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Abstract

Automated driving is considered to be one of the key technologies and major techno-
logical advances that influence and shape our future mobility and quality of life. So much
so that most of the current activity in research and development in the field of Intelligent
Transportation Systems (ITS) is focused on it.

The introduction of automatic control systems in vehicles may greatly improve road
safety, taking into account that around 90% of traffic crashes are caused by human er-
rors. Nowadays, there are several solutions, known as advanced driver assistance sys-
tems (ADAS), that are able to perform different tasks such as providing warning signals
to the driver, alerting about possible hazardous situations, or even introducing longitudinal
and/or lateral control actions in specific cases.

Whilst considerable efforts have been attained in the perception and localization do-
mains, digital representations of the environment and planning in urban scenarios are still
incomplete. As a result, understanding the spatio-temporal relationship between the sub-
ject vehicle and the relevant entities while being constrained by the road network is a very
difficult challenge. Furthermore, urban motion planning is significantly affected since the
knowledge about the environment is generally incomplete and the associated uncertainty
is high. In addition, the predictions of future occupancy of nearby vehicles must effectively
influence the motion plan calculated by the vehicle. With the aim of reaching human-level
abstract reasoning and reacting safely even in complex urban situations, autonomous driv-
ing requires methods to generalize unpredictable situations and reason in a timely manner.

The growing interest in ever higher levels of automation involves the development of
algorithms capable of reacting to typical driving scenarios and making decisions to face
increasingly complex driving situations in a safe and human-like manner. In this regard,
this thesis addresses the problem of motion planning in urban environments by proposing
a decision-making and planning architecture that aims at pushing the navigation capabil-
ities of automated vehicles when only non detailed and open-source maps are available.
For that purpose, road corridors are dynamically obtained from map information. To cope
with their intrinsic uncertainty and low-fidelity, a camera-based lane detection system up-
dates and enhances the navigable space. From that point, an efficient and human-like local
planner determines, under a probabilistic framework, a safe motion trajectory, ensuring the
continuity of the path curvature and limiting longitudinal and lateral accelerations along
it. LiDAR-based perception is then used to identify the driving scenario, and eventually
re-plan the trajectory, leading in some cases to adapt the high-level route to reach the given
destination.

The new functionalities covered by the proposed architecture present significant ad-
vances with respect to the previous architecture for automated driving of the AUTOPIA
Program, where this thesis has been developed. Furthermore, in order to validate its design
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and implementation, the architecture has been extensively tested in one of the prototype
vehicles of the AUTOPIA’s fleet at the Centre for Automation and Robotics (CAR) facilities
in Arganda del Rey, Spain. Extensive tests on real urban-like environments and different
live demonstrations proved the robustness of the proposed architecture when dealing with
different complex situations such as static and dynamic obstacle avoidance or dynamic re-
routing.
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Resumen

La conducción automatizada está considerada como una de las tecnologías clave y uno
de los principales avances tecnológicos que influyen y dan forma a nuestra movilidad y cal-
idad de vida futuras. Tanto es así, que la mayor parte de la actividad actual de investigación
y desarrollo en el campo de los Sistemas Inteligentes de Transporte (ITS) se centra en ella.

La introducción de sistemas automáticos de control en vehículos puede mejorar enorme-
mente la seguridad en la carretera, teniendo en cuenta que alrededor del 90% de los acci-
dentes de tráfico son causados por errores humanos. En la actualidad, hay muchas solu-
ciones, conocidas como sistemas avanzados de asistencia al conductor (ADAS), que son
capaces de realizar diferentes tareas, como emitir alertas para advertir sobre posibles situa-
ciones peligrosas, o incluso introducir control longitudinal y/o lateral en determinadas
situaciones.

Si bien se han realizado esfuerzos considerables en los ámbitos de la percepción y la lo-
calización, las representaciones digitales del entorno y la planificación en escenarios urbanos
siguen siendo incompletas. Como resultado, comprender la relación espacio-temporal entre
el vehículo en cuestión y las entidades pertinentes, a la vez que se encuentra limitado por
la red de carreteras, es un reto muy difícil. Además, la planificación de movimiento se ve
afectada significativamente en entornos urbanos, ya que el conocimiento sobre este entorno
es generalmente incompleto y la incertidumbre asociada es alta. Asimismo, las predicciones
de la ocupación futura de los vehículos cercanos deben influir de forma efectiva en la planifi-
cación de movimiento realizada por el vehículo. Con el objetivo de alcanzar el razonamiento
abstracto a nivel humano y reaccionar con seguridad incluso en situaciones urbanas comple-
jas, la conducción autónoma requiere métodos para generalizar situaciones impredecibles y
razonar de forma oportuna.

El creciente interés en niveles de automatización cada vez más altos conlleva el desar-
rollo de algoritmos capaces de reaccionar a los típicos escenarios de conducción de una
manera segura y humana. En este sentido, esta tesis aborda el problema de la planificación
de movimiento en entornos urbanos proponiendo una arquitectura de toma de decisiones
y planificación con el objetivo de impulsar las capacidades de navegación de los vehículos
automatizados, haciendo uso de mapas no detallados y libres. Para tal fin, el espacio nave-
gable es obtenido dinámicamente a partir de la información de los mapas. Para hacer frente
a su incertidumbre intrínseca y baja fidelidad, un sistema de detección de carriles basado
en visión artificial actualiza y mejora dicho espacio navegable. A partir de ahí, un eficiente
planificador local, que imita la conducción humana, determina una trayectoria segura, bajo
un marco probabilístico. Un sistema de percepción basado en LiDAR es usado para iden-
tificar el escenario de conducción, y, eventualmente, replanificar la trayectoria, llevando en
algunos casos a adaptar la ruta de alto nivel para alcanzar el destino dado.
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Las nuevas funcionalidades abarcadas por la arquitectura propuesta, presentan avances
significativos con respecto a la arquitectura previa para conducción automatizada del Pro-
grama AUTOPIA, donde se ha desarrollado esta tesis. Además, con el fin de validar su
diseño e implementación, la arquitectura ha sido ampliamente probada en uno de los ve-
hículos prototipo de la flota de AUTOPIA en las instalaciones del Centro de Automática y
Robótica (CAR) en Arganda del Rey, España. Numerosas pruebas realizadas en escenar-
ios que imitan entornos urbanos reales y diferentes demostraciones prueban la robustez de
la arquitectura propuesta al enfrentarse a diferentes situaciones complejas, tales como la
evitación de obstáculos estáticos y dinámicos o el enrutamiento dinámico.
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Chapter 1

INTRODUCTION

1.1 Overview

The interest in automated vehicles (AVs) has significantly increased in last years. In fact,
most of the current activity in research and development work of Intelligent Transportation
Systems (ITS) is focused on them. Events such as DARPA challenges [137, 110] or the Grand
Cooperative Driving Challenge editions [142, 116] have raised the public interest in AVs
worldwide.

Although huge efforts have been carried out in last years to solve several technological
challenges, still some issues must be addressed before AVs can be extensively deployed in
urban environments [129]: (i) providing the automated driving system with comprehen-
sive fault detection, identification and accommodation capabilities, (ii) ensuring sufficient
cybersecurity protection, (iii) developing comprehensive environment perception capabil-
ities, (iv) resolving questions of robot ethics sufficiently to enable the system software to
make “life or death” decisions affecting the safety of all road users, and, finally (v) design-
ing software-intensive system for a very high level of safety. In addition to that, the current
advances in the AV technologies enable the arising of legal problems that need to be solved
to encourage the societal acceptance of AVs1.

The potential benefits of AVs are more and more clearer, showing that AVs will improve
the future mobility in different ways: more efficient and safer public transport and freight
services, cleaner cities, accessibility and comfort.

The number of vehicles on the roads is constantly growing, what affects the transport
efficiency and increments traffic jams and carbon emissions. According to [128], the typically
occupied area in a highway in the U.S. is around 5%, which means that the capacity of a road
could be doubled or tripled if this area were increased by 10% or 15% factor, respectively.
However, so as to achieve this, it is necessary to implement driver assistance systems to
decrease the distance among cars in a safe way which also leads to a more efficient traffic.
Moreover, lane width could be reduced by implementing automatic steering control systems
with a higher degree of accuracy than human drivers have.

The introduction of automatic control systems in vehicles should greatly improve road
safety taking into account that around 94% of traffic crashes are caused by human er-
rors [130]. Nowadays, there are several solutions known as advanced driver assistance

1In this sense, a recent study reveals the growing interest of governments around the world on AVs [71]
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systems (ADAS) that are able to provide warning signals to the driver in some unexpected
scenarios e.g. Lane Departure Warning (LDW) or Pedestrian Detection (PD), or even per-
form different driving tasks e.g. Automatic Cruise Control (ACC) or Lane Keeping Assist
(LKA). The implementation of ADAS in commercial vehicles is more and more accepted
by drivers, which have started to realize that the idea of automated vehicles is no longer a
utopia and it is becoming a reality.

1.2 Motivation and framework

From a technological point of view, automated driving involves the integration of a num-
ber of technologies related to perception, localization, decision-making and human-machine
interaction (see figure 1.1). Among them, decision-making systems aim to provide the un-
derstanding of the vehicle environment, as well as generate a safe and efficient action plan
in real-time [87]. Accordingly, tasks such as prediction of nearby traffic participants actions,
motion planning, and obstacle avoidance must be carried out within the decision-making
sub-systems.

MAPPING

Where can I move?
  Perception

  3D modelling

Where am I?
  Acknowleding the 

  vehicle pose

LOCALIZATION

How to do it?
  Situation awareness

  Decision-making

  Motion planning

DECISION-MAKING

INTERACTION

How to interact?
  With the driver

  With other users

AUTOMATED
DRIVING

FIGURE 1.1: Technologies involved in automated driving systems. Figure in-
spired by [36, p. 1279]

Whilst considerable efforts have been attained in the perception and localization do-
mains, digital representations of the world and planning in urban scenarios are still incom-
plete. As a result, understanding the spatio-temporal relationship between the subject vehi-
cle and the relevant entities while being constrained by the road network is a very difficult
challenge. Furthermore, urban motion planning is significantly affected since the knowl-
edge about the environment is generally incomplete and the associated uncertainty is high.
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In addition, the predictions of future occupancy of nearby vehicles must effectively influ-
ence the motion plan calculated by the vehicle.

With the aim of reaching human-level abstract reasoning and reacting safely even
in complex urban situations, autonomous driving requires methods to generalize unpre-
dictable situations and reason in a timely manner. To that end, two elements still need
further substantial investigation: world modelling and decision-making from uncertain in-
formation [149].

The objectives of this thesis are motivated by previous works on autonomous driving
applications without detailed prior maps. In [108], the authors focus on rural environments
where it is hard to built and maintain highly detailed maps. Despite of the fact that de-
tailed maps in urban environments might be more feasible, they are still not cost-efficient
and present technical problems as minor changes appear constantly, making them not com-
pletely reliable. Nevertheless, the information included in non-highly detailed maps re-
mains more stable.

Bearing the above in mind, this thesis aims to contribute to the state-of-the-art in the
decision-making and motion planning fields. In this regard, the thesis presents a mod-
ular architecture for automated driving in urban environments that provides both global
and local planning capabilities that enable the vehicle to overcome successfully urban situa-
tions with certain complexity. Contrarily to some previous works on probabilistic decision-
making [61, 17], often intractable in real-time, the setting presented in this work inherits the
uncertainty from world modelling and produce feasible and comfortable trajectories which
use cost-effective primitives evaluation and assuming simple patterns for targets motion
prediction.

The present thesis takes place within the context of the AUTOPIA Program activities
at the Centre for Automation and Robotics (CAR), a research centre with shared owner-
ship between the Technical University of Madrid (UPM) and the Spanish National Research
Council (CSIC). AUTOPIA is the pioneer research group in Spain focused on vehicle au-
tomation with more than 20 year experience on this field. Its research is centred on provid-
ing intelligence to automated vehicle systems in specific situations where communication
and interaction abilities may permit to solve understanding-decision dilemmas of isolated
self-driving cars. The group has a growing interest in decision-making architectures where
driver intentions and skills can be adopted at different assistance levels. In this connection,
the influence of perception, localisation and mapping on decision-making and road interac-
tions are key research questions that articulate AUTOPIA scientific activity.

1.3 Objectives

The main objective of this thesis is the design, implementation and validation of a decision-
making architecture for automated driving specially well suited to cope with urban driving
environments.

3



Chapter 1. INTRODUCTION

In order to achieve the main objective, this thesis focuses on five fundamental questions
which in turn comprise several tasks, which address different scientific and technical chal-
lenges. Both are hierarchically listed below:

1. Design of a generic decision-making architecture able to provide an human-like and
real-time response to typical driving events in urban environments:

(a) Identification of essential architectural components to address the decision-
making and planning in urban environments. The architecture must be able to
provide solutions to typical driving problems faced in these environmental con-
ditions.

(b) Development of strategies with a high level of reactivity to provide fast responses
to sudden critical situations that can arise from highly dynamic urban scenarios.

(c) Elaboration of a functional human-machine interface to enable a bidirectional
communication channel between the vehicle and its occupants.

2. Global planning capabilities and automatic road corridors generation from low-
fidelity maps:

(a) Development of a global planner that that is able to provide high-level routes
when requested by other modules of the architecture.

(b) Obtaining a reliable available navigable space from the initial vehicle to the des-
tination parting from high-level route and low-fidelity maps.

(c) Adapting the navigable space by applying a vision-based approach with the ob-
jective of increasing its reliability.

3. Risk estimation and motion prediction of other traffic agents:

(a) Explore interaction-aware risk estimation algorithms that can provide prioritiza-
tion over the possible risks of other traffic agents perceived by the vehicle.

(b) Development of motion prediction capability that estimates the future trajectory
of the most hazardous agents, taking as input the risk prioritization, .

4. Local planning capabilities that consider localization uncertainty and kinodynamic
constrains of the vehicle:

(a) Development of local planning capabilities to enable the vehicle to calculate
human-like and human-aware trajectories in real time.

(b) Considering the ego-vehicle constrains and other static or dynamic agents in the
motion planning strategy in order to create feasible and safe trajectories.

5. Integration and validation of the whole architecture in a real environment:

(a) Implementation and integration of all functionalities of the automated driving
architecture.

(b) Validation of all designed and implemented algorithms by using a real experi-
mental platform in real-world scenarios.
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1.4 Thesis outline

A brief overview of the contents of the remaining chapters is presented below:

Chapter 2 presents a literature review of the different aspects of automated driving that are
addressed in this thesis: map generation, risk estimation and motion planning.

Chapter 3 introduces the prior state of the automated driving architecture of AUTOPIA
Program, remarking its benefits and limitations. Accordingly, the development of new
functionalities and improvements on the existing architecture modules are then pre-
sented. The main contributions of this thesis concentrate on the decision-making ca-
pabilities of the architecture: on the one hand, global planning and mapping modules
address deliberative features such as the computation of the route to reach a given
destination. On the other hand, local planning modules deal with reactive decisions
such as final trajectory generation and obstacle avoidance.

Chapter 4 details the contributions to the architecture regarding global planning capabili-
ties. The global planner, which is in charge of providing high-level routes, is firstly
introduced. From this global route, an automatic road corridor generation algorithm
based on low-fidelity maps is proposed to compute the navigable space. Moreover, a
vision-based road corridor adaptation algorithm is also proposed to increase the relia-
bility of the navigable space. Finally, a method to consider the localization uncertainty
using a probabilistic occupancy grid is introduced.

Chapter 5 deals with the estimation of future movements of relevant objects in the nearby
environment of the ego-vehicle. To that end, an interaction-aware risk estimation algo-
rithm uses information of traffic rules from maps and the state of the perceived objects,
to select the most hazardous objects perceived by the vehicle. The output of the risk
estimation algorithm is used to estimate the future trajectory of the most hazardous
moving objects, which are then analysed to generate an output action if needed. The
proposed risk estimation algorithm has been tested in simulation by using a set of
different scenarios such as intersections, or roundabouts.

Chapter 6 addresses the optimal motion planning capabilities of the proposed architecture.
Firstly, an in-depth analysis of state-of-the-art path planning approaches for auto-
mated driving is presented, where all considered approaches are evaluated and com-
pared under a common framework. This extensive comparison leads to the selection
of proper path and speed planning techniques to deal with the demanding require-
ments in terms of trajectory smoothness, space exploration and computing time. In
this context, and with the goal of obtaining trajectories as human-like as possible, it
is proposed a procedure to generate continuous curvature and jerk-minimum paths
in real-time from automatically generated road corridors. The implemented trajec-
tory generation algorithms are validated by a set performing real trials in urban-like
scenarios by using a real instrumented vehicle.
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Chapter 7 describes how the algorithms presented in chapters 4 – 6 are integrated in the
architecture presented in chapter 3. For that purpose, the detailed description of the
experimental platform used for the implementation and the evaluation of the pro-
posed architecture in real environments is firstly presented, focusing on both hardware
and software aspects of the vehicle components. Eventually, two live demonstrations
that were carried out at different high impact events in the autonomous driving and
robotics fields are presented.

Chapter 8 presents the conclusions of the work carried out in this thesis together with spe-
cific contributions remarks. In addition, future research to continue the work is also
proposed. Finally a summary of the dissemination activities related to this thesis is
presented.
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Chapter 2

LITERATURE OVERVIEW

2.1 Introduction

AVs can be defined as those in which at least some safety-critical aspects occur without
direct driver input [145]. In other words, an AV is able to, at least partly, perform a driv-
ing task independently of a human driver. When AVs with different levels of automation
can communicate among them and with the infrastructure/cloud, a very relevant socio-
economic impact can be obtained, namely safety, congestion and pollution reduction, roads
capacity increase, etc. By contrast, autonomous cars have theoretically the ability to operate
independently and without the intervention of a human driver in a dynamic traffic environ-
ment, relying on the vehicle’s own systems and without communicating with other vehicles
or the infrastructure.

A wide variety of automated systems are continuously being developed by original
equipment manufacturers (OEMs), Tier 1s, and new big players in the last years. Often,
the level of automation of these systems is hard to differentiate since the manufactures usu-
ally use the term “autonomous” indistinctly. This has led different automotive associations
to make efforts on the standardization of different driving automation levels. Among them,
the most acknowledged framework is the one established by the Society of Automotive En-
gineers (SAE) International issued in 2014 in the international norm J3016 [124]. This norm
brings order to different prior proposals of standardization from the US National Highway
Traffic Safety Administration (NHTSA), the Germany Federal Highway Research Institute
(BASt) and the SAE. It provides a common taxonomy for automated driving in order to
simplify communication and facilitate collaboration within technical and policy domains.

Table 2.1 summarizes SAE levels of driving automation for on-road vehicles and their
approximated correspondence to those developed by BASt and to those described by the
NHTSA in its “Preliminary Statement of Policy Concerning Automated Vehicles” of May 30, 2013.
Full definitions of these levels and detailed specifications of the concepts that appear in
the table can be found in the Information Report J3016 [124]. As expressed by the expert
committee responsible for this taxonomy, "the levels are descriptive rather than normative and
technical rather than legal. They imply no particular order of market introduction. Elements indicate
minimum rather than maximum system capabilities for each level. A particular vehicle may have
multiple driving automation features such that it could operate at different levels depending upon the
feature(s) that are engaged.".
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the full-time performance by an automated driving system of all aspects of the dynamic
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TABLE 2.1: Summary of SAE levels [124]. Source [131]

According to 2.1 there are 6 levels that range from 0 (no automation) to 5 (full automa-
tion). In Level 0 systems, the human drives is responsible of the whole dynamic driving
task. This level includes systems such as the Anti-lock Braking Systems (ABS), Traction
Control System (TCS), Electronic Stability Program (ESP) and Advanced Emergency Brak-
ing Systems (AEBS); but also warning systems as Park Distance Control (PDC), Lane Change
Assist (LCA) or Lane Departure Warning (LDW).

From the Level 1 onwards, capabilities of executing part of the dynamic driving task are
introduced. Some examples of Level 1 systems are the Park Assist (PA), Lane Keeping Assist
(LKA) or Adaptive Cruise Control (ACC).

To continue working on more complex systems, huge efforts are being made by the Eu-
ropean automotive industry (about 5% of its total industry turnover [45]) in research and
development of Level 2 systems. Level 2 implies partial automation so that both longitu-
dinal and lateral control are provided but only in certain circumstances such as Automated
Parking Assistance or Traffic Jam Assist, which can be considered as an extension of the
ACC. Systems of this level need the human driver to be alert of the whole driving tasks as
the system can need to be taken over in a very short notice by the human driver.

Level 3 is defined as conditional automation. This level introduces a clear different with
respect to Level 2: now the system is in charge of the driving task monitoring. This means
that the system is expected to handle the driving as long as it is within its operational design
domain, changing the role of the human driver to be a fall-back. For example, the Traffic
Jam and Highway Chauffeurs are considered level 3 systems since the needed capability of
performing both longitudinal and lateral control of the vehicle at moderate speeds (speeds
below 60 km/h) in traffic jams at motorways.

The highly automated vehicles, which are meant to perform autonomous manoeuvres
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4
High

Automation

5
Full

Automation

Some
geographic

areas

Some driving modes

All driving modes

Some
roadway

types

Some
traffic

conditions

Some
weather

conditions
+

Some
events or
incidents

+ + +

All
geographic

areas

All
roadway

types

All
traffic

conditions

All
weather

conditions
+

All
events or
incidents*

+ + +

*that can be managed by a human driver

TABLE 2.2: Differences between SAE Levels 4 and 5. Figured inspired by [41]

instead of supporting the driver, are framed in the levels 4 and 5. The main difference be-
tween these levels relies on the unconditional automated driving expected of Level 5 systems,
which should be able to drive autonomously in the same scenarios that human drivers are,
in contrast to the constrained operational design domain of Level 4 systems. These differ-
ences are illustratively summarized in table 2.2. Nowadays, there is no Level 5 systems
available. Nevertheless, some examples of Level 4 systems are the Parking Garage Pilot,
which is able to perform all parking operations without the need of a human driver in a
confined area, and the Highway Pilot in which the system performs all the driving tasks in
a motorway without the need of a human driver.

In the industry sector it is remarkable the effort that some big companies have been mak-
ing in last years. Google was the first big player which started its self-driving car project in
2009. Since then, Google has been a key member of an industry group pushing for auto-
mated driving standardization. At the end of 2016 Waymo became a stand-alone Google
subsidiary in charge of the self-driving Car Project. In 2018, Waymo began the deployment
of Level 4 vehicles in a pilot ride-sharing service in Chandler, Arizona. Waymos’s system
allows to drive at the speed limit it has stored on its maps and keep a safety distance from
other vehicles in urban environments.

In 2015, Tesla introduced its "Autopilot" system which presents a combination of dif-
ferent ADAS that is able to accelerate, brake, and steer in specific situations. Its percep-
tion is based on RADARs and vision sensors. The system can be categorised as Level 2
since the driver’s attention is required at all times. A similar approach is the "Super Cruise"
proposed by General Motors. This system incorporates vision-based driver monitoring to
detect whether the driver’s eyes are on the road or not. However, although the system al-
lows hands-free driving, the driver alerts are issued at short notice and the driver must act
quickly if necessary. This system presents a Level 2 automation.

Although there is a clear difference between Level 2 and 3 as stated above, it is not trivial
to explain this difference in practice since Level 2 systems usually make use of some kind of
driver monitoring too (e.g. General Motor’s "Super Cruise"). Moreover, it is clear that Level
2 systems are not considered as self-driving systems while Level 4 do. Nevertheless, Level 3
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is considered to provide self-driving capabilities in specific situations, giving the sufficient
advance notices in cases in which the human driver is required. Thus, some automotive
makers are moving away from Level 3 and focus on Level 2 or Level 4 systems while other
such as Audi are proposing Level 3 systems. This is the case "Traffic Jam Pilot" developed
by Audi. This system is intended to provide the human more time to take over the vehicle
control than a Level 2 system would while performing self-driving in traffic jams.

The first tests carried out in public roads brought the first crashes and fatalities caused
by self-driving cars: Three driver fatalities occurred between 2016 and 2018 in Tesla vehicles
when the "Autopilot" functionality was activated; and an automated car operated by Uber
struck and killed a woman on a street in Tempe, Arizona (March 2018). These accidents with
fatal outcomes have questioned the readiness of automated driving systems to be massively
deployed in public environments and have consequently led some car manufacturers (e.g.
Uber or Toyota) to temporarily halt their testing of self-driving cars on public roads.

Although huge advances have been made in last years, still a number of technological
issues and challenges have to be addressed to support the massive deployment of highly
automated driving systems [41, 129]. They are listed below:

• Decision and control algorithms: These include decision, planning and control algo-
rithms for a cooperative, safe, human compatible traffic automation. Moreover, “robot
ethics” questions must be sufficiently resolved to take correct high level decisions in
specific critical scenarios.

• World modelling: On the one hand, digital infrastructure for road automation in-
cludes static and dynamic digital representations of the physical world with which
the automated vehicle will interact to operate. Issues to address include: sourcing,
processing, quality control and information transmission. On the other hand, the de-
velopment of comprehensive in-vehicle perception and prediction capabilities has to
be addressed.

• Secure V2X connectivity: Connectivity is an important element of the automated ve-
hicles especially secure V2X communication requiring low latency. V2X technologies
encompass the use of wireless technologies to achieve real-time V2V and V2I com-
munications. The convergence of sensor-based solutions (current ADAS) and V2X
connectivity will promote automated driving. In addition, sufficient cyber-security
is needed to ensure the safety of vehicle automated systems. When connected, the
vehicle is susceptible to be cyber-attacked.

