 882 

Commission (IOC) of UNESCO.  883 
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Table 1: Gloal food fish production from aquaculture in 2016  1646 

*Mariculture currently provides 36% (28.7 million tonnes) of food fish production from 1647 
aquaculture and is dominated by molluscs (17.1 million tonnes) (FAO, 2018). 1648 

Aquaculture 
production 

Finfish Molluscs Crustacea Other Total for 
Aquaculture 

Total as % of 
total food 
fish 

By weight 
 (million 
tonnes) 

54.1 17.1 7.9 1.0 
 

80* 53% 

By value  
(billion US$) 

138.5 29.2 57.1 6.8 232 64% 

 1649 
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Table 2:  1650 

Most common food-borne poisoning syndromes in humans caused by HABs and details concerning their occurrence and impacts 1651 

 1652 

Poisoning 
syndrome 

Symptoms Causal 
phycotoxins 

Mechanism 
of toxicity  

Responsible 
HAB species 

Principal 
vectors  

Impacts (examples)  Global  
hot spotsd 

Amnesic 
shellfish 
poisoning 
(ASP) 

Memory loss, 
brain 
damagea  

Domoic acid 
(DO)  

Agonism of 
neuro-
transmitter 
glutamate 

Pseudo-
nitzschia spp. 

Scallops e.g. 
Pecten 
maximus 
Crabs e.g. 
Metacarcinus 
magister 

Scallop harvesting 
bans (months)b  
 
Collapse of 
Californian Dungeness 
crab fishery 2015-
2016c  

Pacific, Atlantic 
coasts of N & 
Central America, 
Atlantic Europe 

Paralytic 
shellfish 
poisoning 
(PSP) 

Confused 
speech, 
tingling  
burning 
sensations, 
nausea, 
diarrhoeae  

Saxitoxins 
(STXs) 

Inhibition of  
voltage-
dependent 
sodium 
channelse 

Alexandrium 
catenella, A. 
minutum, 
Gymnodinium 
catenatum, 
Pyrodinium 
bahamense var. 
compressum 

Mussels,  
clams, oysters,  
crabs, lobsters 

Some 2000 PSP cases 
are reported per year 
globally (for all 
principal vectors), 
with occasional fatal 
consequences in 
humanse 

N & S America 
and Canada, 
Africa, Europe 
(North Sea 
Mediterranean), 
and Australasia 

Diarrhetic 
shellfish 
poisoning 
(DSP) 

Diarrhoea, 
nausea, 
vomiting and 
abdominal 
crampsf 

Okadaic acid 
(OA), 
Dinophysis 
toxins 
(DTXs) 

Inhibition of  
protein 
phosphatases 
in intestine & 
neuronsf   

Dinophysis spp. 
 
Prorocentrum 
spp. 

Mussels, 
clams, oysters 
 
Edible crabs 
(Cancer 
pagurus) 

Harvesting bans for 
bivalves in Europe 
(weeks-months)g 
Closure of edible crab 
fishery in 
Norway(weeks-
months)h  

Reported 
globally and 
particularly in 
NW Europe 

Azaspiracid 
poisoning 
(AZP) 

Diarrhoea, 
nausea, 
vomiting and 

Azaspiracids 
(AZAs) 

Modulation 
of gamma 

Amphidomatace
ae: Amphidoma, 
Azadinium  

Mussels, king 
scallops and 
edible crabsj 

Harvesting bans 
(months) for 
shellfisheries 

Norway coast, 
UK and Atlantic 
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abdominal 
crampsi 

amino butyric 
acid (GABA)i  

(principal vectors) and 
mariculture in Atlantic 
Europej 

coast of France 
and Spain 

Neurotoxic 
shellfish 
poisoning 
(NSP) 

Loss of motor 
control, 
nausea 
muscular 
ache, 
including 
abdominalk 

Brevetoxins 
(BTXs) 

Inhibition of  
voltage-
dependent 
sodium 
channelsk 

Karenia spp. Clams, oysters 
and musselsl 

Seafood poisoning. 
The formation of toxic 
aerosols by wave 
action also produces 
respiratory irritation 
and asthma-like 
symptoms 

East and West 
coasts of North 
America, Florida 
and the Gulf of 
Mexico 

Ciguatera 
fish 
poisoning 
(CFP) 

Gastrointesti
nal, 
neurologic 
and cardiac 
distressm 

Ciguatoxin 
(CTX), 
maitotoxin 
(MTX) 

Agonism of 
voltage-gated 
sodium 
channels 

Gambierdiscus 
spp.  

Herbivorous 
fish (grazing 
HABs on 
macrophytes 
macroalgae) 
and their 
predators 

CFP is one of the most 
common poisoning 
syndromes resulting 
from the consumption 
of contaminated 
finfishm 

Caribbean, 
Florida, East 
Africa, 
Madagascar, 
Northern 
Australia, Pacific 
Islands 

 1653 

Table 2 references: a Lundholm et al. (1994); b Campbell et al., 2003); c California Ocean Science Trust (2016); d Manfrin et al. (2012); e Anderson 1654 
(2012); f Munday (2013); g Reguera et al. (2014); h Castberg et al. (2004); i Furey et al. (2010); j Twiner et al. (2008); k Kirkpatrick et al. (2004); l 1655 
Watkins et al. (2008); m Friedman et al. (2017). 1656 
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Table 3: Environmental effects of mariculture that can promote HAB risk 1657 

(i) Organic and inorganic nutrient emission versus assimilation  1658 

(ii) Disease and use of preventative chemical agents;  1659 

(iii) Escapees and genetic interactions with wild populations;  1660 

(iv) Physical alteration of habitats and hydrodynamic regimes  1661 

(v) Increase in HAB transmission (between relay sites) or indirectly promote HAB risk by 1662 

altering the abundance and composition of plankton communities  1663 

 1664 

References for (i-iv): Lovatelli et al., 2013; Kapetsky et al., 2013; Wartenberg et al., 2017.  1665 

References for (v): Gibbs, 2004; Grant et al., 2007. 1666 

 1667 

  1668 
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Figure 1: Environmental factors promoting HABs  1669 

Complex interactions among environmental factors (solar radiation, wind, waves, tides, 1670 

rainfall, nutrients), ecological and trophic interactions and biological processes (e.g. cyst 1671 

formation) can facilitate the proliferation of phytoplankton in general and harmful algal species 1672 

as well. Excess and unbalanced nutrient supply and habitat alteration can increase the risk of 1673 

HAB occurrence. HABs negatively impact mariculture production and product quality.  1674 

(However, some mariculture practices can mitigate the occurrence and impact of HABs e.g. 1675 

through the use of integrated multi-trophic aquaculture approaches - see Figure 2). 1676 

  1677 
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Figure 2: Integrated Multi-Trophic Aquaculture  1678 

POM – Particulate Organic Matter; DIN – Dissolved Inorganic Nitrogen; F/P-F – 1679 

Faeces/Pseudo-Faeces 1680 

IMTA incorporating suspended filterfeeding shellfish, and benthic deposit feeding shellfish 1681 

can reduce the proliferation of HABs and recycle POM (capable of fueling HAB growth) 1682 

associated with ‘fed’ species (finfish and crustaceans). Suspended macroalgae can also reduce 1683 

the growth of microalgae, including HAB species, through shading, competition for nutrients 1684 

(e.g. fine POM and DIN), and inhibitory allelopathy. 1685 

 1686 