• Human factors: Human factors in automation relate to understanding the interac-
tion(s) of humans with all aspects of an automated road transport system, both from
within a vehicle, when taking the role of a driver and also as a road user, when inter-
acting with automated vehicles. Knowledge and theories from social, psychological
and behavioural sciences are useful to understand how humans interact with such
systems.
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• Evaluating road automation: Automation of road vehicles has the potential to impact
on lifestyles and society. Economic impacts too will be important and it will be neces-
sary to gauge these impacts in a common cost-benefit framework with other transport
investments when assessing public expenditure on supporting infrastructure or ser-
vices.

• Road-worthiness testing: The evaluation whether a vehicle is legally allowed to drive
on public roads or not takes great importance for the deployment of new automated
driving functionalities. In this sense, AVs must include comprehensive fault detection
systems and a very high level of safety has to be the basis of software-intensive system
design.

Different research institutions worldwide are pushing to the above challenges needed to
go towards a massive deployment of highly automated driving. An overview of the research
work of some of them is provided below:

Carnegie Mellon University Since the 1980s, the Carnegie Mellon University have built
computer-controlled vehicles for automated and assisted driving. They won the
DARPA Urban Challenge (2007) robot race and placed third at the DARPA Robotics
Challenge for disaster response robots (2015). Dr. Chris Urmson, one of the lead-
ers of the winning team in the DARPA Urban Challenge, was part of the Google Car
Project’s research team from 2009 to 2016. More recent researches of this institution
focus on smart infrastructure, focusing on machine vision application and affordable
sensors.

California PATH PATH (Partners for Advanced Transit and Highways) has been involved in
the research, development, and testing of connected and automated vehicles since
1986. The wide scope of California PATH work focuses on cooperative systems us-
ing V2X communication, cooperative intersection management, platooning, etc. Since
2015, California PATH is assisting the US administration by developing functional and
technical definitions in automated vehicles regulations to help govern the testing, reg-
istration, and safe operation of autonomous vehicles.

Stanford University With the Stanley prototype they won the DARPA Grand Challenge
(2005). The vehicle is a Volkswagen Touareg, where the native drive-by-wire control
system was adapted to be run directly from an on-board computer without the use
of actuators or servo motors. It used five roof mounted Lidars to build a 3D map of
the environment, supplementing the position-sensing GPS system. Junior the sequel
prototype of Stanley, obtained second place in the Urban Grand Challenge. The Audi
TTS prototype managed to autonomously ascend Pikes Peak in 2010. More recently,
they took the vehicle to Thunderhill Raceway Park, and let it go on track without any-
one inside, hitting over 120 miles per hour. The goal of this prototype was to push
autonomous driving to the vehicle’s handling limits. To that end, a high speed, con-
sistent control signal is used in combination with numerous safety features capable of
monitoring and stopping the vehicle.
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Karlsruhe Institute of Technology This institute participated in the DARPA Urban Chal-
lenge (2005). Moreover, entered the VW Passat "AnnieWAY" into the Darpa Urban
Challenge, and reaching the final stage. This vehicle also won the Grand Cooperative
Driving Challenge (2011) which was the first international competition to implement
highway platooning scenarios of cooperating vehicles connected with communication
devices. Their research is focused on intelligent sensing techniques for autonomous
vehicles and for automated visual inspection tasks. This includes scene reconstruction,
object detection and tracking, accurate vehicle ego position estimation and automated
map generation, probabilistic and formal representation, reasoning and learning tech-
niques for scene interpretation.

Vislab Vislab, from the University of Parma, with which the International Autonomous
Challenge was accomplished. The platforms are small and electric vehicles produced
by Piaggio. The automated driving technology did not affect its performance since the
sensors, the processing systems, and the actuation devices are all powered by solar en-
ergy, thus they do not drain anything from the original batteries. The vehicle managed
to run almost 16.000 km on a 100-day trip, combining automated and manual mode in
very challenging driving zones.

AUTOPIA Program Since 1996, AUTOPIA has a solid experience in providing intelligence
to automated vehicle systems in specific situations where communication and inter-
action abilities may permit to solve understanding-decision dilemmas of isolated self-
driving cars. The group has a growing interest in decision-making architectures where
driver intentions and skills can be adopted at different assistance levels (from SAE L2
to L4). In this connection, the influence of perception, localisation and mapping on
decision-making and road interactions are key research questions that articulate AU-
TOPIA scientific activity [48].

The remainder of this chapter presents an overview of prior work on the different topics
addressed in this thesis. Section 2.2 provides a general vision about the recent map-based
systems. Furthermore, in section 2.3 the focus is on the prediction of dynamic evolution
of road agents and its influence on motion planners, taking into account information about
the environment. Finally, section 2.4 reviews the current state of motion planning in the
automated driving scope.

2.2 Map generation

An important number of map-related works for autonomous vehicles have been presented
in the last decade. They range map-based localisation and navigation [121, 84], acquisi-
tion, filtering and optimization techniques for high quality maps [18] or road modelling
strategies [86]. However, not many combine smooth road geometry models and map-based
advanced driving assistance systems (ADAS), whose state of the art is summarized below.
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The most simple but commonly used representation for lanes in digital maps is based
on poly-lines, composed of a sequence of segments, resulting in turn in concatenated poly-
gons [151]. Among this family of mapping data structures, the RDDF was one of the first
formats to describe route networks which was mainly used for unpaved desert tracks. It
consisted of a simple list of longitudes, latitudes, and corridor widths that define the course
boundaries, and a list of associated speed limits.

In RNDF the basic structure segment-lane-waypoint was included to provide basic infor-
mation to driver-less vehicles. Multi-lane stretches of roads could be then modelled as road
segments, defined by a set of waypoint, which in addition incorporates metadata to denote
relevant elements, such as stop sign, intersection entry or exit, or checkpoints. Although
the RNDF specification is fairly easy to understand and sufficient enough to map most road
networks, it misses several features and reveals flaws when designing specific road charac-
teristics [27]. Indeed, it is an efficient representation for real-time applications, but do not
comply with real roads geometry, because they can exhibit discontinuities and often not de-
scribe curved structures in a suitable way. As a matter of fact, for a precise approximation of
these structures, a relatively high number of line segments would be needed, which has two
negative effects: On the one hand, the amount of data for storage and processing increases.
And on the other hand, the association of points to their closest curve segment is hampered
as the number of candidate segments is high.

OpenStreetMap (OSM) [122] proposes an open data infrastructure to which volunteers,
companies or governmental organizations all over the world can contribute. Similarly to
RNDF, OSM data is very good at representing topological information as well as positions,
but has drawbacks in representing the geometry itself and the good data accuracy is not
guaranteed. Another open and freely available format is OpenDrive [34], which has en-
hanced features with respect to OSM, as it permits to mark roads being in a tunnel or on
a bridge or even tilting and cross fall of roads. However, its deployment is still too lim-
ited when compared to the one of OSM, available worldwide with an impressive degree of
coverage.

2.2.1 Smooth road geometry models

The lanelet model also uses polylines as geometric representation but provides continuous
tangents at the junctions of the segments thanks to non-Euclidean point-to-segment projec-
tion [14]. This approach provides an interesting real-time solution without discontinuity
issues.

In RNDFGraph the course of the road is mimicked with spline interpolation. By using
splines, only the support points for the spline need to be stored, and every point between
the support points can be interpolated. The challenge, however, is to place the support
points in such a way, so the resulting spline interpolation matches the course of the road.
Support points are also the link to the graph. The RNDFGraph provides a road network
with additional information for autonomous behavior such as continuous spline sampling,
lane relationships and lane change information, to be used by subsequent path-planning
and low-level controller modules.
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Extended Maps [15] model the world in terms of interconnected clothoids, line and circle
segments, following the Dubins paths structure [144]. Clothoids are used here to provide
a smooth steering phase when passing the lane sections since their curvature changes lin-
early [147]. However, the offset curve of a clothoid is not a clothoid, and it is therefore not
possible to easily build corridor using this primitive. Thus, it is reasonable to use alterna-
tive curves models, providing smooth continuous and differentiable curvilinear coordinates,
such as approximative B-splines [70], Hermite interpolating splines [23, 56], NURBS [148],
or arc splines [92].

The Akima interpolation presented in [27] is a continuously differentiable sub-spline
interpolation whose resulting spline is less affected by outliers than cubic spline interpola-
tion. According to [52] piecewise polynomials are more effective in terms of usability than
clothoid or B-splines, because the tangent angle and the curvature of the road can be cal-
culated by conducting simple arithmetic operations. However, the procedure proposed by
the authors only works with positioning data, from which it determine the number of piece-
wise polynomials of the overall curve. In this connection, [85] propose an iterative method
to automatically generate the lane geometry using fixed and variable control points, which
can effectively ensure the accuracy with limited number of control points. Also in these
two cases accurate samples of the centerline are required and therefore it is not suitable to
enhance OSM maps.

2.2.2 Map-based ADAS

ADASIS [35] is a standardization initiative for a data model to represent map data ahead
of the vehicle (ADASIS Horizon) using a list of distinct potential future corridors, modeled
as road segments. This standard does not store yet additional road features such as traffic
lights or road signs, neither their position, as OSM-based systems do. However, they are
not conceived as a map database and do not need to be queried to obtain the corridors, as
happens with lanelets or similar approaches.

ADASIS allows also to obtain the centreline of the corridor as a smooth function, which
is very useful for trajectory planning [6]. However, as this corridors are modelled as paths,
it does not consider the possibility to characterize the lane margins independently of this
centreline, which may really helpful in situations where the lane margins are asymmetrically
distributed with respect to the lane centre.

2.3 Intention prediction, risk estimation and decision-making

One of the key aspects to be solved in order to achieve fully autonomous driving is to find a
risk indicator for any driving scene. An autonomous vehicle must recognize its environment
and discern whether the behaviour of the vehicles around it is dangerous or not.

The focus of this review is on aspects related to the dynamic evolution of road users and
its influence on motion planners, taking into account information about the environment
(road maps, obstacles, etc.) and its associated uncertainty. Based on their capabilities to
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deal with motion planning on uncertain environments, two main families of approaches are
explored: on the one hand, reward-based algorithms for motion planning and on the other
hand, approaches based on risk inference techniques. The following subsections include
further information about both approaches.

2.3.1 Reward-based algorithms for motion planning

These approaches are typically based on the application of Markov Decision Processes
(MDPs) or Partially Observable MDP (POMDPs). Their ability in dealing with probabilistic
uncertainty of the perceived environment make them an interesting topic in current research
on automated driving. They provide a way to decide the optimal actions that the agents can
take given a set of possible states, actions, reward functions, conditional transition probabil-
ities and observations.

The dimensionality of most practical decision/planning problems is usually high, in-
creasing the complexity of POMDPs which makes them computationally intractable in real-
time. Due to the computational complexity of these approaches, they are usually used to
compute the solution of the problem off-line for later application [17, 12]. Conversely, on-
line methods need to make a trade-off between the solution quality and the complexity of
the problem formulation, that depends on the state space size and the planning horizon [61].
Some examples found in the literature use POMDPs for motion planning in simple environ-
ments, where a robot can take long time to solve decision problems [40].

Although most of the (PO)MDP applications found in the literature deal with simple
problem formulations that could be hardly translated to autonomous driving in a practical
and useful way, some recent works propose real-time capable systems based on POMDPs.
For example, the approach proposed in [61] explicitly includes the prediction uncertainty in
terms of maneuver uncertainty and longitudinal uncertainty during the performed maneu-
ver.

2.3.2 Risk based motion planning in dynamic and uncertain environments

Risk based motion planning approaches take into account the future trajectories of nearby
vehicles in the motion planning. They comprise two main tasks: (i) intention prediction of
moving obstacles and (ii) motion planning that considers the predicted trajectory of moving
obstacles.

2.3.2.1 Trajectory prediction and risk estimation of moving obstacles

Classic approaches for risk assessment in traffic scenes firstly predict the trajectory of the
relevant vehicles using motion models. After that, it is checked if the trajectory of the ego-
vehicle collides with the predicted ones [76]. Considering the uncertainties associated to
the input data and the future possible events, the computation of all possibles trajectories
becomes computationally expensive to be carried out in real-time. To overcome that, either
the uncertainties are ignored or the independence between vehicles is assumed.
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Recent approaches do not only rely on trajectory prediction to estimate the collision risk.
As proposed in [78] the different approaches for risk estimation can be grouped in three
main sets:

Physic-based methods These approaches use dynamic and kinematic models, control in-
puts, external conditions and vehicle physical properties to predict the future motion
of the vehicle. The complexity of this approaches relies on the model used to pre-
dict the trajectory, increasing the complexity when dynamic models are employed.
Kinematic models are commonly used making assumptions such as constant velocity
(CV), constant acceleration (CA), constant turn rate and velocity (CTRV) or constant
turn rate and acceleration (CTRA) in order to reduce the prediction complexity. The
Kalman filter is one of the most used physic-based methods. The main drawback of
these methods is their limited to very short-term motion prediction (typically less than
a second).

Manoeuvre-based motion models These models represent vehicles as independent ma-
noeuvring entities, assuming that the motion of a vehicle on the road network cor-
responds to a series of manoeuvres independently executed from the other vehicles.
In manoeuvre-based motion models the trajectory prediction is based on the early
recognition of the manoeuvres that drivers intend to perform. Different techniques
are used in this methods: on the one hand they are based on prototype trajectories or
manoeuvre intention estimation; on the other hand they are based on reachable sets:

• Support Vector Machines (SVM), Hidden Markov models (HMM), Gaussian pro-
cesses (GP), Gaussian processes mixture (GPM): these methods comprise statis-
tical models that need big amounts of statistical data for a initial training stage.
After the training stage, the predictions are performed. Instead of predicting the
real trajectory the vehicle will follow, these methods are usually used to obtain
the probability that the vehicle will follow one the trajectories used to train the
models.

• Reachable sets [2, 1]: The dynamics of moving obstacles are modelled off-line
with Markov Chains, which are used on-line to predict reachable sets of tracked
obstacles and provide an estimate of their potential future locations.

Interaction-aware motion models These methods take into account the inter-dependencies
between vehicles’ manoeuvres. The motion of a vehicle is assumed to be influenced
by the motion of the other vehicles in the scene. Compared with the manoeuvre-
based motion models, these methods leads to a better interpretation of their motion by
taking into account the dependencies between the vehicles. Moreover, they contribute
to a better understanding of the situation and a more reliable evaluation of the risk.
Interaction-aware models allow longer-term predictions compared to physics-based
motion models, and are more reliable than manoeuvre-based motion models since
they account for the dependencies between the vehicles.
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Among the three main sets of models presented above, interaction-aware motion models
are the most complex and offer a better risk estimation with respect to manoeuvre-based and
physics-based models since they take into account the intention of other agents. In fact, there
are few interaction-aware motion models in the literature [77].

2.3.2.2 Approaches to use trajectory prediction of moving obstacles in motion planning

As explained in [109], trajectory planning in dynamic environments is not as tractable as
analogous problems in static environments. Some proposed approaches are based on nu-
merically solving the motion planning problem by using variational methods directly in the
time domain or by converting the trajectory planning problem to path planning problem
by adding the time as a dimension of the configuration space [42]. Furthermore, a recent
approach [132], proposes a method for identifying driving corridors in dynamic road sce-
narios by using a set representation of all reachable states. This approach makes possible
to prove that certain high-level plans are infeasible. Some of the risk-based approaches for
motion planning modify the classic rapidly exploring random tree algorithm (RRT) in differ-
ent ways to take into account the prediction of other moving obstacles in the path planning
process. In the case of the Fulgenci et al. approach [43], the likelihood of the obstacles’ fu-
ture trajectory and the probability of occupation are used to compute the risk of collision by
using Gaussian processes.

2.4 Motion planning

Among the decision-making tasks that an automated vehicle must carry out, motion plan-
ning is particularly relevant as it plays a key role in ensuring driving safety and comfort [109,
67] while producing safe, human-like and human-aware trajectories in a wide range of driv-
ing scenarios. The robotics community has been intensively working over the last 30 years
in motion planning problems. Although many of the proposed algorithms are able to cope
with a wide range of situations and contexts, they often demand computation-intensive al-
gorithms, feasible for low speed motion patterns. However, for on-road autonomous driv-
ing, determinism is necessary at high sampling rates. In this context, optimality can be
slightly sacrificed at the expense of safe human-adapted paths.

Two main drawbacks emerge from this approach: (i) these techniques often provide
scenario-dependant solutions, which may cause wrong behaviours in general real driving
on urban roads [49]; (ii) to guarantee reactivity, the trajectories need to be exhaustively sam-
pled and evaluated in a high-dimensional space, which is computationally expensive. To
cope with these limitations, some works (e.g. [50, 150]) propose a higher-level decision
maker able to select the right cost set and sampling scale for different situations. Recent
approaches are able to compute analytically both path and speed profile in real-time, taking
into account kinematic and dynamic constraints of the vehicle [136].

The problem of finding an optimal path subject to holonomic constraints avoiding ob-
stacles is known to be PSPACE-hard [20]. Significant research attention has been directed
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towards studying approximate methods or particular solutions of the general motion plan-
ning problem.

Since for most problems of interest in autonomous driving exact algorithms with practi-
cal computational complexity are unavailable [75], numerical methods are often used. These
techniques generally do not find an exact answer to the problem, but attempt to find a sat-
isfactory solution or a sequence of feasible solutions that converge to the optimal solution.
The utility and performance of these approaches are typically quantified by the class of prob-
lems for which they are applicable as well as their guarantees for converging to an optimal
solution. These approximate methods for path and trajectory planning can be divided in
three main families [109]:

• Variational methods, that project the infinite-dimensional function space of trajectories
to a finite-dimensional vector space. Direct methods approximate the solution to the
optimal path with a set of parameters obtained with different types of non-linear con-
tinuous optimization techniques, often collocation-based integrators [156] or pseudoe-
spectral approaches [28]. Indirect methods [16], in turn, solve the problem by finding
solutions that satisfy the optimality conditions established by the Pontryagin’s mini-
mum principle [118].

• Graph-based search methods, that discretize the configuration space of the vehicle as a
graph, where the vertices represent a finite collection of vehicle configurations and the
edges represent transitions between vertices. The desired path is found by performing
a search for a minimum-cost path in such a graph. There is a significant number of
strategies to construct that graph in the most efficient way, but they can be grouped
in two main families: geometric methods, such as cell decomposition [22], visibility
graphs [72] or Voronoi diagrams [135], and sampling-based methods [68], [62]. The
latter deserves particular focus, as is particularly adapted to structured environments,
where different steering functions (e.g [123, 114]) or motion primitives (e.g [39]) ex-
plore the reachability of the free configuration space. Once the graph is built, different
strategies exist also to conduct the graph search in the most dependable way (e.g. Di-
jkstra [30], A* [55], D* [133]...). In the case of automated driving, the road structure
provides strong heuristics, where sampling-based planning methods are very often
sufficient to produce a feasible solution [109]. An evolution of these methods, where
spatio-temporal constraints are considered, propose to formulate the problem as a tra-
jectory ranking and search problem, where multiple cost terms are combined to pro-
duce a specific behaviour.

• Incremental search methods sample the configuration space and incrementally build
a reachability graph (often a tree) that maintains a discrete set of reachable configura-
tions and feasible transitions between them. One of the most well-known and used
techniques are the RRT [74] and their variants (e.g. [66]), always looking for the best
trade-off between completeness and computational cost.
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Since the applicability of variational methods is limited by their convergence to only lo-
cal minima, graph-search methods try to overcome the problem by performing global search
in a discretized version of the path space, generated by motion primitives. In some specific
situations, this fixed graph discretization may lead to wrong or suboptimal solutions, in
which case incremental search techniques may be useful, providing a feasible path to any
motion planning problem instance, if one exists. In exchange, the required computation
time to verify this completeness property may be unacceptable for a real-time system.

Given this context, a double stage planning approach, where a computationally-efficient
reasonable traffic-free path is computed, seems the best trade-off for urban environments,
where roads are usually well-structured and reasonably digitalized. In this connection, the
most recent motion planning architectures [49, 50, 82] consider a two-step planning architec-
ture that aims at limiting the search space to the region where the optimal solution is likely
to exist, while keeping a high degree of reactivity. To that end, a first step performs the
spatial space only considering the road geometry, resulting in a reference trajectory. Then,
a traffic-based planning produces a path based on the traffic-free plan to account for other
traffic and interfering objects. Finally, the final trajectory is generated for the most appro-
priate manoeuvre. Within this approach, a significant number of possible variations can
significantly affect the resulting path. On this matter, the subsection 2.4.1 delves into the
different path primitives used to compute the final path.

Heretofore, the reviewed motion planning approaches assume an ideal vehicle localiza-
tion. However, different existing approaches take into account the localization uncertainty
in the planning strategy. In this respect, subsection 2.4.2 gives an insight of these existing
approaches that are proposed in the literature.

2.4.1 Path primitives

In the literature many path generation patterns co-exist: Dubins’ pioneering work [33] pre-
sented the first set of optimal primitive paths to go from point to point given initial and
final orientations. Since them, some extensions have been introduced considering either
linear/angular velocity bounds [13, 63] or proposing smoother curves (without curvature
discontinuities) that permit to generate nearly time-optimal paths. Clothoids [144], arc-
lines [58], spiral [83] and different variations of splines (e.g [143, 115, 26, 104]) are some
examples of them.

The criteria to choose the most adapted primitive are of course computational cost, safety
and comfort, but also tunability and stability. Indeed, the resulting path has to be not only
confined to the drivable space and needs to be compliant with fixed comfort-based accelera-
tion and jerk bounds. Tunability also matters as designers may need to modify the planning
strategy to avoid parameter over-fitting following the considered scenarios and/or differ-
ent user preferences. In this connection, stability is also very important to avoid jerkiness in
steering/braking when such context-based retuning is conducted.

In some cases, the curvature continuity cannot be guaranteed, and in many others the
primitives are either difficult to parametrize or non-analytical, and therefore computation-
ally expensive and/or unpredictable. Bézier curves have a closed-form expression and an
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intuitive way to choose their parameters. Although some previous work proposed com-
binations of symmetric curves [152] or smooth concatenations of cubic Bézier curves and
segments [25], in this work uniform relaxed B-splines are used, concatenating continuous-
curvature Bézier curves, so that more flexible solutions can be obtained.

Once the path primitive is chosen, the reference path planning becomes an optimization
problem whose goal is to select the minimum number of waypoints needed to connect an
origin and a destination, taking into consideration road geometry and comfort constraints.
Multiple optimization criteria can be applied to that end [140, 31, 157]. However, the lack
of an absolute trajectory quality indicator makes it hard to determine the most appropriate
optimality criteria.

2.4.2 Considering localization uncertainty in motion planning

Localization plays an important role in autonomous driving since a certain level of accu-
racy in vehicle localization is indispensable for a safe navigation. Recent navigation sys-
tems rely on high-definition maps [126, 81, 127]. Assuming a high accuracy of the maps
information, the localization with respect to the map plays an important role. Approaches
as the proposed in [81] uses on-board sensors (such as LiDARs or cameras) to localize a
moving vehicle relative to map, achieving a better localization accuracy than conventional
GPS-IMU-odometry-based methods [81].

In some cases, the accuracy of localization systems can be low by design or even can
drop depending on the environment e.g. GPS-based localization systems in cases in which
there are reflections or satellites occlusions, or challenging weather conditions that could
affect the positioning accuracy such as cloudy scenarios. In these situations, the localization
uncertainty can be taken into consideration to increase the system reliability.

One interesting approach found in the literature to deal with the localization uncertainty
when using maps is the one proposed in [153]. This paper focuses on encoding lane and
traffic information in grids. This method requires the environment data to be represented in
an occupancy grid, which provides a way to represent probabilistic information generated
from different sensors measurements taking into account their noise and uncertainty. Then
vehicle pose uncertainty is propagated along the occupancy grid, obtaining the occupancy
probability of each cell of the grid. The authors use a prior map that stores detailed lane level
information and then apply a localization uncertainty propagation algorithm over an occu-
pancy grid. Occupancy grids are popular in autonomous navigation for encoding obstacle
information into grid cells to provide real-time environmental models.
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Chapter 3

DECISION-MAKING
ARCHITECTURE

3.1 Introduction

The architecture design to provide automated driving capabilities plays a key role since it
must include all needed components that allow the vehicle to have the expected behaviour
in the driving scenarios for which it has been designed. These driving scenarios are more
and more demanding as they include a growing number of inter-connected and heteroge-
neous agents and the associated caseload may become intractable. Thus, the design of the
architecture must be made bearing in mind the perfect integration of its elements.

In this sense, this chapter provides the description of the prior automated driving archi-
tecture of AUTOPIA and the main contributions to it that are proposed in this thesis. Firstly,
the prior developments of the architecture are introduced in section 3.2. Then, the new com-
ponents proposed in this work are presented in section 3.3, emphasising their motivations
and integration within the architecture.

3.2 Prior state of the architecture

One of the most important considerations taken into account in the design of the prior archi-
tecture was the system modularity. In this sense, all functionalities were devised as different
modules that interact with others. Regarding the implementation, both hardware and soft-
ware components are implemented as different modules. The advantage of this fragmen-
tation is twofold: (i) the development of different modules can be done in parallel without
interfering with each other, and in case of a system failure the problematic modules can be
quickly identified. (ii) If each software module is defined as an independent program, a
failure in one module does not necessarily affect the whole system.

The prior AUTOPIA architecture was divided in three main stages: Perception, Decision
and Actuation; and an auxiliary one shared by the latter three: General I/O. As can be seen
in Figure 3.1, the Perception stage was in charge of providing information about vehicle
state and its surroundings, i.e. other vehicles or infrastructure. The Decision stage includes
goals, motion planning, vehicle state management and determination of the control actions.
The Actuation stage was composed of the systems executing the control actions over the
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FIGURE 3.1: General scheme of the prior architecture

throttle, brake and steering wheel of the vehicle. Finally, the General I/O includes all the
low-level devices, such as communications and digital/analogue I/O modules, that can be
used by any other module of the main layers. This removes the direct dependency between
a hardware module and a unique software module, which allows several software modules
can use this hardware resource.

Prior developments [47] have provided the Perception, Actuation, and General I/O,
stages with full vehicle control functionalities and simple planning capabilities. which are
detailed in section 7.2. Regarding the Decision stage, core of this work, the prior architecture
included three different modules: a mission module, planner module and control module,
which are described in the following subsections.

3.2.1 Mission & planner modules

The main task of a self-driving car can be summarized as “going from point A to point B”.
Besides, it can be more complex as for a self-driving bus that must follow a pre-defined
route, making several stops and waiting while the passengers go up and down. In any of
these two cases, the main goal can be defined as a combination of several smaller sub-goals.
The set of these sub-goals is what it is called the mission of the car.

In the prior architecture, the mission module represents the first step in the decision
stage. Inside this module, a list of generic goals, defined manually by the user either before
running the program or even in running time, describes the major goal for the car.

Once a mission is given, the next step is to generate an adequate trajectory for the car to
perform the main task. As it was mentioned above, the mission module only has the infor-
mation related to the main goal of the car, meaning that the mission list can be composed
of only two points: start and goal, or of a long list of points describing the movement of a
leader vehicle (in case of ACC manoeuvres). To analyse the mission and generate the final
trajectory, a planner module is included.

The trajectory was composed of the reference points information such as UTM coordi-
nates, the reference speed, the cumulative distance from the beginning of the trajectory, and
other related data. The planner might need information about the road network in order
to know the best path for going from one point to another of the map, depending on the
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FIGURE 3.2: Planner points generated from the mission data

trajectory task requirements. Once the route to go from one mission point to another is set,
the planner module computes equidistant points along the route. These points conforms the
final trajectory the vehicle will follow.

An example of a mission and planned path with the prior architecture is shown in fig-
ure 3.2. In this case, the distance between the planned points is equal to 1.5 meters (approx-
imately a half of the vehicle length). In order to perform lateral control, the initial reference
is determined by taking the closest two points to the actual position of the car and using the
segment they define as trajectory reference. As the car moves, the following reference points
are loaded and the older ones dismissed. Despite being able to describe a straight line using
only two points (start and end), the long segments are divided into smaller ones of equal
length. This allows the planner to modify, if necessary, the trajectory ahead of the current
position even when the vehicle is already over straight line, avoiding to change a reference
in use.

3.2.2 Control module

The last step of the decision stage is the computation of the control variables, control mode
and control actions. As can be found in previous works [95, 101, 113, 94], the approach
followed by the AUTOPIA Program was not the development of a global controller able
to perform all the possible scenarios, but the individual analysis the common ones, e.g.
overtaking, merging, ACC, emergency braking, etc., developing a specific controller for each
one. The choice of these controllers was called the control mode.

In order to keep the software execution time as low as possible, the computation of the
control variables was divided in two phases. During the first phase, the program calculated
only the variables required for the selection of the control mode as the speed, angular and
lateral errors. Once the control mode was selected, the program estimated the mode-specific
variables as the time gaps, relative speeds, priorities and so on. The list of variables calcu-
lated in each phase was user-customizable should new modes be added.

23



Chapter 3. DECISION-MAKING ARCHITECTURE
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FIGURE 3.3: Variables used lateral control

The generation of the control actions for driving the vehicle has been widely covered
by the AUTOPIA team in previous works [102, 112, 97]. For lateral control, the simplest
approach consists in the generation of control actions from both lateral and angular errors
measured from the reference path to vehicle position and orientation respectively. Regard-
ing the longitudinal control, a speed controller is able to generate the low-level commands
for throttle and brake, following the speed references for each area.

3.2.3 Prior architecture remarks

As described above, prior developments on the architecture introduced a modular architec-
ture for vehicle automation that presents significant advantages:

1. The software is not centralized in a master process, but it is composed of a set of
smaller processes running simultaneously. This exploits in a better way the compu-
tation resources and minimizes the risk of deadlocks and processing delays [137].

2. Moreover, by dividing the program in several software modules, it is possible to min-
imize the impact of a failure in one of the modules over the global performance of the
system. For example, if a supervisor program is implemented, only the crashed pro-
cess is restarted as soon as the failure is detected, without being necessary to restart all
the software.

3. Although the software fragmentation in several processes required the usage of an
inter-process communication (IPC) method, the use of the LCM library (which is de-
tailed in section 7.2.2.1) increases the capability of the developers for debugging and
detecting system failures. Furthermore, thanks to the time stamps, all the system data
can be logged and replayed off-line as it was sent through the network.

4. When implementing the architecture in other vehicles, modifications could be only
needed in some of the sensor/actuator modules, reducing the implementation time.

Although the previous works on the architecture present a remarkable design and
hardware-software integration, the decision-making architecture capabilities can be ex-
tended by pushing some limitations that restrict the application field to specific driving
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cases and by adding new features. The following list present the identified limitations cate-
gorised in the main technology groups evoked in figure 1.1:

1. Localization

(a) The localization of the vehicle relies mainly on raw RTK-GPS data. Despite the
positioning accuracy is high, the orientation of the vehicle is not reliable at low
speeds.

2. Mapping

(a) The lack of exteroceptive sensors such as camera or LiDAR constrains the vehicle
perception of the nearby environment.

(b) The architecture does not use information from any map sources. This limits
the knowledge of the environment and lead the developed systems to rely on
external information received through V2X communication and predefined off-
line computed paths.

3. Decision-making

(a) The absence of environmental information restricts the decision-making and
planning capabilities of the architecture, making the vehicle unable to react to
events occurred in typical driving scenarios such as pedestrian crossings, obsta-
cles that must be avoided, etc.

(b) By not using maps, the vehicle is unable to compute by itself a high-level route to
reach the required destination.

(c) The simple motion planning algorithm outputs large sections of straight seg-
ments whose junctions implies abrupt changes in lateral control error. This limits
the performance of lateral controllers of the vehicle since they must be designed
to handle these non-smooth inputs. In consequence, high path tracking error is
obtained.

(d) The simple motion planning does not include an speed planner. Just like in the
case of lateral controllers, the longitudinal ones are also designed to handle non-
smooth speed reference inputs, leading a low performance of the longitudinal
controller.

4. Interaction

(a) The lack of an HMI element makes it impossible for end users to interact in an
easy and friendly way with the vehicle. The existing interaction between the
vehicle computer and the human is done at low level computer programs that
need the presence of the developers.

(b) The prior architecture does not include a way to visualize the state and decisions
of the vehicle during its operation.
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3.3 Contributions to the architecture

On the basis of previous works on the AUTOPIA architecture and in view of the limita-
tions described above, the present thesis addresses different improvements and extensions
mainly in its decision-making stage, increasing the general navigation capability of the sys-
tem. Moreover, several modifications and adjustments have been carried out in some of the
existing modules in order to be seamlessly integrates with the new ones.

The proposed contributions to the architecture consist of a combination of new mod-
ules with different functionalities that provide the whole system with automated driving
capabilities [7, 10]. These components are depicted in the general functional diagram of fig-
ure 3.4, where dashed lines represent event-driven actions and continuous lines correspond
to continuously applied actions. Henceforth, this figure is referenced to provide the general
view of the connections among the different high level modules of the architecture.

On the one hand, global planning and mapping modules address deliberative features
such as the computation of the route to reach a given destination. On the other hand, lo-
cal planning modules deal with reactive decisions such as final trajectory generation and
obstacle avoidance.

Local planner

Manoeuvre
planner

Trajectory
generation

Motion 
prediction

Global planner and mapping

Global route
calculation

Road corridor
generation & 

adaptation

OSM

Control

Actuators

Sensors

HMI

FIGURE 3.4: Functional components of the architecture

The following list summarizes both (i) the contributions by gathering the new functional
components added to the architecture, which are introduced in the subsections below, and
(ii) the improvements on other already implemented modules:

• Global planning functionalities:

– Road corridor generation from OSM

– Vision-based road corridor adaptation

– Localization uncertainty consideration
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• Local planning functionalities:

– Risk estimation and motion prediction of detected dynamics obstacles.

– Manoeuvre planner

– Trajectory generation

• Vehicle state estimator module.

• Human-machine interface.

• Perception modules for stereo camera and LiDAR.

• Adjustments of longitudinal and lateral controllers to work with the trajectories gen-
erated by the new planning modules.

3.3.1 Global planning capabilities

Instead of requiring high-definition maps, the proposed approach uses low-fidelity map
data to plan a global route and then automatically generate an extended data structure from
OSM that enables the computation of driving corridors.

One of the main advantages of OSM is that it is an openly accessible framework to inte-
grate mapping data. However, this may provide a possible source of data inaccuracy. These
inaccuracies, together with localization measurement errors, are the main source of conflict
when using OSM for automated driving. To mitigate these problems, the proposed archi-
tecture includes two complementary strategies employed in the road corridor generation &
adaptation module of the architecture: a vision-based road corridor adaptation algorithm
and a grid-based approach to propagate the localization uncertainty.

3.3.2 Local planning capabilities

Self-generated driving corridors are used by the local planner modules to finally plan the
trajectories that the vehicle will follow. To that end, three different elements have been inte-
grated in the local planner. On the one hand, (i) a motion prediction component predicts the
future motion of perceived objects and (ii) a manoeuvre planner is responsible of analysing
the output of the motion prediction module by checking possible spatio-temporal collisions
with the current planned trajectory, and consequently trigger a new trajectory planning re-
quest if needed. On the other hand, based on the predicted motion of nearby objects and
the manoeuvre request, (iii) a trajectory generation module computes the final path and
speed profile. For that purpose, the trajectory generator produces a large number of path
candidates within the road corridor that are evaluated. Afterwards, the valid candidate that
minimizes a given cost function is selected and a speed profile is computed.

3.3.3 Additional capabilities

Besides global and local planning capabilities, additional improvements on the vehicle ar-
chitecture have been proposed to cope the remaining limitations identified in section 3.2.3.
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Firstly, a human-machine interface (HMI) has been added to the architecture for the
interaction between the whole system and the vehicle occupants. This interface allows a
friendly way to establish a bidirectional communication channel for both showing relevant
information of the AV state to the occupants, and setting high-level commands to the vehicle.

Regarding the control module, it is worth to mention that the control approach remains
the same with respect to the prior state of the architecture. However, both lateral and lon-
gitudinal controllers have been re-tuned to suit the smooth reference trajectories computed
by the new local planner.

Moreover, a vehicle state estimator module has been developed to increase the reliability
of vehicle pose even at low speeds. A better state estimation implies a more reliable vehicle
behaviour when performing automated manoeuvres.

Since the new decision-making architecture needs to get data from the environment, new
software modules to acquire data from LiDAR and camera sensors have been developed.

A full description and implementation details of each of the new developed and adapted
modules is provided in section 7.2.
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GLOBAL PLANNING AND
MAPPING

4.1 Introduction

The modules that deal with high level navigation of the vehicle given the current vehicle
location and the destination are grouped in the global planning and mapping section of
the decision-making architecture as shown in figure 3.4. The proposed approach relies on
OSM data to firstly use a global planner to find a route that reach a destination point set
through the HMI. After that, it is computed a road corridor in which the vehicle will be able
to drive. As described in section 3.3, the main drawback of OSM is its possible data inac-
curacy. Nevertheless, a vision-based road corridor adaptation algorithm allows an on-line
drift adjustment of the corridor boundaries. In addition, a probabilistic grid-based approach
is also added to this architecture section in order to take into account the uncertainty of the
vehicle localization.

The global route calculator is integrated with an automatic road corridor generation al-
gorithm that receives the computed global route as input. This functional module is in turn
composed of different functionalities to adapt the road corridor and to consider the uncer-
tainty of the vehicle localization as depicted in figure 4.1.
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OSM route 
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Raw road
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uncertainty

Occupancy grid

OSM Image

Road corridor
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FIGURE 4.1: Road corridor generation, vision-based adaptation and localiza-
tion uncertainty propagation

The proposed vision-based algorithm for road corridor adaptation is able to provide an
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indicator of the success of the adaptation ("adaptation state" in figure 4.1). In this way, if the
road corridor section that is in the field of view of the camera has been successfully adapted,
the localization uncertainty is only propagated in the remaining corridor. In cases where the
adaptation fails, the propagation is carried out in the whole road corridor.

Further details about the functionalities of the global planner and mapping section are
described in the following sections: Firstly, section 4.2 states some assumptions considered
in the contributions of this chapter. In section 4.3 the global route calculation is described.
Section 4.4 addresses the road corridor generation from OSM raw data. In section 4.5, the
vision-based road corridor adaptation algorithm is described. Finally, section 4.6 introduces
a probabilistic algorithm to take into consideration and propagate the localization uncer-
tainty when using the road generated road corridors.

4.2 Assumptions

This section presents some assumptions made in the methods introduced in this chapter
regarding maps, image-acquisition and localization:

Maps The road corridor generation algorithm is fed by the OSM database. The topological
information is assumed to be available in all the expected application areas: urban,
peri-urban, road and motorways environments. The OSM data accuracy is assumed
to be high, although it is also proposed a vision-based algorithm to adapt it when the
localization is good. Thus, it is considered a maximum deviation of 1 meter of the map
data with respect to the real ways.

Image acquisition The image positioning error of acquired images derived from camera
placement and calibration is assumed to be sufficiently low to be negligible. Therefore
a maximum camera positioning and angular drifts of 2 mm and 0.5o are respectively
considered. Moreover, the image data needed for vision-based road corridor adapta-
tion algorithm is assumed to be acquired at the expected rate.

4.3 Global planner

The goal of the global planner module is to provide a high level route based on the selected
destination through the HMI module and the initial vehicle location.

The global planner relies on a local instance of the Open Source Routing Machine
(OSRM). This tool is based on contraction hierarchies [89], which provide on fast routing
times and makes it widely accepted by the OSM community. Given the start and end points
coordinates, the route is returned as a list of OSM nodes ids, which combined with the ex-
panded structure of the nodes, is translated into a succession of segments to be joined. For
simplicity of this work and attending to the European regulation, it is assumed that on the
ideal scenario the vehicle travels on the right-most lane on multi-lane roads.
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The map representation data used by the global planner is extracted from OSM. How-
ever, this data structure has been extended with an extra layer to automatically add infor-
mation related to the state of the nodes and ways, thus allowing the modification of the
travel costs of each way. This extra layer has been added keeping in mind the local dynamic
map (LDM) concept that is being standardized [139] to storage environment information in
different layers according their updating frequency from type 1, permanent static data, to
type 4, highly dynamic data, as shown in figure 4.2.

Type 4: Highly dynamic data: 
vehicle, pedestrians, etc

Type 3: Transient dynamic data: 
congestion, signal phase, etc

Type 2: Transient static data: 
roadside infrastructure

Type 1: Permanent static data: 
maps

FIGURE 4.2: Four layers of LDM

Although the LDM standardization is focused on information sharing for cooperative
ITS applications using V2X communications, the proposed data structure used by the archi-
tecture does not relies on external information services. Instead, it provides a way in which
the different elements of the architecture, deployed in the on-board vehicle computer, can
provide or retrieve the required data from it. In this way, the extended data structure enables
the global planner to take into account updated information about the state of the road that
comes from other architecture components (such as manoeuvre planner) or even external
information services using V2X communications. In this way, the routing algorithm can for
instance avoid routes that pass though blocked ways.

The route calculated by the global planner is composed of a list of nodes that serve as
input for the road corridor generation algorithm described in the following section. Fig-
ures 4.3a and 4.3b show two screenshots of the HMI during the request of a global route to
the implemented global planner and the retrieved route, respectively.

One of the main functionalities of the global planner is its ability to interact with the
local planner without human intervention. Thus, in cases where the current route can not be
continued due to road blockage (road works, accidents, etc.) a new route can be requested
to the global planner. To validate this implemented functionality, several tests have been
carried out in a real environment. In the real testing scenario, the expected vehicle route
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(A) Global route request (B) Retrieved global route

FIGURE 4.3: HMI screenshots when requesting and retrieving a global route

was intentionally blocked in a point where a different route to reach the same destination
exists.

Figures 4.4a and 4.4b show two pictures of the front camera of the vehicle during the test.
At the bottom right corner of both figures, the HMI image with the global planner output
route is shown. In figure 4.4a, it can be seen that the vehicle detects several static obstacles
that are blocking the lane. Immediately, the manoeuvre planner (a module integrated in the
local planner) requests a new route to the global planner and the trajectory generator (also
part of the local planner) shorten the current trajectory to avoid the collision with the block-
ing object while waiting for the new road corridor. Finally, the driving corridor is received
by the local planner (see figure 4.4b) and the vehicle continue the ride to the destination.

(A) Detection of lane block. A new
route request to the global planner

(B) The new road corridor is received

FIGURE 4.4: Frontal vehicle image and HMI screenshots when a static object
that is blocking the lane is detected

The global planner has been integrated in the decision-making architecture so that when
a new road corridor is received, the initialization task is instantly carried out and the local
planner updates the road corridor that is using for the final trajectory generation.
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4.4 Road corridor generation from low fidelity maps

Once the high level route is defined by the global planner, the navigable space available
through the route is computed. This route only consists of a list of ways and nodes through
which the vehicle must drive to reach its destination. However, the OSM data structure con-
tains useful information about each way: road width, number of lanes, driving directions,
etc.

In order to obtain a driving corridor, a more refined curve representation for various
lane shapes is required. As proposed in [85] or [51], the road continuity and the introduc-
tion of virtual lanes in specific situations such as road junction or exits can be taken into
consideration. In this section, a solution to overcome these difficulties is proposed, provid-
ing contributions to the state of the art in the following aspects:

• A novel data structure is proposed to enhance the geometry accuracy of OSM maps,
while preserving its topological structure in accordance with the real road network
topology, and therefore keeping its efficiency and usability. To that end, a lane-level
map will be generated guaranteeing the global continuity both in location and tan-
gent orientation (G1 continuity) at every node through the use of Bézier curves and
a systematic procedure to softly concatenate them. This feature will be applied also
to precise virtual lanes in complex roundabouts and/or intersections, defining two
smooth profiles for left and right lane margins.

• A novel mechanism to automatically generate driving corridors that can be used in
automated vehicles to (i) constrain the perception and localization systems to the sur-
rounding lane(s), and (ii) to make the right decision in complex urban scenarios, and
therefore to properly plan the motion to be adopted by the vehicle.

4.4.1 Road corridor generation algorithm overview

OpenStreeMap (OSM) [54] implements a topological data structure, where roads are rep-
resented as sets of nodes connected by straight segments. Hence, there is no geometric
information available in the map database in order to represent curve features on roads,
specially when the final goal is to define the navigable space for a vehicle.

This section proposes an automatic procedure that expands the OSM definition to gen-
erate a better approximation to the real shape of roads. To that end, the adjacency among
the nodes is analysed for a given area, identifying and classifying all road junctions in or-
der to generate an efficient and accurate polynomial-based map representation using Bézier
curves [46].

In spite of being firstly used for graphic design and computer graphics, Bézier curves
present some properties that have encouraged their use on other areas such as path planning
or path smoothing. Some interesting properties for this work are:

• Convex hull property i.e. curve lies within the area defined by the control points.
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• The derivative of a Bézier curve is, in fact, another Bézier curve. This means no deriva-
tive discontinuities.

• Tangent direction at the beginning and end of the curve is defined by
−−→
P0P1 and

−−−−→
Pn−1Pn,

respectively, where P0 and Pn are the start and end points of the curve, respectively.

Depending on the polynomial degree, it would be possible to define entire roads using
only a Bézier curve for each one. However, the higher the degree, higher the complexity of
the curve in terms of computation time and control points adjustment. Therefore, the com-
mon approach in computer graphics is to define complex paths by concatenating quadratic
and cubic curves, taking into consideration the continuity constraints.

Geometrically, the continuity at the junction of two curves is expressed in terms of Gk,
where k is the number of continuous derivatives at the junction. For example, G1 refers only
to the continuity of the tangent direction, while G2 includes the continuity of the curvature.

In view of all the above, the first task of this algorithm is to modify the map description,
replacing the straight segments between two consecutive nodes by cubic Bézier curves and
automatically adjusting the control points for fitting roads. This is done by following a two-
stages procedure: Node expansion and Bézier adjustment.

A detailed description of each stage is presented on the following subsections. More-
over, for a better comprehension of the algorithm and methods implemented, the next list
summarizes the main concepts and notations used along this section. Part of them are in-
herited from the OSM data structure for map storage and definition and other have been
created for this implementation:

Tags are key-value pairs used to describe specific features about the object they are attached.

Nodes define single points on the earth surface using WGS84 format. On this work, nodes’
data structure has been modified for including further information about neighbour
nodes, connecting segments and junctions/links traversing it. Along the next sections,
nodes are noted as Ni, where i is the node unique id defined by OSM.

Ways are polylines representing different map features as ordered list of nodes (N1, N2, ...,
Nn). The OSM ontology defines several types of features that can be encoded as ways,
but for this work only those marked with the key highway are considered.

Segments is one of the introduced concepts in this work. A segment refers to the road sec-
tion that joins two adjacent nodes Na and Nb. Each instance Sj includes inherited way
information about the road such as number of lanes, traffic direction and road width.
Along this section, segments are sometimes mentioned as Straight or Bézier segments,
referring to the straight definition used by OSM or the polynomial representation de-
fined in this section.

Links : are objects describing the junction among two segments Sa and Sb sharing a com-
mon node Nl . Links metadata includes joint features such as junction angle, angle
bisector, segments id, hardness and link continuity.
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FIGURE 4.5: Example of Segments with Bézier control points

4.4.1.1 Node expansion

On the first stage, the raw continuity between the segments traversing each node is deter-
mined. This concept refers to the hardness of joining two straight segments, isolated from
the rest of the map. Thus, in cases such as a highway where the road is almost-straight, the
segments joint smoothly with low changes on path angle and curvature. Nevertheless, in
urban environments the road is curvier so the junctions are sharper.

Having the OSM map for a given area, the goal of this stage is to analyse the adjacency
among the nodes in order to estimate the raw continuity of the road segments. To that end,
the area is first explored way by way, creating a segment instance Sj for each pair of nodes
Na and Nb connected over a way.

Since no data about the road geometry is stored on OSM database, segments are initial-
ized as straight Bézier curves, where the first and last control points (Pj

0 and Pj
3) correspond

to Na and Nb, while the second and third points (Pj
1 and Pj

2) are equally distributed between
both nodes (see figure 4.5).

Relevant information such as traffic direction, number of lanes and road width is trans-
ferred from ways into segments, thus facilitating future adaptation of road sections indi-
vidually. Moreover, the basic data structure defined by OSM for nodes is modified to store
the neighbours nodes, connecting segments and raw continuity among traversing segments.
In this way, the algorithm is able to analyse each node taking into account all the possible
connections.

Once ways have been processed and the information has been loaded into nodes, the
area is re-explored node by node in order to determine the continuity among road segments.
To that end, a link instance Lk is created for each pair of segments traversing a node. Thus,
for a node Ni with ni

v neighbours, the number of possible links is

ni
l =

(
ni

v
2

)
(4.1)
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FIGURE 4.6: Link hardness calculation

A hardness value hk describes the continuity at each junction, being hk = so f t for those links
possibly representing a smooth continuous road, while hk = hard for those that definitively
do not. This value is set according to the link shape, taking into account the length, width
and joining angle of the segments.

The selection of these features is the result of analysing the shape of several segment
junctions at continuous and discontinuous scenarios such as highways, urban roads, merg-
ings, intersections and roundabouts. From this review it was found that continuous roads
are usually described by short segments and small changes on road tangents, being the op-
posite for discontinuous roads.

Let’s consider a link Lk joining the segments Sa = N0N1 and Sb = N0N2 at the node N0

(see figure 4.6). First, the angle αk is extracted from the vector representation of the segments.
If the angle is acute, Lk has a sharp shape and therefore segments are discontinuous at the
junction, then hk = hard. On the other hand, if the angle is obtuse the value of hk depends
also on the length and width of the segments.

As a way to simplify the analysis of all the possible scenarios, the relation among length,
width and angle of the segments is expressed as two single points: triangle centroid Ck

and border intersection point Ik. On the one hand, the triangle centroid relies only on the
position of the links nodes and therefore, the segments length and angle, while on the other
hand, the intersection on the inner side of the angle relies only on the segments width and
angle.

Both the centroid and the intersection point are projected over the angle bisector m̂k,
resulting in two points whose distance to N0 is Ĉk and Îk, respectively. Finally, for the link to
be considered so f t the following condition must be satisfied:

Ĉk 6 κ cos(αk) Îk (4.2)

where κ is implemented as a adjustable threshold for link classification and segment mod-
ification. On this work, hardness is calculated using κ = 2, which was set experimentally
after analysing the results for different maps of urban and semi-urban environments.
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4.4.2 Bézier adjustment

The second stage adjusts the control points of Bézier segments according to the fittest junc-
tion involving them. To that end, node junctions are sorted from softer to harder following
several criteria, adjusting the segments in the same order. As final output, this stage pro-
duces a map where roads’ centrelines have been automatically modified and better describe
the real shape of the roads.

Once the nodes have been expanded and the raw continuity has been determined for
all the possible links, there is enough data for adjusting the shape of the segments so they
better fit the real roads. This is done by modifying the Bézier control points of the segments
according to the information provided by the soft links at each node. The reason only soft
links are considered on this step is because they represent the junctions were, according to
our criteria, the road can be continuous.

Node by node, the proposed algorithm iterates over the soft links, selecting a target link
Lt at a time for adjusting the segments associated to it. Since links only provide informa-
tion about the junction of the segments, these are modified by halves, adjusting only their
two control points closest to the junction. Moreover, segments are flagged once they have
been modified so no further changes can be introduced at that node, thus avoiding possible
overwrites among the links.

That said, the criteria for selecting the target link is key for the adjustment result. Given
that the continuity of the road is the main priority for this work, target links are selected
following the next rules, in order:

1. Both link segments have the same number of lanes and road width and none of them
is flagged as processed.

2. Segments does not have the same number of lanes but none of them has been pro-
cessed.

3. At least one of the segments remains unprocessed.

In case any of these criterion returns more than one link, those with no conflict on the
associated segments are processed first. For those sharing a segment Sj, the best option is
selected as the link whose angle αt is closest to the junction angle at the opposite side of Sj.
By doing so the changes in road tangent and curvature are minimized. If the segment Sj has
not yet been processed at the opposite side, the adjustment at the current node is paused
until angle information is available at the neighbour node.

The procedure for adjusting the control points depends of the rule triggered for the target
link at the node Ni. Given a target link Lt, joining segments Sa and Sb, let’s define Qj

0 and
Qj

1 as the two control points of Sj closest to Ni, so either

Qj
0 = Pj

0 , Qj
1 = Pj

1

or
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Qj
0 = Pj

3 , Qj
1 = Pj

2

and knowing Qj
0 = Ni for j = a, b due to segment initialization.

For the first rule to trigger, both segments must have the same road width and number
of lanes, so no modification is done over the end pointsQA

0 and QB
0 since the segments’

centrelines join at the same point. As for Qa
1 and Qb

1, they are set over the perpendicular
to αt bisector m̂t, at the same distance d1

t from Qa
0 and Qb

0, respectively. This is done so the
resulting path is continuous in G1. Parameter d1

t is calculated as

d1
t = min(|Sa|, |Sb|)/3 (4.3)

In case segments do not have the same number of lanes (second criterion), it is necessary
to adjust the narrower segment Sn so it joins the wider segment Sw on the correct lane. To
that end, Qn

0 is moved along m̂t a distance d0
t , which value depends on the target lane. The

target lane is extracted comparing the number of lanes of other nodes on the same node.
Once Qn

0 is set, Qa
1 and Qb

1 are adjusted by the same procedure previously described for rule
1.

Despite the displacement applied over Qn
0 , which means Qa

0 and Qb
0 are different points,

this rule also generates a junction with G1 continuity. This is because at lane level, the joining
point and road tangent are equal for both segments.

Finally, the third rule processes any remaining soft link if at least one of the segments
have not been adjusted. In this case, the algorithm calculates the adjustment of Qj

0 and Qj
1 as

already described for prior rules, but only modifies the segment that remains unprocessed.
As only one of the segments is modified, G1 cannot be satisfied for these kind of links.
However, by adjusting the tangent at the end point, a smoother junction is achieve.

As result for this stage, the straight centrelines defining the roads have been replaced by
adjusted Bézier curves that better approximate to the real paths. This improvement on the
map structure is well appreciated by comparing both map definitions at curvy roads, as the
roundabout shown in figure 4.7. In the illustrated scenario, the difference between segments
at middle points is around 40 cm, which is a considerable error when using the map for path
planning. For bigger roundabouts, differences up to 70 cm have been found.

4.4.3 Corridor generation

Finally, once the map is adjusted, the final task is to define the drivable space for the vehicle.
To that end, the third and final stage combines a route planner with the polynomial descrip-
tion of the roads, generating the navigable corridor as a concatenation of Bézier segments
along a planned route. Both left and right boundaries of the corridor are defined by Bézier
curves, generated as displacement of the segments centrelines.

The third and final stage of the proposed algorithm comprises the definition of the driv-
able space for a vehicle. To that end, the modified Bézier segments are concatenated along a
planned route, thus generating the boundaries of a navigable corridor.
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~40cm

0 10 20 m 
Straight segments Bézier segments

FIGURE 4.7: Comparison between straight and Bézier segments on a round-
about

Left and right borders of each segment are obtained by offsetting the Bézier centreline
according to its information about traffic direction, number of lanes and road width. As
is mentioned in [64], a Bézier curve offset cannot be described by another single Bézier
curve. However, it is possible to generate a good approximation by reducing the curve to a
collection of sub-curves and then offsetting them. This procedure generates a good enough
approximation of the displaced curve, while keeping the continuity constrains. The details
of this implementation exceeds the scope of this work, but the reader can refer to [64] for
more details about this method.

Having the borders for each segment, the navigation corridor is built taking into account
the continuity of the links joining the segments. For those having already G1 continuity at
lane level, the borders are concatenated as they are defined. On the other hand, for those
links classified as hard or without G1 continuity, a joining section must be added in order to
guarantee the G1 continuity of all the boundaries.

Joining sections are auxiliary Bézier segments built by the algorithm from the tangent
information of the segments to join. In this sense, the biggest one of the boundaries is gen-
erated and then the opposite side created as an offset of the first.

Let’s consider two discontinuous consecutive segments Sa and Sb, whose left and right
boundaries are Bl

a(t), Bl
b(t), Br

a(t) and Br
b(t), respectively. The first step is to find the bound-

aries intersection points at each side (I l and Ir) in terms of the parameter t, such that

I l = Bl
a(t

l
a) = Bl

b(t
l
b) and Ir = Br

a(t
r
a) = Dr

b(t
r
b) (4.4)

In case no intersection exists at the side s, then

ts
a = 1 and ts

b = 0 (4.5)

considering that parameter t increases in the direction of the route. Once the intersection
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points are found, the algorithm selects the side w where segment a is trimmest for setting
the reference t parameter for each segment. Otherwise the generated curve could not be
offset for creating the opposite border. This traduces in

ta = min(tl
a, tr

a) (4.6)

and

tb =

{
tl
b, for ta = tl

a

tr
b, for ta = tr

a
(4.7)

Moreover, in order to reduce the sharpness of the joining section at the smallest side and
avoid it collapses into a single point, both Sa and Sb are further trimmed in terms of ta and tb

a distance du from the intersection. This distance is calculated in accordance to the junction
angle γj such that

du = max(sin(γj), 0.3) (4.8)

This last trim is reflected on the values of tA and tB as ˆtA and t̂B, respectively. Finally, the
control points of the auxiliary Bézier Bu are

Pw
0 = Bw

a (t̂a)

Pw
1 = p0 + du Ḃa(t̂a)

Pw
2 = p3 − du Ḃb(t̂b)

Pw
3 = Bw

b (t̂b)

(4.9)

and the opposite border is generated as an offset curve from this one.

4.4.4 Validation and results of the road corridor generation algorithm

The proposed algorithm for map modification and corridor generation has been imple-
mented and applied to the surrounding area of the Centre for Automation and Robotics
facilities in Arganda del Rey (Madrid, Spain). The chosen area includes both urban and
interurban roads, with numerous intersections, roundabouts and merging roads. The ob-
tained results are presented in two related subsections: (i) Comparison of map representa-
tions and (ii) Navigation corridor generation.

4.4.4.1 Map representation

In order to demonstrate the feasibility of the proposed Bézier-based map, a comparison to
the original map is presented in an scenario that included a entrance and exit of a round-
about. Figure 4.8 shows the superposition of both straight and Bézier map representations
over an aerial image of the real roads.

As can be seen on this figure, the proposed road representation based on Bézier curves
results in a map that is visually more accurate when compared to the aerial image. This is
clearly appreciated on the joint of one-lane road segments with two-lanes ones, in contrast to
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FIGURE 4.8: Comparison between straight and Bézier maps in roundabout
entrance & exit

the original OSM, a smooth and continuous road boundaries shape is achieved. Moreover,
as was previously commented in section 4.4.2, the proposed map reduces the representation
error on for curvy roads, where differences up to 70 cm have been found in the explored
area.

In addition to Bézier curves, the endpoint adjustment made on narrow segments is also
key for map improvement. Thanks to this modification, narrow segments join wider ones on
the right point, thus reducing the lane discontinuities and overlaps found with the original
map.

4.4.4.2 Navigation corridor

Once the map of the area has been successfully adjusted and in order to validate the final
stage of the algorithm, several planned routes near CAR’s facilities have been introduced as
input for corridor generation.

Figure 4.9 shows the details about the resulting corridor for the first route, which tra-
verses two interurban roundabouts. As can be seen, the resulting corridor corresponds to
the aerial view of the road almost perfectly, being the differences mainly caused by the im-
age distortion and shift of the aerial pictures.

It can be appreciated that the joining sections are successfully generated in all cases,
maintaining the continuity of the corridor and its tangent. Indeed, figure 4.10, shows the
evolution of corridor tangent along all the planned route, which is continuous, so the G1

continuity is guaranteed along the corridor.
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FIGURE 4.9: Navigation corridor and top view image correspondence

FIGURE 4.10: Evolution of the corridor tangent along the planned route

4.5 Vision-based road corridor adaptation

This section introduces an algorithm for road corridor adaptation based on image process-
ing. As mentioned in section 4.4, OSM is built from information provided by the community.
Therefore, although generally OSM presents accurate data, it cannot be guaranteed every-
where. Hence, the main motivation for the development of the proposed algorithm is to
increase the reliability of the generated corridors in two main types of cases: (i) where the
information from OSM is not accurate enough and also (ii) where the low density of OSM
information does not allow the road profile to be known accurately at tight turns or inter-
sections.

The proposed approach comprises several stages as depicted in the flow diagram of fig-
ure 4.11. The different stages can be grouped in three two main stages: (i) image processing
and (ii) mapping & validity checking. The algorithm is designed to run every time the
camera captures a new image (assuming a camera acquisition frequency of 20 Hz). Once
the image is captured, the detection of road lines will be carried out in order to define the
available navigable space. Then, a mapping of the environment is carried out. Finally, the
results obtained are compared with the road corridor generated as described in section 4.4
and the road corridor is adapted with the detected lane marks. Thus, the accuracy of the
road corridor can be increased.

The following subsections provide a detailed description each algorithm stage.
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FIGURE 4.11: Flow diagram of the vision-based road corridor adaptation

4.5.1 Image processing for lane detection

In order to reduce the computational cost of the algorithm, the image processing is carried
out on the grayscale image, thus dividing by three the processing time of a color-based
approach. The following subsections describe each step of the image processing.

4.5.1.1 Inverse perspective mapping

After capturing an image, inverse perspective mapping (IPM) [90] is applied. Thus, the
effect of perspective is removed, which is a great advantage when measuring distances in
the image. In addition, the computation time is greatly reduced because the IPM focuses
on the interest region of the image, excluding areas such as the hood of the car and the sky,
where there is no relevant information.

An example of IPM is shown in figure 4.12: figure 4.12a shows the original image in
greyscale and figure 4.12b shows its IPM.

In the IPM process it is assumed that the road is flat. This assumption greatly simplifies
the process.

4.5.1.2 Image binarization

Once the IPM is ready, the goal is to detect the road lines from it. To that end, a binarization
process is applied in order to remove non-relevant information from the image. This process
will facilitate a further detection of the lines using through the Hough transform.

In order to increase the robustness of the line detection, the binarization is based of two
thresholds that are applied to different parts of the image:

Permissive threshold (thpr) : This threshold is applied to the surroundings of the expected
positioning of the lines in the new frame.
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(A) Acquired image in greyscale (B) Inverse Perspective Mapping

FIGURE 4.12: Inverse Perspective Mapping application

Strict threshold (thst) : This stricter threshold is applied to the rest of the image.

Both thresholds are obtained from the mean of the intensity of the greyscale image (pi) to
define the final applied values as expressed in equations (4.10) and (4.11).

thpr = wpr · pi (4.10)

thst = wst · pi (4.11)

In this manner it is possible to reduce the noise that may exist caused by unexpected situa-
tions such as dazzles, very clear zones in the asphalt, occlusions of the lines by other vehicles
or any unforeseen object that may exist in the road.

(A) Acquired image in greyscale (B) Inverse Perspective Mapping (C) Binarization

FIGURE 4.13: Hough transform example

Figure 4.13 shows an example of image binarization using the proposed method with
wpr = 0.5 and wst = 0.7.

In some cases such as the initial frame or the first frame after finding new lines on the
road, there is no previous image to estimate where the lines may be positioned to apply the
permissive and strict thresholds. In these cases an overall threshold is applied for the whole
image.
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4.5.1.3 Road lines detection

The probabilistic Hough transform [69] is applied to the results obtained in the binarization.
Through this procedure it is possible to detect particular features in an image, especially
lines. Moreover, it is a very robust method to work in environments with possible noise or
partial information occlusions.

The Hough transform returns the start and end points of each detected line. Hence, this
makes possible to locate the candidate lines to be considered as road lines. In the case of
roads, although the radius of curvature of the lines is relatively large, the road lines can
not be always approximated with a single line. To solve that, the parameters of the Hough
function are set so that the retrieved line segments are short lines. The curve approximation
turns out to be better than considering long line segments, since the smaller the length of
the Hough lines, the greater the road line approximation. On the other hand, the smaller
the length of the lines, the greater the noise in the result. Therefore, a tradeoff has to be
considered when choosing the Hough parameters.

Figure 4.14c shows the result of the Hough transform applied to image on figure 4.14b,
which is the IPM of 4.14a.

(A) Acquired image in greyscale (B) Inverse Perspective Mapping (C) Hough transform

FIGURE 4.14: IPM binarization example

The goal of this step is to obtain a set of points for each road corridor boundary (left and
right) such that a cubic Bézier curve can be fitted. Consequently, the start and end points of
the Hough lines must be grouped.

To find out if two straight lines belong to the same segment, each straight line of the
Hough output has a different identifier and checked one by one if they belong to the same
line of the road. To do this, a rectangle is created whose diagonal is each Hough line with
a small margin. Then, it is checked if any of the ends of the rest of the lines falls within
that rectangle. If so, it is assumed that both lines belong to the same segment, so they are
assigned with the same identifier.

Once the points are assigned to the left or right boundary group, a cubic Bézier curve is
approximated to the data by using the least-squares fitting method.
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FIGURE 4.15: Vehicle and camera coordinate systems

4.5.1.4 Coordinates transformation

So far, the different processing stages have been using the coordinate system of the image.
In order to compare the results with the previous road corridor generated from OSM, the
resulting road line detection must be transformed to the same reference system. Since the
road corridor uses the global UTM coordinate system, the generated road lines from the
image are transformed to this reference system.

The first coordinate change is performed from the reference system of the IPM image
Oi to the system Ou whose coordinate centre is placed a given distance ahead the vehicle
(du = 5.4 m) with a calibration angle (θc = 0.0908 rad) as can be seen in figure 4.15. The
coordinates in Oi are expressed in pixels while in Ou, O′u and OG (the global UTM coordinate
system) are expressed in meters. Therefore, it is needed to know the amount of pixels per
meter. The value determined from the camera calibration is: rpm = 32.67 pixels/meter.

Since the IPM image has a resolution of 480x360 pixels, the conversion from Oi to Ou is
carried out as follows:

Xu = Yi−480/2
rpm

Yu = 360−Xi
rpm

(4.12)

In the transformation from Ou to O′u, only Y′u changes:

X′u = Xu (4.13)

Y′u = Yu + du (4.14)

Then, a transformation from the coordinate system O′u to OG is needed. A rotation to
consider the camera calibration angle is performed using the following rotation matrix:
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R(θc) =

(
cos(θc) − sin(θc)

sin(θc) cos(θc)

)
(4.15)

After that, the position and orientation of the vehicle (Xp,Yp,θp) are used. The rotation
angle is given by

α = π/2− θp (4.16)

Thus, the final conversion can be carried out by using the rotation matrix defined as
follows:

R(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(4.17)

(
XG

YG

)
=

(
Xp + dpc cos(θp)

Yp + dpc sin(θp)

)
+ R(α)

(
Xu

Yu

)
(4.18)

where dpc = 2.25 m is the distance between the centre of the rear axle (reference point of the
vehicle positioning) and the camera.

4.5.2 Mapping and validity checking

As depicted in figure 4.11, once the road lines have been computed from the image, the
mapping and validity checking task starts. Within this process, a comparison is performed
between the navigable space delimited by the lines detected by the camera and the road
corridor previously generated, as described in section 4.4. To that end, firstly the final left
an right lines obtained from the image are computed. After that, it is needed to find out
if the result from the image processing is valid. Thus, if it is valid, the drift between the
previously computed road corridor and the vision-based adaptation is used to adapt the
initial road corridor.

4.5.2.1 Vision-based map generation

The developed algorithm only runs the mapping of a new section of the road each time
a new control point enters the field of view of the camera. This is to ensure that the new
computed Bézier is of the right dimensions to compare and replace it with the Bézier that
belongs to the original road corridor.

Once the algorithm detects that one of the new Bézier sections of the original road corri-
dor is located in the area covered by the IPM, the line detection is triggered. After that, the
new lines detection is combined with the next section of the original road corridor to obtain
a navigable space from areas that escape the effective field of view of the camera.

Finally, as both sections do not usually match, a new curve is generated in order to join
the vision-based map and the original road corridor. This curve section is added in order to
smooth the transition between the image field of view and the next part of the road corridor
that still has not been reached by the camera.
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Figure 4.16 shows a schematic example of the method used to determine the new joint
section. In this figure, the road section that has already been adapted through the image is
shown in red. The green zone is the map obtained from the original road corridor.
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FIGURE 4.16: Joint section generation between the adapted and the original
road corridors

Note that the normalized tangent vectors at the last control point of the adapted curve
(Pa

3 ) and at the first control point of the next original section (Po
0 ) and the distance between

them are used to place the intermediate points of the joint section (Pj
1 and Pj

2) as described by
equations (4.19)- (4.22). This method allows to guarantee the G1 continuity at the extremes
of the joint section since Pa

2 , Pa
3 ≡ Pj

0 and Pj
1 are aligned, as are Pj

2, Pj
3 ≡ Po

0 and Po
1 .

Pj
0 = Pa

3 (4.19)

Pj
1 = Pa

3 +
1
3

Lj~ta
3 (4.20)

Pj
2 = Po

0 −
1
3

Lj~to
0 (4.21)

Pj
3 = Po

0 (4.22)

where~ta
3 and~to

0 are the normalized tangent vectors at Pa
3 and Po

0 , respectively, and Lj is the
euclidean distance between Pa

3 and Po
0 .

In figure 4.17, the joint sections computed in three different real situations are shown.
Note that the transitions generated by the joint section between the adapted and the original
road corridors are smooth in all cases.

(A) Example 1 (B) Example 2 (C) Example 3

FIGURE 4.17: Three examples of the vision-based road corridor adaptation
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A result of the raw and adapted corridors is shown in figure 4.18 together with the cor-
responding aerial image. This figure shows a case of low accuracy on OSM data in a curved
road section. As can be seen, the vision-based adapted corridor match with the road lane
boundaries.
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FIGURE 4.18: Results of the vision-based adaptation

4.5.2.2 Reliability analysis of the generated map and corridor adjustments

The variability of scenarios is so great that in some cases fake lines can be detected on the
road. In order to estimate whether the approximated road lines are valid or not, the afore-
mentioned strategy has been devised to recognise major flaws in the determination of the
available navigable space. If the system detects some anomalous situation such as a sudden
change in the lanes width, it will assume that something is not working well and the system
will report an alert. Consequently the road corridor shall not be rectified in these cases.

In order to quantify the variation of the lane width, it is assumed that the lines to be
detected over the road are parallel i.e. the width of the lane is constant. Therefore, the
width of a set of points of the current detected lane is evaluated using the perpendicular
distance from one Bézier curve to the other. After that, the mean of the widths is used
to calculate the standard deviation of the last nσw width mean values in order to provide
temporal consistency of the indicator (σw). Finally, a threshold (thσw) is used to determine
whether the result of the vision-based lines detection is valid or not.

So as to choose the values of both nσw and thσw a number of tests were carried out con-
cluding that nσw = 20 and thσw = 0.3 were reasonable values to detect the algorithm faults.

Figures 4.19a and 4.19b shows the projection of the vision-based road corridor detection
on the original acquired image. On the one hand, figure 4.19a shows a typical road where
the detection algorithm seamlessly finds the road corridor in the image. Hence, the detected
road corridor is shaded green as σw < thσw. On the other hand, figure 4.19b shows an
algorithm fault where the left line of the lane is not correctly detected. Nevertheless, this
fault makes σw to be increased over the threshold value (σw > thσw). Consequently, the
fault is detected and the road corridor is shaded red.
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(A) The road corridor is shaded green as the detection is considered valid
(σw < thσw)

(B) The road corridor is shaded red as the detection is considered invalid
(σw > thσw)

FIGURE 4.19: Result of the projection of the vision-based road corridors over
the original images
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4.6 Considering localization uncertainty when using road corri-
dors

Localization plays an important role in autonomous driving. In particular, when maps are
used as a part of the environment understanding, a good localization with respect to the
map becomes more critical. In some cases, the accuracy of localization systems can be low
by design or even can drop depending on the environment (e.g. GPS-based localization
systems when there are reflections in urban canyons or satellites occlusions, or in cloudy
scenarios). In these situations, the localization uncertainty can be taken into consideration
to increase the system reliability.

To consider the localization uncertainty, a similar approach to the one defined in [153]
is used. This method requires the environment data to be represented in an occupancy
grid, which provides a way to represent probabilistic information generated from different
sensors measurements taking into account their noise and uncertainty. Then vehicle pose
uncertainty is propagated along the occupancy grid, obtaining the occupancy probability of
each cell of the grid.

The first step is to represent the map over the grid. In our case, the information of the
map is composed of a set of Bézier curves that define the left and right boundaries of the
navigable space. In order to set the occupancy of each Bézier segment over the grid, an
extension of the Bresenham algorithm for cubic Béziers [158] is applied. After that, the free
space existing inside the road corridor is filled with null occupancy probability while the
rest of the grid if set as occupied (see figure 4.20).

xGOG

yG

xv

Ov

yv

FIGURE 4.20: Road corridor rasterization over the grid
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Finally, the uncertainty of the vehicle pose is computed for all the initially free cells using
the general approach defined in [153]. Let Cxi and Cyi denote the coordinates of the cell i of
the grid in the frame Ov, and VxOG , VyOG and VθOG denote the vehicle position and heading
in the frame OG. Then, it is transformed into the frame OG as follows:

R(VθOG) =

(
cos(VθOG) − sin(VθOG)

sin(VθOG) cos(VθOG)

)
(4.23)

(
xOG

yOG

)
= RvG

(
Cxi

Cyi

)
+

(
VxOG

VyOG

)
(4.24)

where RvG, in equation (4.23), is the rotation matrix from the vehicle frame (Ov) to the
global frame (OG). Note that the uncertainty of the position of each cell in the global frame
(xOG , yOG ) comes from the uncertainty in the vehicle pose in the global frame (VxOG , VyOG )
as the position of the cells in the vehicle frame (Cxi, Cyi) is known.

The covariance matrix (gi) in each cell (i) can be calculated from the estimated pose un-
certainty as follows:

gi(xi, yi) =

(
δTf

δVOG

)
QV

(
δTf

δVOG

)T

(4.25)

where Tf (VxOG , VyOG , VθOG) denotes the transformation in equation (4.24), QV represents
the covariance matrix of the current pose VOG(VxOG , VyOG , VθOG) in the global frame and(

δTf
δVOG

)
is the Jacobian as expressed in equation (4.26).

(
δTf

δVOG

)
=


δTf

δVxOG
δTf

δVyOG
δTf

δVθOG


T

(4.26)

Thus, the resulting covariance matrix is shown in equation (4.27).

gi(xi, yi) =

(
σ2

xi ρiσxiσyi

ρiσxiσyi σ2
yi

)
=

(
σ2

x + σ2
θ u(VθOG) σ2

θ t(VθOG)

σ2
θ t(VθOG) σ2

y + σ2
θ v(VθOG)

)
(4.27)

where:

u(VθOG) = (− sin(VθOG) Cxi − cos(VθOG) Cyi)
2

v(VθOG) = (cos(VθOG) Cxi − sin(VθOG) Cyi)
2

t(VθOG) = sin(VθOG) cos(VθOG)(Cx2
i − Cy2

i ) + CxiCyi(sin(VθOG)
2 − cos(VθOG)

2)

σx, σy and σθ are the given pose uncertainties of the vehicle, and ρi =
σ2

θ t(VθOG )

σxi σyi
.

Once the covariance matrix gi is known, a bivariate Gaussian distribution (see equa-
tion (4.28)) is applied to compute the probability distribution for each cell.
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fi(xj, yj) =

exp
{
− 1

2(1−ρ2
i )

[(
Cxj−Cxi

σxi

)2
− 2ρi

(
Cxj−Cxi

σxi

) (
Cyj−Cyi

σyi

)
+
(

Cyj−Cyi
σyi

)2
]}

2πσxiσyi

√
1− ρ2

i

(4.28)

To compute final occupancy probability of each cell, a 95% confidence ellipse (χ2 = 5.991)
is defined from the computed covariances. Then, the final occupancy probability of each cell
is calculated from the expected occupancy values and probability of the cells that fall within
the ellipse, as expressed in equation (4.29).

P(xi, yi) =
∑j∈Ii

fi(xj, yj) · Fj

∑j∈Ii
fi(xj, yj)

(4.29)

where Ii is the set of cells that falls within the ellipse generated for cell i, j is the index of
the cells inside Ii, S is the size of set Ii, fi(xj, yj) is the probability in cell j obtained by the
Gaussian distribution (see equation (4.28)) generated for the cell i, and Fj ∈ {0, 1} is the
initial occupancy value of the cell j.

An schematic example of the result is shown in figure 4.21, where cell colours vary from
white (free cells) to black (occupied cells) passing through grey tones representing different
probability values. Besides, a summary of the localization propagation algorithm over the
road corridor is shown in algorithm 1.

Input: Pose uncertainty (σx, σy, σθ), Road corridor
Output: Occupancy probability in each cell
grid← Left and right boundaries of the road corridor ;
grid(cells inside road corridor)← 0 (empty) ;
grid(cells outside road corridor)← 1 (occupied) ;
foreach i← 1 to n do

compute covariance matrix (equation (4.25))
compute bivariate Gaussian distribution (equation (4.28))
grid(i)← ∑ Expected values

∑ Probabilities (equation (4.29));
end
return grid;

Algorithm 1: Localization uncertainty propagation over an occupancy grid

The uncertainty propagation over the grid results in the narrowing of the road corridor,
being this effect particularly pronounced when the heading uncertainty is high. The occu-
pancy probability of a priori free cells becomes higher when the xv coordinate is increased
as can be seen in 4.21.

Figure 4.22 shows the results of uncertainty propagation using different values of σx, σy

and σθ . In all cases the grid size is 20× 30 meters with a grid resolution of 20 cm.
Figure 4.22a shows the road corridor rasterization over the grid, assuming negligible

localization uncertainties. Comparing figures 4.22b and 4.22c it can be observed the effect of
localization uncertainty propagation when the different between σx and σy is high. As can
be seen, if the longitudinal uncertainty is high and it is low in the lateral axis, the known
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FIGURE 4.21: Localization uncertainty propagation over the grid

free space inside the road corridor is narrowed. In the opposite case (figure 4.22c), most of
the cells at both sides of the vehicle are ensured to be unoccupied.

As can be observed in figure 4.22d, where σx = σy = 0.5 m and σθ = 0 rad, the most
of the cells occupied by road corridor are completely free even with high uncertainties in
X and Y axis. Furthermore, the case represented in figure 4.22e adds a small orientation
uncertainty with respect to the previous one. This leads to the narrowing of the road corridor
in the farthest cells from the vehicle. Thus, these examples depict the high influence of the
orientation uncertainty in comparison with X and Y ones.

Finally, a case with high longitudinal, lateral and angular uncertainties is shown in fig-
ure 4.22f, where only the cells closest to the vehicle are guaranteed to be unoccupied.
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(B) σx = 1 m, σy = 0.05 m
and σθ = 0.05 rad
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(C) σx = 0.05 m, σy = 1 m
and σθ = 0.05 rad
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(D) σx = 0.5 m, σy = 0.5 m
and σθ = 0 rad
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(E) σx = 0.5 m, σy = 0.5 m
and σθ = 0.07 rad
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(F) σx = 0.5 m, σy = 0.5 m
and σθ = 0.3 rad

FIGURE 4.22: Examples of localization uncertainty propagation over a 20m×
30m occupancy grid
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Chapter 5

MOTION PREDICTION AND
MANOEUVRE PLANNING

5.1 Introduction

Among all traffic accidents with personal injuries in urban environments, more than the
50% occur at intersections [117]. These accidents are typically caused by the impossibil-
ity to understand the nearby environment, predict future states, and act consequently by
human drivers in critical situations where the behaviour of traffic scene agents is highly un-
predictable and the time to act is very low. In this sense, the anticipation to future driving
scenes plays a key role in automated driving.

Because of the high variety of possible manoeuvres that a driver can perform in common
urban situations, a comprehensive understanding of the current state of the nearby environ-
ment is not enough to take an optimal decision. Information about the future state of the
environment is also needed to be provided to the decision system in order to quantify the
risk of possible ego-vehicle manoeuvres and then act consequently. Due to the complexity
of the motion prediction problem, currently there are no ADAS in production that can issue
early warnings of collisions at urban intersections.

Bearing this in mind, the estimation of future movements of relevant objects in the
nearby environment of the ego-vehicle is addressed by the proposed architecture using the
motion prediction module. To that end, this module receives as input the perceived objects,
the road corridor and additional information from maps about traffic rules; and outputs
the predicted trajectory of the most hazardous dynamic objects. This module includes two
different functionalities as depicted in figure 5.1: firstly, (i) a risk estimation algorithm[146]
uses information of traffic rules from maps and the state of the perceived objects (position,
orientation, speed, etc.) to select the most hazardous objects perceived by the vehicle in
highly complex situations i.e. when there are many agents involved in the driving scene.
Finally, (ii) the future trajectory of the selected moving objects is predicted and passed to the
manoeuvre planner module to be analysed and generate an output action if needed.

The chapter is structured as follows. Firstly, section 5.2 states some assumptions con-
sidered in the contributions of this chapter. The subsequent section focuses on three related
aspects of the decision-making architecture. On the one hand, the work on risk estimation
is presented in section 5.3. This section introduces an interaction-aware approach for risk
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FIGURE 5.1: Functional diagram of the motion prediction module

estimation considering both longitudinal and lateral manoeuvres. Preliminary results of
the risk estimation algorithm are presented for different scenarios. On the other hand, sec-
tion 5.4 focuses on the simplified motion prediction included in the implemented architec-
ture. Finally, section 5.5 introduces the manoeuvre planner component of the architecture,
which is in charge of deciding future manoeuvres of the ego-vehicle.

5.2 Assumptions

Some assumptions are made in both methods introduced in this chapter: risk estimation
algorithm and manoeuvre planner:

Maps and road corridors As in chapter 4, the accuracy of the maps is assumed to be good
enough to be used for the road corridor, that is used by the manoeuvre planner to
detect static objects that could interfere with the ego-vehicle trajectory. Thus, it is con-
sidered a maximum deviation of 1 meter of the map data with respect to the real ways.

Perception The manoeuvre planning algorithm proposed in this chapter uses the informa-
tion provided by the perception systems to estimate the state of nearby obstacles. The
inaccuracy of this information is assumed to be low enough.

Localization The uncertainty in global localization is assumed to be negligible so that it is
not considered, assuming a maximum localization error of 5 cm and 1? of heading
error. Thus, the ego-localization with respect to the maps which are placed in the
global coordinates frame is assumed to be good enough.

Computational resources The risk estimation algorithms are intended to provide a risk in-
dicator in real-time decision systems. The algorithm described in this chapter needs
high computation resources to provide a result in a reasonable time. For this first im-
plementation it is assumed the availability of resources to provide the risk estimation
in the expected time limit, so that the run-time of the algorithms is not considered.
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Motion prediction simplification The manoeuvre planner implemented in the architecture
tested in the real vehicle needs to predict the movements of the detected dynamic
objects. In this first implementation it is included a simplified motion prediction al-
gorithm that provides a good enough trajectory prediction for the motion planner tp
act consequently in case of possible collisions, without needing large computational
resources.

5.3 Risk estimation in urban environments

Motion prediction plays a key role in autonomous vehicles. In fact, in typical urban driving
scenes such as intersections, a large number of traffic agents can present a collision risk for
the ego-vehicle. Indeed, it is extremely difficult to predict individually and accurately the
trajectories of each agent in scenes with a large number of them, in which their behaviours
have clear interactions. Besides, the limited computational resources in the vehicle could
not be enough to compute complex prediction algorithms in a short time frame, the use of
an interaction-aware risk estimation algorithm becomes of great interest.

As illustrated in section 2.3, different approaches coexist in the literature to estimate the
collision risk with other traffic agents. In this sense, this section presents a study conducted
to explore the potential of intention estimation techniques based on interaction. It is based
on the approach proposed in [78], in which the behaviour of vehicles at an intersection was
modelled by a Dynamic Bayesian Network (DBN), and the problem of risk estimation was
solved by applying a particle filter to this network. In this study, the applicability of this type
of methods have been validated in situations of certain complexity, which involve more than
two vehicles in scenarios such as roundabouts and intersections with several lanes. These
methods imply the execution of algorithms with a high computational cost, but which can
be very useful to predict the intention of other relevant participants in the vicinity of the
vehicle.

5.3.1 Dynamic Bayesian Network model

The Dynamic Bayesian Network model used in this approach is presented in figure 5.2,
where bold arrows represent multi-vehicle dependencies, i.e. the influences of the other
vehicles on vehicle n. The state variables used in the model are defined in detail in the
following subsection.

5.3.1.1 Definition of state variables

As depicted in 5.2, four state variable types are used: (i) Expected manoeuvre (En
t ), (ii) In-

tended manoeuvre (In
t ), (iii) Physical State (Φn

t ) and (iv) Measurements (Zn
t ), where the ex-

pected and intentional manoeuvres are unknown and intangible variables, unlike the phys-
ical state.
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FIGURE 5.2: Structure of the Dynamic Bayesian Network

Bear in mind that the network represented in the figure 5.2 is instantiated for each of
the vehicles. Moreover, since in a real driving scenarios the behaviour of each vehicle is
conditioned by the behaviour of the rest vehicles, these networks are interrelated.

According to the general model of figure 5.2, the following generalized distribution is
extracted:

P (E0:T, I0:T, Φ0:T, Z0:T) = P (E0, I0, Φ0, Z0)×
T

∏
t=1
×

N

∏
n=1

[P(En
t |It−1Φt−1)× P(In

t |Φn
t−1 In

t−1En
1 )×

P(Φn
t |Φn

t−1 In
t−1 In

t )× P(Zn
t |Φn

t )] (5.1)

The used variables are described below.

5.3.1.1.1 Expected manoeuvre The expected manoeuvre En
t represents the expected be-

haviour of vehicle n at instant t according to traffic rules. This variable depends both on
the vehicle itself and on other involved vehicles, and is divided into two types: longitudinal
(Esn

t ) and lateral (Ecn
t ). On the one hand, the Esn

t longitudinal expectation is used to model
the probability that the vehicle should stop at an intersection. It has two possible states, GO
and STOP:

• Esn
t = GO: The vehicle does not have the duty to stop. This fact can be due to an

intersection that n has priority of passage, the rest of vehicles have a stop sign or
yield the passage, there is no vehicle with higher priority of passage approaching the
intersection, and so on.

• Esn
t = STOP: The driver is expected to stop before reaching the intersection, as another

vehicle approaches with higher priority or there is a stop sign.
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On the other hand, the lateral expectation (Ecn
t ) models the probability that the vehi-

cle can make a lane change without hindering traffic. It has three possibilities that can be
grouped into two possible states:

• Ecn
t = STAY: The vehicle should not make a lane change because traffic conditions

do not allow it. This may be due to the rest of the lanes being congested, there is not
enough space (gap) between adjacent vehicles, the current lane is the most suitable for
the speed that the vehicle is carrying, etc..

• Ecn
t = CHANGE: The vehicle can make a lane change without hindering traffic or

causing an accident. In this case there are two possible sub-states, which would be the
possibility to change to the right or left.

5.3.1.1.2 Intended manoeuvre The intentional manoeuvre (In
t ) has a certain similarity to

the expected manoeuvre since it models the same behaviour from the perspective of the
driver himself. However, this variable models the intention of the driver instead of its ex-
pectation. As in the case of expected manoeuvre, it is divided into longitudinal and lateral.
Therefore, the longitudinal intention (Isn

t ) is modelled by the probability that the driver is
determined whether or not to make a stop at the next intersection. Its possible states are:

• Isn
t = GO: The driver intends to continue his journey without stopping.

• Isn
t = STOP: The vehicle will stop at the intersection.

The lateral intention (Icn
t ) is the intention of the driver to change lanes or not during

the next few instants. It also indicates the route the vehicle intends to follow. The lateral
intention thus comprises an additional variable representing the route.

Therefore, the variables involved are the following:

• Cn
t ∈ ci, i = 1 · · ·Nc: Indicates the route followed by the vehicle n at instant t, and is

included among the possible Nc routes.

• Icn
t = CHANGE: The driver intends to change lanes.

• Icn
t = STAY: The vehicle will remain in the current lane.

5.3.1.1.3 Physical vehicle state The physical state of the vehicle n at instant t is struc-
tured in two parts: position and speed. These variables are calculated at each instant from
intention. For example, if the intention in a given instant is to continue without stopping,
the position in the next instant will be calculated assuming a constant speed in a straight
line path.

The physical state is therefore composed of:

• Pn
t : Pose of the vehicle including position and yaw angle (Xn

t , Yn
t , θn

t ).

• Sn
t : Linear speed of the vehicle.
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5.3.1.1.4 Measurements This variable includes real measurements of the physical state of
the vehicle, taken from global positioning systems, IMUs, cameras, radars or a combination
of them. Unlike the previous variables, the measurements are not estimated by the proba-
bilistic model, but are extracted from the sensors directly and compared with the variables
of the estimated physical state. Thus, if the measurements and physical state coincide to a
lesser or greater degree, a lesser or greater probability can be assumed that the estimates of
expectation and intention are valid.

Measurements are composed of position and velocity:

• Pmn
t : Real pose of the vehicle including position and yaw angle (Xn

t , Yn
t , θn

t ).

• Smn
t : Real linear speed of the vehicle.

5.3.2 Particle filter

Particle filters provide a model for processes with unknown distribution functions, as op-
posed to some probabilistic methods that involve Gaussian distributions or model a priori
distribution. An example of this is the Kalman filter, which optimally solves linear problems
with distributions that can be approximated by a Gaussian.

For the detection of risk situations, the manoeuvre expected to be executed by the driver
is compared with his intentions in a given context (e.g. intersections, roundabouts, etc). Each
of the possible states of the system will be contained in what it is called particle, which will
have an associated weight dependent on its proximity to reality, and which is represented
as follows.

Each of the N particles will give a random value to the hidden variables, which are vari-
ables that are difficult to infer directly from externally observable variables. In our case, the
hidden variables are the intention and expectation of each vehicle. From them, a prediction
of the observable variables will be carried out. Once this is done for all the particles, the
next step is to give a weight to each particle. This step is called updating. In this stage it
is compared the extent to which the particle has succeeded in its prediction with respect to
the real variable. The weight given to each particle will be greater or lesser if its prediction
is more or less accurate, respectively. Thus, it is a measure of the acceptance of the hidden
variables that are estimated by that particle. Particles whose prediction is reliable will have
a high weight in the final prediction of the hidden variables.

Once the first measurements (Z0) have been made, the filter work-flow starts following
the sequence below:

Initialization Each particle is given a random value of both expectation and intention, and
the new position is calculated from them. In order to do this, two calculation stages
can be performed separately. On the one hand, the calculation of the expectation and
intention to stop when the vehicle is approaching an intersection. On the other hand,
the respective variables for the realization of a lane change.

Prediction & updating For each value of the vehicle pose (Pmn
t ) and speed (Smn

t ), a nor-
mal distribution is assumed with an mean of the actual value of the position and a
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variance derived from the sensor used. Since real sensors are not used, the devia-
tions have been chosen with feasible estimated values. A normal probability density
function is then used to calculate the probability that an individual belongs to a given
distribution. Thus, the values that come closer to the actual measurement will get a
lower probability. From these probabilities the weights of the particles are updated,
which will be similarly higher if the prediction resembles the measured values. This
update is done by multiplying the weight of each particle at the previous instant by
these probabilities. In the first simulation instant, all weights are assumed to be equal:
wi = 1/N, where wi is the weight of particle i. Once the weights of all the particles
have been calculated, their sum is normalised to 1.

Re-sampling The problem with the updating method used is that the weights can end up
being very disparate as they evolve over the initial weight. This disparity leads to the
collapse of the method, causing that particles with very small weights will become
unusable in later instants. This effect is mitigated by adding a re-sampling step as
proposed in [11], which is only executed when the inverse of the sum of the squared
weights is below a stated value. In this way the re-sampling is carried out if there are
too big weights. The aim is to choose the heaviest particles and use them to replace
the others. At the end, within this group, the particles with the highest weights will be
repeated more times, and those with the lowest weights will appear less often. Once
this step is completed, each particle will evolve again on its own.

Result To compute the resulting intention and expectation, the weights of all the particles
whose intention/expectation values are CHANGE (in case of lateral estimation) or
GO (in case of longitudinal estimation) are added.

These steps end with the final prediction of the hidden variables for each of the vehicles.
However, the collision risk of each vehicle is still to be calculated. This risk is obtained in
the last step i.e. by adding the weights of the particles whose expectation and intention
differ. This occurs, for example, if the intention is to go straight at an intersection and the
expectation is to stop, since this implies that, under current traffic conditions and rules,
the vehicle should stop and yet intends to continue to cause an accident. The result of
this calculation is the indicator of collision risk. For intersection cases, it is considered that
this value should not be greater than 0.3 [76], in which case, the situation is considered as
dangerous.

5.3.3 Results

In order to generate different driving scenarios, both from a geometrical point of view and
from the dynamics of the agents involved in them, the SUMO open source simulator [88,
125] has been used. This simulator allows to interact with the simulation in runtime from
external programs through an API called TraCI ("Traffic Control Interface"). Moreover, this
simulator was used to extract typical speed profiles at each lane in which vehicles drive in
all the tested scenarios.
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To cover a significant range of cases where to assess the performance of the risk calcu-
lation, different scenarios were simulated. On the one hand, the algorithm for longitudinal
risk estimation has been tested in two different scenarios: simple intersection and multi-lane
intersection. On the other hand, the lateral expectation have been tested in a highway and
in a multi-lane roundabout.

The procedure to validate the risk estimation algorithm is described below:

1. Perform the simulations. A series of driving situations has been chosen for each sce-
nario. Simulations are carried out and data on positions, speeds and times are col-
lected. For each simulation, it is necessary to create a set of configuration files and
initial conditions.

2. Data collection. From the SUMO output files, a function is executed in Matlab script
that passes the information to a data structure, so that it can be interpreted by the main
algorithm.

3. Execution of the risk estimation algorithm. The algorithm is run to produce the evo-
lution of intention, expectation and risk values over time. This step is performed sev-
eral times for each simulation, since the algorithm is based on a random method and
its behaviour is studied from varied results.

Once the results are obtained, they are classified by successes (the algorithm has cor-
rectly detected whether vehicles generate a hazard) or false positives (risk is detected in safe
situations).

5.3.3.1 Simple intersection

The first scenario to be tested consists of an intersection of four ways with one lane in each
direction. The purpose in this test case is to evaluate the risk estimation algorithm in sit-
uations in which four vehicles interact at an intersection, yielding to vehicles with higher
priority or not doing so, and thus causing or not risk situations.

The rotational symmetry (order 4) of this scenario makes possible to position the vehicle
n on one of the roads and to vary the behaviour of other vehicles. The result in each case
would be the same as if the position of all vehicles is rotated to the left, right or in front of
them. The scenarios have been generated by using a fixed initial positioning of the vehicle
n on the CD track and the variation in its trajectory and, on the other hand, on a variable
initial positioning of the secondary vehicle that generates the risk on each of the three re-
maining roads. To cover most of the possible combinations, 12 different scenarios have been
generated. Moreover, each of these situations has been split into two possibilities: one in
which the secondary vehicle generates danger in vehicle n and one in which it stops to yield
the vehicle with priority. Since the risk estimation algorithm has a random component in-
troduced by the particle filter, it is run five times for each scenario, creating a total amount
of 120 tests (12 environments × 2 situations × 5 simulations).

Some of these generated situations and the trajectories of the two main vehicles are rep-
resented in figure 5.3, where the trajectory of vehicle n is drawn in orange.
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FIGURE 5.3: Simple intersection scenario

Figure 5.4 shows the results of the algorithm in a simple intersection scenario in which
one car approaches the intersection by each of its four entrances. Two of them drive on per-
pendicular lanes and collide at the instant t = 22.8 s. Figure 5.4a shows the expectation that
the vehicle will stop, while figure 5.4b depicts the intention to continue. Thus, if both values
are high, it will probably indicate that the situation is risky. In figure 5.4c it can be noticed
that the risk increases above the stated threshold of 0.3 at instant t = 20.7 s (highlighted
with an orange triangle in the figure), which indicates the imminent collision. The time in-
terval between the recognition of the hazard and the instant of collision was 1.55 s. As can
be seen, the value of the longitudinal expectation increases during the simulation, as both
vehicles approach the intersection and the need for one of them to stop to avoid the colli-
sion becomes apparent. When the blue vehicle comes significantly closer to the junction, the
algorithm is able to analyse its intention to continue, so that the risk increases until the safe
limit is exceeded.

5.3.3.2 Multi-lane intersection

This scenario extends the previous one by considering a more complex intersection that
includes several lanes in each of its approaches. Moreover, the considered intersection sce-
nario allows different possible combination of vehicles trajectories, which are shown in fig-
ure 5.5. Since the scenario is rotationally symmetric (order 2), the AD and BD streets are
chosen as entrances to the priority vehicle to avoid the repetition of equivalent tests.

For each possible route of vehicle n, the possible situations of collision with the sec-
ondary vehicle are recreated. Figure 5.5a shows some collision possibilities, where the tra-
jectory of the priority vehicle is represented in a continuous orange line, and the trajectory
of the secondary vehicle, in a dashed blue line. As can be seen in this figure, each of the three
trajectories of vehicle n (orange lines) collides further from the point at which the opposing
vehicle begins to turn (blue line). It is to be expected that, among these three trajectories of
the vehicle n, the further away it is from the trajectory of the oncoming vehicle, the earlier
the risk situation is recognised.
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FIGURE 5.4: Results of the longitudinal risk indicator in the simple intersec-
tion scenario

(A) Possible paths (B) Simplified case

FIGURE 5.5: Multi-lane intersection scenario
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Five tests were carried out for each trajectory of vehicle n with the same scenario. The
resulting risk detection times are showed in table 5.1.

Trajectory Mean (s) Standard deviation (s)
0 0 0
1 0.44 0.0548
2 0.82 0.0447

TABLE 5.1: Time at which the collision risk is detected

As in the case of the simple intersection, in this scenario there are several situations in
which the vehicle that drives in the opposite direction to the vehicle n and ends up turning
left at the intersection, what is considered as non-priority path. This makes the algorithm
unable to predict the risk sufficiently in advance due to ignorance of the manoeuvre in-
tended by the other vehicle.

In addition to the scenario analysed above (depicted in figure 5.5b), more combination of
the trajectories of both priority and secondary vehicle has been used to generate 17 different
situations. Taking into account the two possible situations (danger situation for the main
vehicle or not) and 5 simulations each, a total amount of 170 additional experiments were
carried out. The resulting time of these cases are shown in table 5.2, from which can be
extracted that the hazardous situations are detected in all cases and some of the safe cases
are detected as hazardous, causing a 13% of false positives.

Situation Risk detected Risk no detected Success rate (%)
Hazardous 85 0 100

Safe 13 87 87

TABLE 5.2: Multi-lane intersection results

Although the algorithm is able to detect all the real hazardous situations, the percentage
of false positives is high, suggesting that the threshold for the risk indicator could be low
for this kind of scenarios. It has been noted that the risk value of most of the false positives
detections is between 0.3 and 0.4. Taking this observation into account, the false positives
rate can be decreased by increasing the risk indicator threshold, although the detection time
is affected. By analysing the same simulation results with a risk indicator threshold of 0.4,
it can be observed a reduction of 0.1 s of the detection anticipation time while the false pos-
itives rate is reduced to 4.9%. Moreover, the tests carried out use the same particle number,
regardless of the number of vehicles in the driving scene. However, it has been observed
that the more vehicles are present in the scenario, the high false positives are given by the
risk estimation algorithm.

Figure 5.6 shows the resulting longitudinal expectation, intention and risk estimation of
the case where one car approaches the intersection thought the path number (continuous
orange line in figure 5.5b) while another that comes from the opposite direction turns left
(dashed blue line in figure 5.5b), causing a dangerous situation.

In comparison to the simple intersection scenario, in this case the threshold is exceeded
only 0.5 s before the collision. Note that in contrast to the simple intersection, in this case
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FIGURE 5.6: Results of the longitudinal risk indicator in the multi-lane inter-
section scenario
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the cars that generate the dangerous situation approach the intersection thought opposite
directions instead of perpendicular ones.

5.3.3.3 Highway

With the highway scenario it is intended to test the risk estimation algorithm in environ-
ments where the lane change of a vehicle could cause a hazardous situation. In contrast to
the previous cases, the tests carried out in this scenario focus on only three cases, shown in
figure 5.7, since the possible traffic scenes to analyse hazardous situations in lane changing
are less varied than those appearing in intersections.

FIGURE 5.7: Three considered cases in the highway scenario

In the present case, it is specially useful to order a particular vehicle (ego-vehicle) to
change its lane without taking into account traffic conditions, thus obtaining dangerous situ-
ations. During the simulations, the rest of the vehicles carry out the overtaking manoeuvres
simulating the human behaviour. These vehicles move at higher speeds than the vehicle
that will carry out the manoeuvre in an unsafe way, so that, when changing lanes, the ego-
vehicle generates danger in the vehicles that circulate at a higher speed. To illustrate the
movements made by the vehicles in the simulations, figure 5.8 presents one of these cases
step by step from top to bottom. As can be seen, this scenario consists of a one-way road
with three parallel lanes.

Moreover, each scenario for each situation is simulated five times just like in previous
scenarios obtaining a total a mount of 30 tests (3 environments × 2 situations × 5 simula-
tions). In this case, the risk situations have been correctly detected by the algorithm in the
30 tests: In 15 of them the risky situation have been detected and in the other 15 tests, no
dangerous situation has been noticed.

Regarding the risk prediction time, in this case all risky situations have been detected
between 0.9 and 1.1 s before the lane change ends, thus providing valuable information to
the decision system is able react before a possible collision. Note that the simulated lane
changes last 1.5 s.
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FIGURE 5.8: Highway scenario

Figure 5.9 shows the resulting lateral expectation, intention and risk estimation of one
of the simulations carried out in the scenario represented in figure 5.8. Note that the risk
indicator starts increasing when the intention of the blue vehicle also does since the lateral
expectation is that this vehicle stays in the original lane. In this case the algorithm is able to
detect the hazardous situation 1.05 s in advance to a possible collision.

5.3.3.4 Roundabout

The roundabout scenario includes three lanes and the manoeuvres to be performed by the
vehicles are the same than those of the highway scenario (see figure 5.10). However, a new
complexity with respect to the previous scenario is introduced: the angular speed of the
vehicles make difficult to differentiate whether a vehicle is manoeuvring a lane change or
not, which causes the indicator to have generally larger values. Consequently, the value of
the risk indicator threshold has been increased to 0.45 for this scenario.

The design of the roundabout scenario in SUMO entails some limitations of the realism
of the simulated environment with a real one. As can be seen in figure 5.10, roundabouts
in SUMO are not modelled with curvilinear path, but from concatenated straight segments.
This way of representing a curve makes it difficult to model the position of the vehicle, since
it contains completely straight sections and areas in which the turn is quite abrupt. After
adjusting the modelling of the motion of the vehicle as best as possible, risk peaks continue
to occur at the points where the direction of the vehicle changes, as the algorithm is not able
to predict these abrupt changes.

Despite of the added complexity, the risk estimation algorithm is able to detect the risk
situation properly in all the hazardous situations as shown in table 5.3. Nevertheless, 3 of the
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FIGURE 5.9: Results of the lateral risk indicator in the highway scenario

71



Chapter 5. MOTION PREDICTION AND MANOEUVRE PLANNING

FIGURE 5.10: Roundabout scenario

15 cases in safe situations are detected as risky. The high amount of false positive cases can
be caused by the way in which the roundabouts are modelled in SUMO: a concatenation
of straight segments. It occurs since the vehicles turn abruptly as they drive through the
junction of two segments and, consequently, the risk estimation algorithm detects it as a
more likely lane change.

Situation Risk detected Risk no detected Success rate (%)
Hazardous 15 0 100

Safe 3 12 80

TABLE 5.3: Roundabout results

Note that the simulated vehicles perform the lane change manoeuvre in 1.5 s, as in the
highway scenario. The reaction times in the simulations carried out in the roundabout sce-
nario are between 0.8 and 1.2 s.

The results of one of the simulations performed in this scenario is shown in figure 5.11.
In this case, it can be noticed how the risk indicator exceeds the threshold risk value (0.45)
0.3 s before the possible collision.

5.3.3.5 Results summary

As a conclusion, the results obtained in the previous subsections demonstrate the feasibility
of the proposed method for all simulated situations. With the exception of the cases where
it is not possible to detect the risk in advance (as in left-turnings of intersection scenarios), it
predicts the risk situation 100% of the time and with acceptable margins of time. It has also

72



5.3. Risk estimation in urban environments

30 31 32 33 34 35 36 37 38 39 40
STAY

CHANGE

P
ro

b
ab

il
it

y

Time (s)

(A) Lateral expectation

30 31 32 33 34 35 36 37 38 39 40

Time (s)

STAY

CHANGE

P
ro

b
ab

il
it

y

(B) Lateral intention

30 31 32 33 34 35 36 37 38 39 40

Time (s)

0

20

40

60

80

C
o

ll
is

io
n

 p
ro

b
ab

il
it

y
 (

%
)

1.1s
Start of lane change

End of lane change

(C) Lateral risk indicator

FIGURE 5.11: Results of the lateral risk indicator in the highway scenario
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been described how situations of greater complexity obtain worse results, since the algo-
rithm must predict from a given number of particles a greater or lesser amount of possible
situations.

In the highway and roundabout scenarios, where the lateral risk has been tested, the
reaction time is below the 0.6 s. This leaves room for further improvements of the algorithm
as it is expected to detect possible collisions at least 1.5 s in advance to provide the decision
system with information to be able to react in time in this kind of scenarios. The number
of particles then becomes the key piece to avoid the error since, the greater the number of
particles, the greater the number of situations represented.

5.4 Simplified motion prediction for dynamic objects

The motion prediction module included in the architecture provides a simple and fast
method to estimate the future trajectory of nearby moving objects that have been identi-
fied as hazardous by the risk estimation method proposed above. The predicted trajectories
are then passed to the manoeuvre planner to be analysed.

The procedure carried out for each of the hazardous objects prioritized by the risk esti-
mation algorithm is the following:

1. The motion of each dynamic obstacle is predicted by using a constant velocity (CV)
model. As the information obtained about the perceived objects does not include an-
gular velocity nor acceleration, this simple model is used to predict future positions
of the object assuming that the velocity vector remains constant during the predicted
time horizon.

2. An occupancy polygon is calculated for the predicted path in order to determine the
occupied space by the perceived object that considers its dimensions. In this case, the
occupancy polygon is approximated by a rectangle as a CV model is applied, so the
path is assumed to be straight.

3. Then a spatial collision checking is performed as described in section 6.4.2 taking into
account the computed occupancy polygon instead of the bounding box of the obstacle.

4. If a spatial collision is found between the occupancy polygons of the ego-vehicle and
the perceived object as depicted in the example of figure 5.12, the temporal collision is
checked. To do that, the difference between the time the vehicle will pass through the
collision point and the time the moving obstacle will pass through that point (∆Tcoll)
is calculated. If the result is lower than a established safety margin, it is considered to
be a collision. Finally, the computed time-to-collision is added to the collision data to
be used in the trajectory replanning.

This simplified method allows to compute future dynamic objects trajectories in a rea-
sonable time (usually less than 1 ms) so that it can be used to check collision with the current
and future ego-vehicle trajectories.
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FIGURE 5.12: Schematic example of motion prediction and collision detection
with a dynamic object

5.5 Manoeuvre planner

In order for the vehicle to be able to react to the unexpected traffic situations, the decision-
making architecture must integrate a component to monitor the perceived traffic scene. To
that end, the manoeuvre planner is in charge of analysing the current state of the vehicle
and the predicted behaviour of the perceived environment and consequently deciding how
the vehicle should react to the current situation. To address all possible situations when
analysing the predicted motion of nearby objects together with the current planned trajec-
tory of the ego-vehicle, four different planning modes have been stipulated: (i) re-plan from
current pose, (ii) extend current trajectory, (iii) avoid static obstacle and (iv) avoid dynamic
obstacle. These planning modes, which correspond to those shown in figure 5.13, influence
the trajectory generation initialization that is described in chapter 6.

Figure 5.13 shows how these planning modes make easier the trigger of the final trajec-
tory generation based on the current perceived situation.

In some cases, the current state of the road could impede to continue driving through the
current road corridor due to road works, accidents, etc. To that end, the manoeuvre planner
includes an interaction mechanism with the global planner to communicate the need of a
new road corridor when needed (see figure 3.4 for more details).

As can be seen in the top of figure 5.13, two tasks can be performed in parallel giving as
a result a new trajectory generation request or a new route request to global planner. The
trajectory generation algorithm is in charge of managing simultaneous requests depending
on their priority, regardless if it is already computing a new trajectory requested before.

On the one hand, based on the left branch of figure 5.13, the manoeuvre planner verifies
firstly whether there is an existing trajectory or not and requests a new trajectory from the
current vehicle pose (planning mode 0) if needed. This case only occurs in concrete situa-
tions such as the mission start. Moreover, the manoeuvre planner is continuously checking
the length remaining path. If the minimum threshold established for the remaining path
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FIGURE 5.13: Flow diagram of the manoeuvre planner module
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length (minpl) is lower than this threshold, a trajectory extension is requested to the trajec-
tory generator (planning mode 1).

On the other hand, the right branch of the flow diagram in figure 5.13 is devoted to
analyse the perceived objects, which are classified in two groups: static and dynamic objects
depending on their absolute speed. If a collision of the current trajectory of the ego-vehicle
with a static object is found, information about the collision is gathered in a structure that
is later passed to the trajectory generator when the planning request is carried out. This
structure contains the ID of the colliding object, time-to-collision, distance to object and
the index of the current trajectory point. Based on the collision information, the trajectory
generator will be able to provide a solution to the planning request.
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Chapter 6

OPTIMAL TRAJECTORY
GENERATION

6.1 Introduction

Motion planning is a core technology for autonomous driving. It must produce safe, human-
like and human-aware trajectories in a wide range of driving scenarios. Whilst much
progress has been attained in the perception and localization domains, digital representa-
tions of the world are still incomplete. As a result, understanding the spatio-temporal rela-
tionship between the subject vehicle and the relevant entities whilst constrained by the road
network might be very difficult a challenge. Urban motion planning is significantly affected
as knowledge of the environment is incomplete and the associated uncertainty is high. Most
of the path planning proposals for autonomous driving assume the environment is well-
known, which is rarely the case unless a specific and frequently updated high-definition
mapping has been carried out in the region of interest. Besides, most of the commercial dig-
ital maps for navigation use a very high-level representation, which results in far too low
accuracy to obtain a good approximation of the local navigable space.

This chapter addresses the trajectory generation capability of the local planner section
of the decision-making architecture. Bearing the above in mind, it is proposed a procedure
to generate continuous curvature and minimum jerk paths from automatically generated
OSM-based road corridors, so that driving trajectories are as human-like as possible. Tra-
jectory generation component is integrated in the general decision-making architecture as
depicted in figure 6.1.

The remainder of the chapter is organized as follows. Firstly, section 6.2 states some as-
sumptions considered in the contributions of this chapter. Section 6.3 presents an extensive
analysis of interpolation curve planners, which use the current pose of the vehicle and in-
termediate waypoints within a short-medium time horizon. More specifically, continuous
curvature Bézier-based path planners will be exhaustively compared in different driving
scenarios, shedding some light into the best design choice for each particular situation and
goal. Section 6.4 focuses on trajectory generation module, whose main goal is to provide a
new trajectory in a short time horizon when requested by the manoeuvre planner. This sec-
tion introduces the path planning methods selected from the previous comparison as well
as the methods used for collision checking and speed planning. Finally, section 6.5 extends
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FIGURE 6.1: Inputs and outputs of the trajectory generation module

the capabilities of the trajectory generator presented in 6.4 to use a probabilistic occupancy
grid as input for motion planning. Both modification of collision checking algorithm and
path candidates evaluation are detailed in this section.

6.2 Assumptions

Some assumptions are made in the methods introduced in this chapter regarding maps,
perception and localization:

Maps and road corridors The accuracy of the maps is assumed to be good enough to be
used for the generation of the road corridors using the method described in chapter 4.
Taking into account the results obtained using this method, the road corridors are
assumed to provide an accurate representation of the real navigable space so that they
can be reliably used by motion planning algorithms.

Perception The motion planning algorithm proposed in this chapter uses the information
provided by perception systems to estimate the state of nearby obstacles. The inaccu-
racy of this information is assumed to be low enough to use it directly by the planning
strategy.

Localization The uncertainty in global localization is assumed to be negligible so it is not
considered. However, section 6.5 introduces a method to deal with global localization
uncertainty in the motion planning process.

6.3 Optimal path planning

6.3.1 Problem statement

The goal of path planning algorithms is to find a feasible path to drive from an initial point
(typically the current pose of the vehicle) to a target point, while often minimizing a pre-
defined criteria. This section focuses on path planning for autonomous driving in typical
structured environments such as roads or highways, where the non-holonomic constraints
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of the vehicle cannot be ignored [3, 5]. The dynamic restrictions that are commonly taken
into account are (i) the maximum curvature that the vehicle is able to handle and (ii) the
continuity of the curvature along the planned path. It is worth to remark the importance of
(ii), since discontinuities in the curvature do not allow automated vehicles to track the path.
In addition to these constraints, the path is required to be comfortably driven by the vehicle
i.e. the turning angle and turning speed of steering manoeuvres should not lead to strong
lateral accelerations. As a result, the path planning strategy should minimize the variability
of the curvature along the computed path.

Since elevation increment of the considered space for path planning is insignificant in
most of the structured environments, the path planning problem is typically performed in
a 2D plane. This allows to formally define the path planning problem in a general way as
follows:

arg min
xa

J(xa, Ds, V)

subject to lb ≤ xa ≤ ub

(6.1)

where:

• xa is a vector containing all variables to be optimized. Its size and variables can vary
depending on the path planning approach, as presented in following subsections.

• lb and ub are the lower and upper bounds of the values of xa in order to constrain the
search space of the algorithms. The bounds values depend on the scenario and the
approach.

• Ds ⊂ R2 is the drivable space of scenario s.

• V = [p0, p f , ltw, κv
max] includes vehicle-related information:

– p0 = [x0, y0, θ0, κ0] is the initial vehicle pose where x0 and y0 are the initial 2D
coordinates, θ0 the initial heading and κ0 the initial curvature.

– p f = [x f , y f , θ f , κ f ] is the final vehicle pose where x f and y f are the initial 2D
coordinates, θ f the final heading and κ f the final curvature.

– ltw is the track width of the vehicle.

– κv
max is the maximum curvature the vehicle is able to handle.

In this section, we consider different types of primitives, optimization methods and al-
gorithms, cost functions as well as different initial and final heading and curvature configu-
rations. These are described in detail in the following subsections.

6.3.1.1 Primitives to compare

Interpolation curve planners use the current pose and curvature of the vehicle and some
waypoints in order to obtain the final path to be followed. This path is required to have
continuous curvature and has to be as much efficient as possible. To that end, different
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interpolation methods based on Bézier curves will be compared, always guaranteeing the
continuity of the curvature (G2 continuity) along the path. It is important to emphasise the
need for G2-continuous paths, as the position of the steering wheel is also continuous, thus
improving comfort inside the vehicle.

Bézier curves present some advantages that make them suitable for path planning in
autonomous driving: fast curve and curvature calculation using analytic expressions, fast
collision-checking using Bézier curves properties such as convex hull property, curve-line
intersection, etc. Nevertheless, diverse piecewise Bézier curves feature different stabil-
ity [44], which is an important property that defines the impact of a small local change in the
position of one waypoint on the whole curve shape. In general, with interpolating splines
there is a trade-off between stability and higher-order [80].

Two possible variations will be explored: (i) piecewise B-splines, defined as composites
of cubic Bézier curves, and (ii) quintic Bézier curves.

6.3.1.1.1 Cubic B-splines curves They allow to generate a curve that goes through a set
of given waypoints. The curve generated is a concatenation of n plane cubic Bézier sections
which are defined generically as follows:

Cj(t) =
db

∑
i=0

Pj
i Bi,db(t), t ∈ [0, 1], j = 1...n (6.2)

being Bi,db(t) = (db
i )t

i(1− t)db−1 the Bernstein polynomials, Pj
i the control points of Bézier

section j, and db the degree of the Bézier curve (db = 3 in the case of cubic curves).
Continuity at joints can be guaranteed in B-splines by forcing the first and second deriva-

tives of two contiguous Bézier sections to be equal in the joints, so that the following expres-
sion is verified:

2Pi
2 − Pi

1 = 2Pi+1
1 − Pi+1

2 = Ai, i = 1...n− 1 (6.3)

where Ai are intermediate control points. The position of these intermediate points is fixed
by the n + 1 points to be interpolated Si, solving the next linear equation system:

1
4 1
1 4 1

1 4 1
. . . 1
1 4

1





A0

A1

A2

A3
...

An−1

An


=



S0

6S1 − S0

6S2

6S3
...

6Sn−1 − Sn

Sn


(6.4)

Since the curvature of a cubic Bézier section is continuous, the C2 continuity is guaran-
teed along the whole curve (and consequently G2 continuity).

The curve (6.2) whose coefficients are computed solving equations (6.3) and (6.4) im-
plicitly verifies that the second derivative is zero at its initial and end points (A0 = S0 and
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An = Sn). However, the linear system (6.4) can be modified so as to set additional boundary
conditions. In that sense, the possibilities we consider include: setting the initial and/or
end tangent vector as well as setting the initial tangent and curvature vectors. These end
conditions are further explained below. It is worth to mention that cubic B-splines present
excellent stability as a change in one of its waypoints only affects its adjacent Bézier sec-
tions [37].

Initial heading setting To set the initial heading of the curve, the tangent vector at the
initial point must be forced. To that end, the first derivative of (6.2) can replace the second
equation of the linear system (in equation (6.4)):

In this case, the stability is lower than the previous case, where initial tangent is not
imposed.

2A0 + A1 = 3S0 +~t0 (6.5)

where~t0 is the tangent vector at the initial point.
Then, the resulting linear system to solve is in equation (6.6).

2 1
1 4 1

1 4 1
. . . 1
1 4

1





A0

A1

A2
...

An−1

An


=



3S0 +~t0

6S1

6S2
...

6Sn−1 − Sn

Sn


(6.6)

Initial and final heading setting The final heading can be also forced in the same way
yielding 

2 1
1 4 1

1 4 1
. . .

1 4 1
1 2





A0

A1

A2
...

An−1

An


=



3S0 +~t0

6S1

6S2
...

Sn−1

3Sn −~tn


(6.7)

where~tn is the tangent vector at the last point.

Initial heading and curvature setting In addition to the initial heading, the curvature
can be also set at the initial point. In this particular case, the first and second derivatives of
the B-spline equation (6.2) evaluated at S0 can be written as follows:

A1 − A0 =~t0 −
1
2
~κ0 (6.8)

6A0 = 6S0 +~κ0 (6.9)

83



Chapter 6. OPTIMAL TRAJECTORY GENERATION

where~κ0 is the second derivative vector (acceleration) at the initial point of the curve. This
vector can be obtained as

~κ0 =
d|~t0|

dt
~T0 + κ0|~t0|2~N0 (6.10)

where d|~t0|
dt is the rate of change of the tangent module with respect to the independent

variable t of the parametric curve, and ~T0 and ~N0 are the unit tangent and normal vector at
the initial point, respectively.

If constant speed (in terms of differential geometry) is considered, the tangential part
of equation (6.10) is null, and therefore the resulting linear system (6.4) can be written as
follows 

−1 1
1 4 1

1 4 1
. . .

1 4 1
6





A0

A1

A2
...

An−1

An


=



~t0 − 1
2~κ0

6S1

6S2
...

Sn−1

6S0 +~κ0


(6.11)

Note that in this case the stability is totally lost since a small change in the position of
one waypoint changes the shape of the whole curve.

6.3.1.1.2 Quintic Bézier splines They have more degrees of freedom than cubic ones,
which has some advantages but also drawbacks. A higher degree provides more control
points, improving the controllability of the curve and consequently the controllability of
the set of Bézier sections that make up the complete path. Thus, the initial and final pose
(including initial and final curvature) could be imposed, making easier re-planning tasks
when the vehicle is on motion and the curvature cannot suddenly change, thus maintaining
G2 continuity along the path. However, coherent values for tangent and curvature vectors
at intermediate joints are also needed to place the control points of each Bézier section. As
they are not known in advance, heuristic rules can be used, as proposed in [73], to estimate
convenient values of first and second derivatives at intermediate waypoints (Si ∈ [S1, Sn−1])
of the quintic Bézier spline, able to guarantee the curve smoothness at joints. These esti-
mations can be used to calculate the final curve but also can be taken as initial guesses to
apply an optimization algorithm. The considered heuristics to calculate the first and second
derivatives are described below.

First derivative The first derivative at waypoint Si of the spline (tangent vector~ti) is
determined as follows: On the one hand, the orientation of~ti is perpendicular to the bisector
of the angle formed by vector ~va and ~vb where ~va = Si − Si−1 and ~vb = Si+1 − Si. On
the other hand, the magnitude of~ti is set to the minimum euclidean distance between the
current point (Si) and its two neighbouring points (Si−1, Si+1) multiplied by a scaling factor
ft. Thus |~ti| = ft min(|~va|, |~vb|).
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Both magnitude and orientation of ~ti have a high influence on the final curve geome-
try. Therefore, they are variables to be optimized in some of the methods compared in this
section.

Second derivative To determine the second derivative the heuristic proposed in [73] is
applied. To estimate the curvature~κiat Si, this approach uses two cubic Bézier sections (one
from Si−1 to Si and another from Si to Si+1). The second derivative is applied at Si in both
curves, using the tangent vectors at the previously mentioned points (~ti−1,~ti and~ti+1:

~κa
i = 6Si−1 + 2~tSi−1 + 4~tSi − 6Si (6.12)

~κb
i = −6Si − 4~tSi − 2~tSi+1 + 6Si+1 (6.13)

Then a weighted average is calculated with the curvature vectors of both curves at Si, in
order to obtain the estimated curvature vector~κe

i :

~κe
i = α~κa

i + (1− α)~κb
i (6.14)

where α = |Si−Si−1|
|Si−Si−1|+|Si+1−Si | .

The six control points of each Bézier segment can be calculated equalling first and second
derivatives of the quintic Bézier equations in two consecutive sections:

Pi
0 = Si = Pi−1

5 (6.15)

Pi
1 = Si +

1
5
~ti (6.16)

Pi
2 =

1
20
~κi + 2Pi

1 − Si (6.17)

Pi
3 =

1
20
~κi+1 + 2Pi

4 − Si+1 (6.18)

Pi
4 = Si+1 −

1
5
~ti+1 (6.19)

Pi
5 = Si+1 = Pi+1

0 (6.20)

where Pi
m (m ∈N : m ∈ [0, 5] are control points of Bézier section i.

6.3.1.1.3 Heading and curvature at the initial and end points A summary of the cases
covered depending on the primitive used are shown in the table below:

6.3.1.2 Considered path planning approaches

The approaches considered and compared in this section cover the most common state of
the art path planning techniques that are based on Bézier curve primitives, as well as some
proposed novel strategies.

They all intend to find the most suitable set of intermediate waypoints. To that end, some
steps are usually carried out: firstly, the centreline of the drivable space is estimated from
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cubic B-spline quintic Bézier spline
1 2 3 4 5

Initial heading (h0) No Yes Yes Yes Yes
Final heading (h f ) No No Yes No Yes
Initial curvature (κ0) No No No Yes Yes
Final curvature (κ f ) No No No No Yes

TABLE 6.1: Cases covered regarding the imposition of initial/final heading
and curvature

the drivable space boundaries. Over the centreline (i) a set of reference points is selected.
After that, (ii) the position of the reference points is optimized. Some existing approaches
stop at this point and compute the final path by interpolating among the optimized refer-
ence points by means of different curve primitives. Other approaches use the optimized
reference points to calculate intermediate waypoints, usually called seeding points. These
latter approaches then (iii) optimize the seeding points based on different methods.

Different techniques used for each of the three steps stated above are further described
in following subsections.

Scenario 1

Scenario 2

Equidistant points

Douglas-Peucker simpl.

Drivable space boundaries

Opheim simpl.

Centreline

FIGURE 6.2: Reference points selection: Equidistant points, Douglas-Peucker
and Opheim algorithms

6.3.1.2.1 Reference points selection method (RS) The first step is to select a set of refer-
ence points over the centreline. To that end, three different methods are considered:

• Equidistant points over the centreline (E).

• Douglas-Peucker simplification algorithm [32] (D). This algorithm is based on toler-
ance of perpendicular point-to-edge distance to extract the simplified line.
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• Opheim simplification algorithm [107] (O). Unlike Douglas-Peucker algorithm, the
search area in Opheim algorithm is constrained by both a perpendicular and a radial
maximum distances.

Figure 6.2 shows the results of the application of the three methods over two different
scenarios. The number of points selected by each algorithms is shown in table 6.2.

Method Scenario 1 Scenario 2
Equidistant points 5 7
Douglas-Peucker 4 4

Opheim 4 5

TABLE 6.2: Resultant number of selected points in both scenarios

6.3.1.2.2 Waypoints optimization strategies Both reference points and seeding points
are subjected to optimization processes. Taking into account the wide range of refinement
possibilities offered by the primitives considered, the approaches explained below have
been addressed. For ease of reference, each method has been named with an abbreviated
term.

A* search (A*) This approach is only considered for reference points optimization. It
uses the selected reference points to place a set of possible waypoints over their perpendic-
ulars to the centreline inside the drivable space boundaries. The set of possible waypoints is
connected through a directed graph from the initial vehicle pose to the final intended pose,
as shown in figure 6.3.

Centreline
Optimal path

Initial reference points
Drivable space boundaries

Optimized reference points

R'1

R'4
R'3

R'2

ltw

R2

R1

R5

R4

R3

R0
ltw/2

ltw/2

ΔLeq

FIGURE 6.3: Reference points optimization based on directed graph search

This graph is used to apply the A* algorithm in order to find the waypoints that minimize
a cost function f (n)
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Centreline
Optimal path

Initial reference points
Drivable space boundaries

Optimized reference points

ublong
lblong

ublat

lblat ut

un

R'1

R'4
R'3R'2

ltw

R2

R1

R5

R4

R3

R0
ltw/2

ltw/2

ΔLeq

FIGURE 6.4: Reference points optimization based on longitudinal and lateral
movements

f (m) = g(m) + h(m) (6.21)

g(m) = wko f f |ke|+ (1− wko f f ) do f f set

h(m) = wd dend

where ke is the estimation of the curvature at the current point (m) being evaluated by using
the two predecessor nodes (m− 1 and m− 2) to determine a circumference radius rk (ke =

1/rk), do f f set is the distance from the point being evaluated (m) to the centreline, dend is the
distance from the point being evaluated (m) to the goal point, and weighting values wko f f

and wd are set to 0.5 and 0.001, respectively.
This approach is similar to [50] regarding reference trajectory planning, but in the

present work curvature estimation and central offsets are considered in the cost function.

Lateral displacements (LA) The method uses lateral displacements of waypoints in
order to optimize the given cost function with a specific optimization algorithm. This ap-
proach considers one continuous variable per waypoint (lateral displacements). To calculate
their optimal positions R′i, the normal vector at each waypoint Ri, i ∈ [1, N], N + 1, being N
the number of waypoints, is used (see figure 6.4):

R′i = Ri + dlati~uni

where ~uni and dlati are respectively the normal unit vectors and the lateral distance to the
optimum point, computed at Ri, as shown in figure 6.4.
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Using the notation introduced in section (6.1), the optimization variables and bounds
can be written for this specific case as:

xLA
a = dlat

lLA
b = −( lw

2
− ltw

2
)

uLA
b = (

lw

2
− ltw

2
)

where dlat, lb, ub ∈ RN−1, being dlat the set of real values containing lateral displacements of
points Ri, i ∈ [1, N − 1], lw the lane width and ltw the vehicle track width.

Longitudinal displacements (LO) This method is similar to the previous one. The only
difference is the use of longitudinal displacements instead of lateral ones:

R′i = Ri + dlongi~uti

where ~uti are the tangential vectors at points Ri (figure 6.4).
In this case, the optimization variables and bounds are:

xLO
a = dlong

lLO
b = −(−∆L/3)

uLO
b = (∆L/3)

where dlong, lb, ub ∈ RN−1, being dlong the set of real values containing longitudinal displace-
ments of points Rn, n ∈ [1, N − 1], and ∆L the distance to the closest waypoint of the two
adjacent waypoints.

Lateral and longitudinal displacements (LL) This case is a combination of the two
above, where lateral and longitudinal variations are considered:

R′i = Ri + dlongi~uti + dlati~uni

In this case, two optimization variables are needed for each waypoint. As s result, the
vectors of bounds and variables to be optimized are composed by the concatenation of the
ones from both combined methods.

xLL
a = (xLA

a , xLO
a )

lLL
b = (lLA

b , lLO
b )

uLL
b = (uLA

b , uLO
b )
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Lateral displacements with selection option (LAS) In this case, besides lateral dis-
placements of each waypoint as in LA method, the problem includes additional binary vari-
ables to decide if a waypoint is used or not:

xLAS
a = (xLA

a , bN−1)

lLAS
b = (lLA

b , 0N−1)

uLAS
b = (uLA

b , 1N−1)

where b ∈ 0, 1 is a binary vector of size N − 1 that indicates whether a point Ri is used as
waypoint to calculate the path or not, 0N−1 and 1N−1 are all-zeros and all-ones vectors of
size N − 1, respectively.

Longitudinal displacements with selection option (LOS) This method is similar to
the previous one but using longitudinal displacements instead of lateral ones:

xLOS
a = (xLO

a , bN−1)

lLOS
b = (lLO

b , 0N−1)

uLOS
b = (uLO

b , 1N−1)

Lateral and longitudinal displacements with selection option (LLS) This approach
was presented in [6]. It is a combination of the two above, where binary variables are in-
troduced to decide if a waypoint is used or not, in addition to lateral and longitudinal dis-
placements. Three variables per waypoint are used by the optimization algorithm in this
case.

xLLS
a = (xLA

a , xLO
a , bN−1)

lLLS
b = (lLA

b , lLO
b , 0N−1)

uLLS
b = (uLA

b , uLO
b , 1N−1)

Tangent vector magnitude (TM) As explained in subsection 6.3.1.1, the magnitude of
tangent vector has a high impact on the curve geometry. Using this method, the magnitude
of tangent vector at each waypoint is optimized within a constrained range.

~t′i = fti~uti

where ~uti is the tangent vector at point Ri, and fti is the magnitude of the new tangent vector.
In this case, the path planning problem variables and bounds are:

xTM
a = ft

lTM
b = ftmin · 1N−1

uTM
b = ftmax · 1N−1
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where ft ∈ RN−1, ft is the set of real values containing the magnitudes of tangent vectors
at intermediate waypoints, ftmin and ftmax are the minimum and maximum values for the
scaling factor.

Tangent vector orientation (TD) The orientation of the tangent vector highly affects
the final curve too. Its value at each waypoint is optimized within a constrained range
centred in the initial tangent orientation:

~t′i = 1 θi~ti

where θti is the tangent vector orientation with respect to initial tangent orientation at point
Ri .

In this case, the path planning problem variables and bounds are:

xTD
a = θt

lTD
b = (−∆θt · 1N−1)

uTD
b = (∆θt · 1N−1)

where θt ∈ RN−1, θt is the set of real values containing the orientation of tangent vectors at
intermediate waypoints and ∆θt is the maximum allowed variation of tangent orientation.

Tangent vector magnitude and orientation (TT) This method is a combination of the
two above, where both magnitude and orientation of the tangent vector are optimized. Just
like in LL case, the vectors of bounds and variables to be optimized are composed by the
concatenation of the ones from both combined methods.

xTT
a = (xTM

a , xTD
a )

lTT
b = (lTM

b , lTD
b )

uTT
b = (uTM

b , uTD
b ) (6.22)

Curvature at joints (KJ) In this method, the curvature at intermediate waypoints is
optimized. As explained in section 6.3.1.1, curvature can be imposed at the joints of Bézier
sections when quintic curves a re used. The approach is similar to the adopted in the TM
method, i.e. a proportional factor (in this case fκi ) is used to modify the curvature at each
intermediate waypoint as expressed in (6.22). The path planning problem variables and
bounds are:

xKJ
a = fκ

lKJ
b = fκmin · 1N−1

uKJ
b = fκmax · 1N−1
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where fκ, lb, ub ∈ RN−1 is the set of real values containing the magnitude of tangent vectors
at intermediate waypoints, fκmin and fκmax are the minimum and maximum values for the
scaling factor. fκmax is determined so as to ensure the maximum feasible curvature of the
vehicle is not exceeded (κi · fκmaxi

≤ κv
max).

Tangent vector magnitude and curvature at joints (MK) A combination of TM and KJ
method is also considered. In this case, the optimization problem variables and bounds are:

xMK
a = (xTM

a , xKJ
a )

lMK
b = (lTM

b , lKJ
b )

uMK
b = (uTM

b , uKJ
b )

Tangent vector orientation and curvature at joints (DK) The last considered approach
combines TD and KJ methods. the optimization problem variables and bounds are:

xDK
a = (xTD

a , xKJ
a )

lDK
b = (lTD

b , lKJ
b )

uDK
b = (uTD

b , uKJ
b )

Note that methods TM, TD, TT, MK and DK can only be applied when using quintic
Bézier splines, as cubic B-splines do not allows to impose tangent at intermediate waypoints.

As exposed at the beginning of this section, cases with two optimization stages are also
considered in this study. In these cases the first stage is used to optimize the position of
reference points from which a set of new intermediate points (seeding points) will be ob-
tained. To that end, the corresponding primitive is discretized with a fixed amount of points,
as depicted in figure 6.5.

Centreline
Optimal path

Initial reference points
Drivable space boundaries

Optimized reference points
Initial seeding points
Optimized seeding points

R'1≡s3

R'2≡s6

R0≡R'0≡s0

s9≡R'3

R5≡R'5≡s15

s'9
s12≡R'4

s'12

s'6

s'3

FIGURE 6.5: Seeding points optimization

In cases with two optimization stages only methods A*, LA, LO, LL, LAS, LOS, LLS
are considered for reference points optimization, while all of them are considered for the
second stage and for the cases with only one optimization process.
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6.3.1.2.3 Optimization algorithms Four algorithms to solve constrained non-linear
multivariable optimization problems are compared: Interior-point [19], Levenberg-
Marquardt [99], Simple Multi-Objective Cross-Entropy (SMOCE) [53] and Non-linear Op-
timization by Mesh Adaptive Direct Search (NOMAD) [29].

SMOCE is an evolutionary multi-objective optimization algorithm which presents re-
markable performance in solving complex problems with many decision variables. This
algorithm can be configured through four parameters: (i) epochs: number of iterations of
the evolutionary process of the algorithm, (ii) working population size: amount of possi-
ble solutions evaluated by the algorithm in each epoch, (iii) elitist fraction: fraction of the
working population that is selected in each epoch, and (iv) histogram intervals number:
amount of intervals that are created in each dimension of the objective space. The algorithm
is applied to solve single-objective problems.

NOMAD is able to solve mixed-integer non-linear programming problems (MINLP), as
the ones defined in LAS, LOS and LLS methods. This algorithm is highly configurable and
is designed for constrained optimization of non-linear functions.

As in path planning methods, the algorithms are referenced using shorted names:
interior-point (IP), Levenberg-Marquardt (LM), NOMAD (NM), SMOCE (CE).

6.3.1.2.4 Cost functions Based on the related work and the tests carried out, five cost
functions are proposed based on curvature that are typically used to path planning opti-
mization processes:

1. J1 =
∫ s f

s0

κ̇(s)2 ds + h

2. J2 =
∫ s f

s0

κ̈(s)2 ds + h

3. J3 =
∫ s f

s0

κ̇(s)2 + wJ3 · κ̈(s)2 ds + h

4. J4 =
∫ s f

s0

do f f ds + h

5. J5 =
∫ s f

s0

do f f + wJ5 · κ̇(s)2 ds + h

where κ is the scalar curvature of the path, s ∈ [s0, s f ] ∈ R is the curve length over the
initial (s0) and final (s f ) values of the path, do f f is the perpendicular distance from the path
to the centreline of the driving corridor, wJ3 is the weight of the component related to the
second derivative of the curvature in J3, wJ5 is the weight of the component related to the
first derivative of the curvature in J3, and h is a non-smooth function describing the relation
between the path and the drivable space.

h =


0 if path is within boundaries

∞ if boundaries/obstacle collision

∞ if κ
p
max ≥ κv

max
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The value of κ is computed using the generic curvature equation of a given planar curve
c(t) = [x(t), y(t)]:

κ =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

(ẋ(t)2 + ẏ(t)2)
3
2

(6.23)

where x and y are the parametric equations of the Bézier curves for both dimensions of curve
c.

Note that the value of the objective function is infinity if: (i) any part of the final path
is outside the boundaries, (ii) the final path collides with obstacles, or (iii) the maximum
curvature along the path κ

p
max is greater than the maximum curvature the vehicle can handle

κv
max.

6.3.2 Comparison framework description

Due to the large number of possibilities when composing a followable path, one of the main
issues to compare different approaches to solve the same path-planning problem is to ex-
tract objective measurements that characterize them. Furthermore, the performance can be
evaluated both in terms of the tracking quality of the resulting path, which can be hard to
objectively define, or in run-time terms.

In order to compare all path planning methods, a common framework is specified. On
the one hand, some key performance indicators (KPI) are defined with the aim of reflecting
the quality of the approach employed, regardless of the type of primitive used, and not only
in terms of functional performance but also of the execution time of the approaches.

6.3.2.1 Definition of KPIs

The definition of representative KPIs for benchmarking different approaches is not a trivial
task. There is no a clear objective way of assessing a path planner. In fact, it is common to
find a useful KPI for a small set of cases in specific scenarios that is useless or gives a wrong
indication in other cases.

Besides computational cost, safety and comfort will be considered with different metrics
related to the curvature and its variation. In addition to that, tunability and stability of the
resulting path will be also taken into account through the offset to the centreline. Based on
the tests carried out when developing this work, the most suitable KPIs contemplating all
these aspects are the following:

1. Execution time: Kt = texc

2. Maximum curvature: Kκmax = κmax

3. Normalized accumulated curvature along the path:

Kκ0 =
1
Lp

∫ s f

s0

κ(s)2 ds (6.24)
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4. Normalized accumulated first derivative of the curvature along the path:

Kκ1 =
1
Lp

∫ s f

s0

κ̇(s)2 ds (6.25)

5. Normalized accumulated second derivative of the curvature along the path:

Kκ2 =
1
Lp

∫ s f

s0

κ̈(s)2 ds (6.26)

6. Centreline offset along the path:

Kcl =
1
Lp

∫ s f

s0

do f f ds (6.27)

where Lp = ∑N
i=1 ‖pi − pi−1‖ is the length of the path, pi (i ∈ N : i ∈ [1, N]) is the point i

of the path, κ is the curvature of the path, κmax is the maximum value of κ along the path, s
(s ∈ R : s ∈ [s0, s f ]) is the curve length over the path, and texc is the total execution time.

6.3.2.2 Path planning problem specification

Each path planning strategy is defined as a set of parameters related to its main charac-
teristics. As previously described, each case is characterized by: (i) the reference points
selection method (over a given centreline), (ii) the type of primitive curve, (iii) the method
of the first optimization process, (iv) method of second optimization process, and (v) the
setting of initial and/or final heading and/or curvature as described in section 6.3.1.

For the sake of clarity, each test carried out in this comparison is identified with a unique
text string composed of a set of sub-IDs separated by colons. The sub-IDs are taken from the
abbreviated terms specified in section 6.3.1.2 for each path planning step. The complete test
ID is composed as follows:

ID = S:RS:P:O1:O2:H:K

where

• S is the scenario number.

• RS is reference points selection method: E, D or O.

• P is the primitive type: 3 if cubic B-spline or 5 if quintic Bézier splines is used.

• Reference points optimization process (O1): It is composed of the optimization
method, the optimization algorithm and the cost function. If it is set to 0, no reference
points optimization process is carried out. O1 is therefore defined by the concatena-
tion of:

– Optimization method: A*, LA, LO, LL, LAS, LOS, LLS.

– Optimization algorithm: IP, LM, NM, CE.
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– Optimization cost function: J1, J2, J3, J4, J5.

• Seeding points optimization process (O2): It is composed of the optimization method,
the optimization algorithm and the cost function. If it is set to 0, no seeding points
optimization process is carried out. O2 is therefore defined by the concatenation of:

– Optimization method: LA, LO, LL, LAS, LOS, LLS, TM, TD, TT, KJ, MK, DK.

– Optimization algorithm: IP, LM, NM, CE.

– Optimization cost function: J1, J2, J3, J4, J5.

• H indicates if the initial and final heading is imposed. It is defined using two binary
digits: the first one refers to the initial heading and the second one to the final heading.
The considered possibilities are: 00, 10, 11, as specified in table 6.1 (h0, h f = {0, 1}).

• K indicates if the initial and final curvature is imposed in the same way that H. The
considered possibilities are: 00, 10, 11, as specified in table 6.1 (κ0, κ f = {0, 1}).

One example of ID could be: 1:D:3:0:LA-IP-J1:11:00. This case addresses the scenario 1,
the reference points are selected with the Douglas-Peucker algorithm, cubic B-splines are
used as primitive curve, there is no reference points optimization (O1=0, so the seeding
points=reference points), the seeding points are optimized using LA method (lateral po-
sition optimization) with the interior-point algorithm (IP) and minimizing J1 cost function.
The initial and final orientation are set and the initial and final curvatures are not set.

6.3.3 Experiments & results

6.3.3.1 Tests cases setup

In order to compare the performance of all the strategies presented in section 6.3.1.2, all
feasible combinations among the considered methods, primitives, optimization algorithms,
etc. are tested in two different scenarios. As some combinations are not possible, the tests
cases that include the configurations listed below are excluded:

• Impose initial curvature without imposing initial tangent.

• Impose final curvature without imposing final tangent.

• Impose final tangent without imposing initial tangent.

• Use cubic B-splines and

– Impose final curvature.

– Impose final tangent when initial tangent and curvature are already imposed.

– The second optimization method is one of these: TM, TD, TT, KJ, MK, DK (They
only apply to quintic Bézier spline cases).

• Use quintic Bézier splines and initial and/or final tangent and/or curvature are not
imposed.
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• There is only one optimization stage and it is defined as the first one instead of second
one (seeding points).

• Tests cases in which there are two optimization stages and CE optimization algorithm
is used in the second one. These cases are excluded because CE does not allow to set
as the initial point the output of the first optimization stage.

Once the above test cases were excluded, 90417 tests per scenario were executed (180834
for both scenarios). All path planning approaches were implemented in Matlab and the
experiments were executed on an Intel Core i7-3770 3.4 GHz machine with 8 GB RAM.

In order to test the path planning methods in realistic scenarios, both driving environ-
ments were extracted from real roads, which are shown in figure 6.2. Scenario 1 contains
two tight curves and a centreline length of 40.02 m, while Scenario 2 comprises a round-
about entrance, with a centreline length of 54.79 m. The lane width in both scenarios is 3 m
and a vehicle track width of 1.71 m (ltw) is considered.

The motivation to choose scenarios with these values of centreline length is mainly due
to the trade-off between computational cost and anticipation capabilities, as larger paths
may involve more intermediate waypoints and therefore longer computation time. Based
on the tests carried out in this study, paths with a length around 50 m are computed in a
reasonable amount of time as shown in section 6.3.3.2.

To determine the acceptable values for the large amount of parameters of different meth-
ods, algorithms, etc., specific tests were carried out. Regarding reference points selection, the
length to obtain equidistant point was set to 7.5 m. In Douglas-Peucker algorithm, εsimp was
set to 1 m. Opheim algorithm was parametrized with minimum and maximum tolerance of
1.8 m and 30 m, respectively. The maximum function evaluation of optimization algorithms
were limited in order to avoid large execution times in cases were the algorithms cannot
find a solution. In the case of NOMAD algorithm the maximum optimization time was set
to 20 s. SMOCE algorithm parameters was set to 50 epochs, working population size of
100 and 0.1 as elitist fraction. The epoch number and the working population size have a
remarkable influence on the execution time.

In order to set an appropriate value to the parameters of cost functions defined in sec-
tion 6.3.1.2.4, different experimental test were carried out. Based on some tests carried out

Finally, the values for the parameters of cost functions J3 and J5, as defined in sec-
tion 6.3.1.2.4, were empirically determined based on extensive tests carried out. Thus, wJ3

and wJ5 were set to 60 and 100, respectively.

6.3.3.2 Results & discussion

Figure 6.6 represents the tests cases distribution of both scenarios using the percentiles
against the value of each KPI plotted in logarithmic scales. The distribution of the tests
regarding Kt and Kcl is similar in both scenarios. However, the values of Kκ0, Kκ1, Kκ2 and
Kκmax in Scenario 2 are generally below those in Scenario 1, probably due to its tighter
curves. On another issue, the noticeable change in the distribution at Kt = 20 s is caused by
the maximum imposed optimization time when using NOMAD algorithm.
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FIGURE 6.6: Percentiles of all KPIs against their values for both scenarios (1
and 2)

In order to extract relevant results from all tested cases, a set of test cases of each scenario
is filtered separately, based on the values of their KPIs. The thresholds used to select the
minimum acceptable results with respect to the KPIs are listed below:

• Kt ≤ 50 s

• Kκmax ≤ 0.4 m−1

• Kκ0, Kκ1, Kκ2 ≤ 3

• The path length is also constrained such that it does not differs more than a 5% with
respect to the centreline length of the scenario (Lcl): |Lp − Lcl | ≤ Lcl · 0.05

The wide range of combinations of tests configurations results in high dimensional data,
and therefore specific graphic representation tools are needed. By using parallel coordinates
plots, figure 6.7 and 6.8 allow to represent the resulting KPI values in terms of its config-
uration values, as specified in the test ID (see section 6.3.2.2), for Scenario 1 and Scenario
2, respectively. The colour of each line represent the value of a particular KPI (in these
two particular cases Kt). In addition to the filtering above described, the 50th percentiles of
Kcl , Kκ0, Kκ1 and Kκ2 were used to select the cases plotted in figures 6.7 and 6.8.

As can be noticed, after applying the filters there are significantly more valid tests cases
in Scenario 2 than in Scenario 1 (1117 and 77, respectively). Furthermore, it is also remark-
able that almost all cases in Scenario 1 needed two optimization stages. Just a few of them
used only one stage but with a bad performance regarding the execution time. In contrast,
although most of the cases used two optimization stages, the ones with only one optimiza-
tion stage have a good timing performance in Scenario 2. These are signs of the greater
complexity of the path planning problem in Scenario 1 compared to Scenario 2.
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FIGURE 6.7: Results of filtered tests cases with thresholds on Kt, Kκmax and
path length, and percentile 50th on Kcl , Kκ0, Kκ1 and Kκ2 in Scenario 1. Colour

is based on KPI Kt, ranging from 0 s to 50 s

FIGURE 6.8: Results of filtered test cases in Scenario 2. Colour is based on KPI
Kt, ranging from 0 s to 50 s
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Comparing both scenarios regarding the execution time, it is generally lower when using
this Douglas-Peucker algorithm as reference points selection method (as shown in table 6.2).
This is non surprising, as a lower number of optimization variables is used in those cases.

FIGURE 6.9: Results of filtered test cases in Scenario 2. Line colours are based
on KPI Kκ0

FIGURE 6.10: Results of filtered test cases in Scenario 2. Line colours are based
on KPI Kκ1

Since the richness of information in Scenario 2 is higher, i.e. there is a greater number
of valid tests cases compared to Scenario 1, the subsequent discussion is focused on this
particular information. The colour of the lines in figures 6.9, 6.10, 6.11 and 6.12 show the
values of KPIs Kκ0, Kκ1, Kκ2 and Kcl , respectively. It can be appreciated that the cases using
LA, LO, LL, LAS, LOS, LLS methods as seeding points optimization present a better per-
formance regarding Kκ0, Kκ1, Kκ2 and Kcl . Contrastingly, a worse performance regarding Kt

is observed when these methods are used (figure 6.8), where methods TM, TD, TT, KJ, MK,
DK (only applied when using quintic Bézier splines) present better results.

The resulting paths of two selected tests cases are shown in figure 6.13 and 6.14. The
high smoothness of optimized paths is observed in both cases. To demonstrate that, as
curve smoothness is hard to see on a 2D plane curve directly, the resultant path curvature
is shown together with its first derivative at the bottom of both figures. As can be noticed,
the curvature remains continuous along the path in both figures. These are two random test
cases, but an insight into the best configurations is shown below.
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FIGURE 6.11: Results of filtered test cases in Scenario 2. Line colours are based
on KPI Kκ2

FIGURE 6.12: Results of filtered test cases in Scenario 2. Line colours are based
on KPI Kcl
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Centreline

Optimized path 

Reference points

Seeding points before opt.

FIGURE 6.13: Results of test 1:D:5:LA-CE-J1:LOS-NM-J1:11:11. Scenario and
final optimized path (top) and curvature of the final path and its first deriva-

tive (bottom)

Centreline

Optimized path 

Reference points

Seeding points before opt.

FIGURE 6.14: Results of test 2:E:3:0:LL-CE-J4:00:00. Scenario and final opti-
mized path (top) and curvature of the final path and its first derivative (bot-

tom)
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6.3.3.2.1 Comparing best cases in both scenarios Delving deeper into the results, several
cases with the minimum value in all KPIs are selected. The resulting KPIs are shown in
table 6.3. Moreover, the normalized KPIs of both scenarios are represented in radar charts of
figure 6.15. Note that the normalization was done to achieve scenario-independent results,
as Scenario 1 has tighter curves, and curvature-related KPIs values are therefore higher than
in Scenario 2.

TABLE 6.3: KPI values of a selection of the best tests cases from both scenarios

Test case ID Kt Kκmax Kκ0 Kκ1 Kκ2 Kcl

1:D:5:LA-CE-J1:LOS-NM-J1:11:11 0.3478 0.2146 6.3975E-02 4.3119E-04 1.8174E-05 0.1774
1:D:5:LA-CE-J1:LOS-NM-J2:11:11 0.3489 0.2127 6.1818E-02 4.3765E-04 1.8818E-05 0.1560
1:D:5:LA-CE-J2:LOS-NM-J1:11:11 0.3491 0.2115 6.1428E-02 4.3518E-04 1.9052E-05 0.1629
1:D:5:LA-CE-J1:LOS-NM-J3:11:11 0.3510 0.2116 6.1511E-02 4.3510E-04 1.9103E-05 0.1653
1:D:5:LL-CE-J4:LOS-NM-J3:11:11 0.3519 0.2207 6.0106E-02 4.8143E-04 2.0956E-05 0.1769
1:D:5:LA-CE-J2:LOS-NM-J3:11:11 0.3551 0.2077 5.8191E-02 4.4287E-04 1.9494E-05 0.1524

2:D:5:LO-CE-J4:LOS-NM-J1:11:11 0.3442 0.1164 9.5620E-03 2.8543E-05 1.2807E-06 0.1393
2:D:5:LA-CE-J2:TD-NM-J3:11:11 0.3464 0.1251 8.9540E-03 3.1399E-05 1.7702E-06 0.1380
2:D:5:LA-CE-J2:KJ-NM-J1:11:11 0.3474 0.1302 9.6590E-03 3.3555E-05 1.8731E-06 0.1388
2:D:5:LO-CE-J2:KJ-NM-J3:11:11 0.3495 0.1007 9.5130E-03 2.6601E-05 8.4680E-07 0.1297
2:D:5:LA-CE-J3:TD-NM-J3:11:11 0.3495 0.1269 9.1370E-03 3.2077E-05 1.8669E-06 0.1409
2:D:5:LO-CE-J3:TD-NM-J5:11:11 0.3501 0.1255 9.4750E-03 3.2300E-05 1.7255E-06 0.1328

1:D:5:LA-CE-J1:LOS-NM-J1:11:11

1:D:5:LA-CE-J1:LOS-NM-J2:11:11

1:D:5:LA-CE-J2:LOS-NM-J1:11:11

1:D:5:LA-CE-J1:LOS-NM-J3:11:11

1:D:5:LL-CE-J4:LOS-NM-J3:11:11

1:D:5:LA-CE-J2:LOS-NM-J3:11:11

0

0,5

1

(A) Scenario 1

2:D:5:LO-CE-J4:LOS-NM-J1:11:11

2:D:5:LA-CE-J2:TD-NM-J3:11:11

2:D:5:LA-CE-J2:KJ-NM-J1:11:11

2:D:5:LO-CE-J2:KJ-NM-J3:11:11

2:D:5:LA-CE-J3:TD-NM-J3:11:11

2:D:5:LO-CE-J3:TD-NM-J5:11:11

0

0,5

1

(B) Scenario 2

FIGURE 6.15: Results of selected test cases of each scenario

The first thing that can be noticed from the table 6.3 is that in both scenarios the reference
points selection method and primitive used in all selected cases are Douglas-Peucker and
quintic Bézier splines, respectively. Furthermore, it is also remarkable that SMOCE and
NOMAD algorithms are also used in all scenarios for the first and the second optimization
stage, respectively.

Regarding (Kt) it can be seen that test cases with ID = 1:D:5:LA-CE-J2:LOS-NM-J3:11:11
and 2:D:5:LO-CE-J3:TD-NM-J5:11:11 are those which take longer to perform the optimiza-
tion of the selected tests in each scenario. However, in these 2 specific configurations almost
all values of the KPIs related to the quality of the path are much lower than in the other
cases. Focusing on Scenario 1, it is also remarkable the influence of a greater execution time
in the higher quality of the final path. Regarding Scenario 2 it can be observed that the cases
2:D:5:LA-CE-J2:TD-NM-J3:11:11 and 2:D:5:LA-CE-J2:KJ-NM-J1:11:11 present a high value in
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almost all KPIs, i.e. a higher execution time did not lead to better results in the quality of the
final path.

6.3.3.2.2 Comparing best cases with one and two optimization stages in both scenarios
In order to analyze the impact of each approach, the best results with one and two optimiza-
tion stages are selected from both scenarios separately. Figure 6.16 shows the cases with one
and two optimization stages in Scenario 1, while figure 6.17 depict those in Scenario 2.

0

0,5

1

1:D:5:0:LA-CE-J1:11:11

1:D:5:0:LO-CE-J4:11:11

1:D:5:0:LO-CE-J5:11:11

1:D:5:0:LL-CE-J5:11:11

1:D:5:0:LL-NM-J4:11:11

1:D:5:0:LL-CE-J4:11:11

(A) One optimization stage

1:D:5:LA-CE-J1:LOS-NM-J1:11:11

1:D:5:LA-CE-J1:LOS-NM-J2:11:11

1:D:5:LA-CE-J2:LOS-NM-J1:11:11

1:D:5:LA-CE-J1:LOS-NM-J3:11:11

1:D:5:LL-CE-J4:LOS-NM-J3:11:11

1:D:5:LA-CE-J2:LOS-NM-J3:11:11

0

0,5

(B) Two optimization stages

FIGURE 6.16: Results of selected test cases of Scenario 1 with one (a) and two
(b) optimization stages.

0,

0

1

2:D:5:0:LA-NM-J4:11:11

2:D:5:0:LA-NM-J5:11:11

2:D:5:0:KJ-CE-J2:11:11

2:D:5:0:KJ-CE-J3:11:11

2:D:5:0:LA-CE-J5:11:11

2:D:5:0:LA-CE-J4:11:11

0,5

(A) One optimization stage

0

0,5

1

2:D:5:LO-CE-J4:LOS-NM-J1:11:11

2:D:5:LA-CE-J2:TD-NM-J3:11:11

2:D:5:LA-CE-J2:KJ-NM-J1:11:11

2:D:5:LO-CE-J2:KJ-NM-J3:11:11

2:D:5:LA-CE-J3:TD-NM-J3:11:11

2:D:5:LO-CE-J3:TD-NM-J5:11:11

(B) Two optimization stages

FIGURE 6.17: Results of selected test cases of Scenario 2 with one (a) and two
(b) optimization stages

The values of the KPIs are normalized with respect to each scenario separately, as in the
previous analysis.

In this case, the tests shown in figure 6.17b are the same that were selected in figure 6.15b,
where the best results present two optimization stages. However, the KPIs are normalized
together with the selected tests with one optimization stage for this scenario. As a result, the
represented values are different between both figures.

The following list discusses the results obtained with respect to the different primitive
configurations and optimisation techniques considered:

• Optimization stages: As can be noticed taking into account the results in both sce-
narios, the KPIs reflect a better overall performance when two optimization stages are
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carried out. It is also noteworthy that even the KPI Kt is lower in cases where two op-
timization stages were performed. Moreover, it is also remarkable that, again, the best
cases with one optimization stage use quintic Bézier splines optimized through differ-
ent approaches, instead of cubic B-splines. This can be caused by the lower tunability
and stability of cubic B-splines compared to quintic Bézier splines.

Note that the all shown cases in these figures are the best selected after the filtering
explained above. Therefore, despite the normalized value of some KPIs is close to 1,
all test cases present acceptable absolute values.

• Primitive: Considering the results obtained, it can be concluded that some of the better
approaches from those proposed in this section are those using quintic Bézier splines
as primitive and two optimization stages. Furthermore, some of the better approaches
for the first optimization stage are LA, LO, and LL; while for the second one are LOS,
KJ, and TD.

• Optimization methods: Regarding optimization algorithms, SMOCE and NOMAD
seem to deal better with the strong non-linearity of the optimization problem (since
most of the cost function are based on the curvature equation) obtaining better overall
results compared with interior-point and Levenberg-Marquardt algorithms.

• Cost functions: With regard to the cost functions, J1, J2, J3, and J4 are present in the
first optimization stage of the best results, while all of them are present in the second
stage. In fact, it can be observed that some of the best results use the same configu-
ration for the first optimization stage and different configurations in the second. This
observation highlights the higher impact of the cost function in the first optimization
stage when compared with the second one.

The results of all tested cases are publicly available at https://autopia.car.upm-csic.
es/antonio/comparison_results.html. In this url, parallel coordinates plots as those
shown in figures 6.7-6.12 can be seen. The interface allows to select the colour of the lines
based on KPIs values as well as selecting the scenario and the percentile to filter data. More-
over, additional filters can be applied over the plot coordinates. In addition, the resulting
KPIs values of selected test cases are shown in a table at the bottom of the web page.

6.3.4 Comparative conclusions

An insight on a number of different approaches for path planning is carried out in this sec-
tion, where a wide range of possible combinations among several primitives, optimization
methods and algorithms are compared. The results are intended to help in future deci-
sions about the most appropriate approach for local path planning in different environments
or applications. To that end, the main contributions of this section are (i) a comparison
framework to benchmark different path-planning primitives for on-road urban driving, (ii)
the evaluation of different primitive configurations and optimisation techniques for path-
planning, and (iii) the open publication of the results and its consequent analysis, based on
a set KPIs related to the aforementioned main features.
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6.4 Trajectory generation

The trajectory generation is the last step of the motion planning architecture. The main goal
of this module is to provide a new trajectory when requested by the manoeuvre planner,
with the aim of achieving the best trade-off between optimality and planning time. Note that
in this document, it is referred to as trajectory the composition of a path with an associated
speed profile. Bearing this in mind, the computed trajectory must meet a set of requirements:

• To ensure comfort inside the vehicle, steering and pedals behaviour must be smooth
and continuous. In order words, lateral and longitudinal accelerations should not
exceed specified maximum values along the trajectory.

• The trajectory generator must be able to provide feasible trajectories to avoid static or
dynamic objects.

• The trajectory must be computed in a reasonable amount of time in order to be reactive
enough to avoid collisions in dangerous situations.

6.4.1 Choosing the planning approach

Based on the above requirements, the primitive used for path planning must be able to
generate a continuous curvature path. In geometric terms, that means that G2 continuity
must be guaranteed. Furthermore, the path must be computed as fast as possible, since
an optimization algorithm should evaluate a large number of paths in the shortest possible
time.

Taking into account the extensive comparison presented in previous subsections a quin-
tic Bézier curve is chosen to generate the final path. Some of the main advantages of fifth
order Bézier curves over cubic ones are the higher control of the curve shape and the pos-
sibility to impose curvature at both extremes of the curve. Let us recall that it is possible to
concatenate quintic Bézier sections to achieve curvature continuity along the path, thus com-
plying with comfort requirements. Moreover, these curves allows to define a wide range of
curves from given initial and final poses, what allows to easily generate a number of possible
paths.

Although the two-stage optimization approaches give good results in terms of curve
smoothness optimization as discussed in section 6.3.3.2.2, the computation times are gener-
ally high and indeterminate. Furthermore, approaches using quintic Bézier curves and not
applying optimization algorithms have been shown to be able to find solutions with low
values of the cost functions used, by evaluating a limited number of possible candidates,
therefore, obtaining low and limited computation time.

In view of the above, the approach chosen for the final path generation is similar to the
one with ID: X:D:5:0:0:11:11 as defined in section 6.3.2.2, where X means any scenario. How-
ever, some modifications have been made over this approach: On the one hand, the algo-
rithm used for the centreline simplification is a modification of Douglas-Peucker algorithm
that, in addition to the algorithm tolerance (εsimp), imposes a maximum distance between
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two consecutive simplified points (dmax
simp) in order to extend the search space increasing the

amount of reference points to explore. On the other hand, the reference points are used to
create the candidates to explore by the planning algorithm instead of using them directly as
waypoints. A detailed description of how this is carried out is provided in section 6.4.4.

As stated, quintic Bézier curves provides a higher controllability of the curve shape over
cubic ones. The higher polynomial order allows to impose the position, orientation and
curvature at the extreme curve points but also two additional degrees of freedom are still
available, which are used to generate a set of different curves with the same initial (p0)
and final (p f ) poses. That is achieved by varying velocity and acceleration vectors while
maintaining the initial and final poses.

In order to generate a set of curves with the same orientation at their extremes, the length
of the initial and final velocity vectors (~t0 and ~t f ) is varied. Firstly, to make independent the
modules of the tangent vectors from each different curve cases (where the distance between
extreme points is not constant), both lengths are normalized with respect to the distance
between both curve extremes (dAB). Then, a set of nt points is generated between the interval
[mmin

t , mmax
t ], where mmin

t and mmax
t are the minimum and maximum normalized lengths of

the tangent vectors, respectively. Finally the length of the tangent vector is calculated as
follows:

|~TA
n | = |~TB

n | = mtn · dAB ∀mtn ∈ [mmin
t , mmax

t ] n = 1, · · · , nt (6.28)

Furthermore, based on (6.10), the relationship between curvature and normal compo-
nent of the acceleration vector is used to maintain the curvature at curve extremes while
tangential component is varied to generate different curves. In that sense, the following
expression is used to generate nκ different acceleration vectors.

~κm = am · ~Tm
u + κm| ~Tm|2 · ~Nm

u (6.29)

where ~Tm
u and ~Nm

u are the unit tangent and normal vectors at point m of the curve and,
by definition, at = | ~Tm|′. However, as curvature is only dependent of the normal compo-
nent, nκ values of am are imposed to generate different acceleration vectors with the same
curvature at point m.

Just like in the case of the velocity vector length, the tangential component of the accel-
eration vector is modified proportionally to distance dAB as expressed in equation (6.30).

am
n = mκn · dAB ∀mκn ∈ [mmin

κ , mmax
κ ] n = 1, · · · , nκ (6.30)

Once velocity and acceleration vector are calculated for two given poses, equations (6.15)
to (6.19) are applied to generate quintic Bézier curves imposing all combinations of velocity
and acceleration vectors at both extremes. This method allows to generate a set of different
curves maintaining the initial and final poses, allowing a better space exploration from the
same inputs (p0 and p f ). Figure 6.18 shows a set of curves generated with the same initial
and final poses and the curvature of each curve, where a range of colours has been used to
relate each curve (at the top of the figure) with its curvature (at the bottom).
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FIGURE 6.18: Top: Quintic Bézier curves generated with the same initial and
final poses: A = [1, 1, 45, 0.1], B = [10, 3,−10, 0]. Bottom: Curvatures of the

top curves

6.4.2 Collision checking

In sampling-based motion planning approaches, collision checking should be carried out for
each sampled system state. Thus, collision checking is the most computationally expensive
process in most of the search-based motion planning algorithms [155].

Some approaches such as those presented in [154] introduce two collision checking
stages in order to firstly make a fast approximation of the possible colliding states. Then
a second and more accurate collision computation is performed.

Several collision checking approaches start from the rectangular vehicle shape and then
approximate this rectangle through a set of circles (typically 3, 4, 6 or 8 circles) [155, 154]. The
main motivation for these approaches is the low computing time of the collision checking
as only the computation of euclidean distances is needed. The main drawback of these
approaches is the loss of accuracy when few circles are used to approximate the vehicle
shape. The key challenge is to balance the computing time and collision checking accuracy.

Instead of circle-based approximations of the vehicle footprint, the approach for collision
checking presented in this thesis uses the bounding rectangle of the vehicle. The method is
based on the generation of a polygon that represents the space that the vehicle would take
while driving along the calculated path. Finally, this occupancy polygon is used to firstly
check if the path is inside the road corridor and then if any obstacle collides with it.

In order to obtain the occupancy polygon, the dimensions of the vehicle and the path
generated as explained in section 6.4.1 are needed. Taking advantage of the fact that the
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path is a Bézier curve or a concatenation of them, the tangent vector and the curvature can
be obtained analytically.

Based on the path, the right and left bounds of the area occupied by the vehicle can be
calculated as follows: the right bound will be composed of the points of right extreme of the
front of the vehicle when the vehicle is turning left and of the points of right extreme of the
rear axle when turning right. The left bound is calculated analogously: it is composed of the
points of left extreme of the front of the vehicle when the vehicle is turning right and of the
points of left extreme of the rear axle when turning left.

It is worth to mention that a safety margin is added around the vehicle (dsm). To deter-
mine if vehicle is turning right or left, the sign of the curvature is used. Finally, the polygon
is conformed by joining the points of right and left sides to obtain a closed shape. Fig-
ure 6.19 shows an example of occupancy polygon for a given path, where ltw is the vehicle
axle track, lla is the distance from the rear axle to the front bumper and llb is the distance
from rear bumper to the rear axle.

FIGURE 6.19: Example of the path occupancy polygon calculation for collision
checking

In point B of figure 6.19 can be seen how the vehicle is turning right and the extreme left
point of the front belongs to the left bound of the polygon, while the right extreme point of
the rear axle y used for the right bound.

Once the path occupancy polygon is obtained, it is used to check if it is inside the road
corridor and also if it collides with some obstacle. The verification strategies for both cases
rely on the algorithm 5 described in [57] to solve the “point in polygon” problem. However,
our approach introduces several modifications to the original version.

Verify if the path polygon is inside a given road corridor It is checked that all vertexes of
a simplified path polygon are inside the road corridor. When a vertex of the path
polygon is outside the road corridor polygon, the execution stops.

Verify if the path polygon collides with some obstacle In this case all vertexes of the ob-
stacles are checked to be outside the path polygon. When a vertex of any obstacle is
inside the path polygon the execution stops as in the previous case.
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6.4.3 Speed profile generation

The speed profile is calculated over a given path so that a longitudinal speed value is asso-
ciated to each of its points.

In order to comply with requirements, the generated speed profile must limit both lon-
gitudinal and lateral accelerations as well as maximum speed to comply with traffic rules
and to ensure comfort inside the vehicle (see table 6.4). In this connection, initial and final
speed must be also imposed.

Symbol Description
v0 Initial speed
v f Final speed
vmax Maximum allowed speed
amax,lat Maximum lateral acceleration
amax,acc Maximum positive longitudinal acceleration
amax,dec Maximum negative longitudinal acceleration

TABLE 6.4: Speed profile generation parameters

Since the road corridor and the centreline are composed of Bézier curves as described in
section 4.4, the curvature in each of the simplified points over the centreline is analytically
calculated when a new corridor is generated. The curvature at each reference point (κRn )
is then used to compute a maximum speed value (vmax

Rn
) by limiting the lateral acceleration

(amax,lat) as follows:

vmax
Rn

=

√
amax,lat

|κRn |
(6.31)

These maximum speed values at reference points will be used to set the final speed of
the final trajectory computation:

v f = vmax
Rn

(6.32)

where Rn is the reference point over the centreline used to generate the candidate selected
to generate the final trajectory).

The speed profile calculation is carried out in several stages:

1. Firstly, a speed limit curve is computed based on maximum lateral acceleration al-
lowed (amax,lat). To that end, the speed limit at each point of the path is computed
considering circular motion with the curvature:

vn,limit =

√
amax,lat

|κn|
(6.33)

where n is the index of path point. Then the maximum speed at point n is calculated
as follows:

vn = min{vmax, vn,limit} (6.34)
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2. After that, longitudinal accelerations are limited. To do that, initial and final speeds
(v0 and v f ) are imposed and the acceleration profile is computed assuming uniform
acceleration between two consecutive points of the path (see equation (6.35)).

vn =
√

v2
n−1 + 2andp (6.35)

where dp is the distance between points n− 1 and n of the path.

3. Then, the accelerations computed for each path point are traversed forward in order
to verify that it is lower than the maximum acceleration value (amax,acc). In case that
the acceleration at point n overcomes the limit, it is thresholded to the maximum value
and the speed at point n + 1 is recalculated using equation (6.35).

4. Finally, the same procedure followed in the previous step is performed backwards
imposing a deceleration limit of adec along the whole path.

Parameter Speed profile 1 Speed profile 2
vmax(km/h) 30 30
amax,lat(m/s2) 1.04 1.04
amax,acc(m/s2) 1.12 0.56
amax,dec(m/s2) 2.40 1.20

TABLE 6.5: Speed profile parameters used in examples of figure 6.20

As an example, figure 6.20 shows two speed profiles computed for the same path with
different values of the parameters of table 6.5. The maximum lateral acceleration shown
in this table (amax,lat(m/s2)) has been obtained by considering 30% of the lateral accelera-
tion applied to the vehicle when driving at 15 km/h through a tight curve with a turning
radius of 10 metres. The maximum longitudinal accelerations (amax,acc(m/s2)) have been
calculated, as the 40% (speed profile 1) and 20% (speed profile 2) of a the acceleration ap-
plied to the vehicle to accelerate from 0 km/h to 100 km/h in 10 s. Finally, the imposed
maximum decelerations are the 60% and 30% of a maximum braking acceleration of 4 m/s2,
respectively.

As can be seen, the speed profile 1 is calculated by using higher values of longitudinal
accelerations. Consequently, greater speeds are achieved along the same path, as shown at
the bottom of figure 6.20.

When a replanning is being performed, the initial speed is set to the current vehicle
speed and the final speed is taken from the speed estimation of the road corridor centreline
performed, as described in section 6.4.3, when a new road corridor is set. It is important
to emphasize the importance of speed imposed at the end of the trajectory, as it ensures
the anticipation of the speed calculation over a path taking into account the road corridor
features beyond where the current planed path ends.

It is also remarkable that this approach allows to change the speed planner parame-
ters (amax,lat, amax,acc, amax,dec and vmax). That means that it is possible to adapt the speed
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FIGURE 6.20: Top: Example path. Middle: Curvature of the path. Bottom:
Two speed profiles computed over the same path
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behaviour over the path based on passengers needs allowing them to choose the driving
abruptness level.

As depicted in figure 6.21, a new speed profile is needed when a moving obstacle moves
perpendicularly to the trajectory of the vehicle. In order to choose a speed profile that avoids
the temporal collision with the obstacle a set of speed profiles are calculated by decreasing
iteratively the maximum speed in the section from the current position vehicle to the colli-
sion point of the path, maintaining the stated maximum speed (vmax) for the speed profile
of the remaining path. Thus, when a speed profile complies with ∆Tcoll > Tth in the spatial
collision point, the speed profile of the current trajectory is updated to avoid the collision,
and then, after the vehicle reach the collision point, the speed profile calculation is resumed.

6.4.4 Trajectory generation algorithm

The main goal of the trajectory generation module is to provide a new trajectory when re-
quested by the manoeuvre planner. The proposed strategy to solve the motion planning
problem comprises several steps:

1. Motion planning problem initialization: At this first stage, the motion planning
solver defines the search space to explore depending on the planning mode that has
been set.

2. Candidates evaluation: At this stage all the path candidates are evaluated by checking
their validity and calculating their costs based on previously defined cost functions.

3. Candidate selection: Among the valid evaluated candidates, one is selected based on
their costs values.

4. Final trajectory calculation: Once the best candidate is chosen, the speed profile is
calculated taking into account the maximum accelerations to ensure comfort inside
the vehicle.

This algorithm is triggered when requested by the manoeuvre planner (see figure 3.4).
Since the manoeuvre planner module is continuously analysing the current situation (colli-
sion checking of the current trajectory with perceived objects, and the remaining trajectory
length), a prioritization mechanism has been included in the trajectory generation.

The general motion planning algorithm is depicted in figure 6.21. The following subsec-
tions provides detailed descriptions of all the algorithm stages enumerated above.

6.4.4.1 Motion planning problem initialization

The initialization is the first task performed when a new trajectory is requested. Its main
function is to set up the rest of the planning process based on the current vehicle state and
the planning mode requested, as introduced in section 5.5. Four different planning modes
are defined in order to address all possible situations when analysing the obstacles that are
perceived:
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FIGURE 6.21: General flow diagram of motion planning algorithm
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Plan from current pose: This planning mode is used when planning for first time or in
emergency situations e.g. when the vehicle is not being able to follow current trajec-
tory with small control errors.

When this planning mode is used, the initial pose for path planning is set to the cur-
rent vehicle pose. The final poses for the candidates of this trajectory section are deter-
mined by the next nrp reference points.

Extend current trajectory: If the trajectory generator is called with this planning mode, a
point placed at the 90% of the current trajectory length is taken as the initial point for
the new trajectory section. As in the previous case, the final poses for the candidates
are determined by the next nrp reference points.

Avoid static obstacle: In order to state the reference points for the candidates when a col-
lision of the current trajectory with static obstacle is detected, the free distance from
the obstacle to both boundaries of the road corridor (left and right boundaries) is mea-
sured to determine if the vehicle is able to pass the obstacle by none, one of both sides.
If there is no space enough to avoid the obstacle it is assumed that the lane is locked
and the trajectory is shortened to stop ahead the obstacle maintaining a safe distance,
and a new speed profile is calculated with v f = 0km/h. In this case, an alternative
route to reach the same destination is requested to the global planner. In the cases
that the vehicle is able to avoid the obstacle, a set of equidistant reference points is
computed over the free space of the perpendicular line to the centreline of the road
corridor that pass through the centre of the obstacle as shown in figure 6.22.

FIGURE 6.22: Proposed candidates in case that an static obstacles must be
avoided

The point of the current path placed at a distance dstatic (m) from the obstacle is set as
initial point of the new trajectory section. In the case that the distance from the vehicle
to the obstacle is lower than dstatic, the closest point of the current path to the vehicle
is taken as the initial point for candidates.

Avoid dynamic obstacle: If a future collision with dynamic obstacle is detected, the motion
direction of the obstacle is used to determine the strategy to avoid it:
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• In the event that the object moves perpendicularly to the trajectory of the vehicle,
it is assumed that it will outside the road in the near future so a new speed profile
that avoid the future collision is searched. In case that a new speed profile can
not be found, a new path is computed using the same strategy that is described
for the static obstacles above.

• If the obstacle moves in the same direction that the vehicle, a new speed profile is
computed using the obstacle speed as the maximum speed.

• If the obstacle moves in the opposite direction to the vehicle, the strategy used
is similar to those described to avoid static obstacles. Nevertheless, instead of
considering the current pose of the obstacle, the predicted pose in the collision
point is used.

Further details about how the collision checking with moving obstacles is carried out
can be found in section 6.4.2.

Once the problem initialization is carried out, the candidates evaluation is performed if
needed. Note that in cases such that the trajectory is shortened or only the speed profile is
updated there is no need to evaluate path candidates.

6.4.4.2 Candidates evaluation

In this stage, all the path candidates that have been selected in the problem initialization are
computed and evaluated.

The first step in the evaluation of a candidate is to check its validity i.e. check if the path
can be driven by the vehicle i.e. if the maximum curvature of the path candidate is below the
maximum feasible curvature by the car (κpc

max < κv
max, see figure 6.23a), if it would lead the

vehicle outside the road corridor (see figure 6.23b) or if it would lead the vehicle to collide
with some obstacle (see figure 6.23c). If the

After the validity of the path candidate is satisfactorily checked, if it is valid, the cost
function used to evaluated the quality of the path is computed (see figure 6.23d). As de-
scribed in section 6.3, it is not a trivial task to choose a cost function that define the goodness
of a path in a given context. Nevertheless, based on the comparison carried out, the follow-
ing cost function is used in the evaluation of the candidates.

Jp =
1

wLp Lp

∫ s f

s0

κ̇(s)2 + wκ̈ κ̈(s)2 ds (6.36)

This cost function is similar to J3, which was used in the primitive comparison. On the
one hand, first and second derivatives of the curvature reflect the smoothness of the path
along the curve. Moreover, the length of the path (Lp) is used to normalize its result. The
main difference with J3 relies on the use of the weight parameter wLp . The motivation for
adding this weight is that in case that wLp = 1 (i.e. this weight is nor considered), the path
that minimizes the cost functions tends to be straight and short in spite of being in curved
road sections, thus obtaining almost straight paths in cases in which it should not. In order
to avoid that, wLp is used with values greater than 1.
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(A) Check if the path can be driven by the
vehicle

(B) Check if the candidate leads the vehicle
outside the road corridor

(C) Check collision with obstacles (D) Cost calculation of all valid candidates

FIGURE 6.23: Candidates evaluation steps

6.4.4.3 Best candidate selection and final trajectory calculation

Among all valid candidates evaluated in the previous stage, the candidate with minimum
cost is selected as the path for the final trajectory. In order to obtain the final trajectory, firstly
the Bézier curve of the selected path candidate is evaluated to obtain equidistant points .

Equidistant points can not be directly computed in a Bézier curve. To do that, firstly the
curve polynomials are evaluated using a fine discretization of the parameter t to approxi-
mate the relationship between t and the distance over the curve (s). Finally, the values of t
to obtain equidistant points are calculated by interpolation.

Depending on the planning mode, the new path section can be concatenated with a
section of the previous path or not.

Once a path of equidistant points is obtained, the speed profile is computed as described
in the section 6.4.3.

6.4.5 Trajectory generation results

The proposed trajectory generator has been validated by performing different experiments
using the experimental platform described in section 7.2 at the test track of the Centre for
Automation and Robotics (CSIC-UPM). To perform the trials, the trajectory generator has
been integrated in the architecture proposed in section 3. Nevertheless, this subsection fo-
cuses in the results of the trajectory generator.

The algorithm is evaluated in two different driving scenes: (i) an urban-like scenario
with sharp curves and (ii) an urban-like scenario where static and dynamic obstacles must
be avoided.
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In the experiments carried out, the trajectory generator was set up to compute a total of
4500 path candidates in each planning request. The detailed list of parameters and values
used in these experiments are shown in tables 6.6 and 6.7.

Parameter Description Value
dsm Safety distance around vehicle (m) 0.4
minpl Minimum trajectory length threshold (m) 55
εsimp Tolerance for centreline simplification (m) 0.25
dmax

simp Maximum distance between reference points (m) 7
nrp Number of reference points used to create candidates 15
nt Initial and final tangent vector magnitude evaluation number 10
nκ Initial curvature vector magnitude evaluation number 3
mmin

t Minimum normalized tangent vector magnitude 0.3
mmax

t Maximum normalized tangent vector magnitude 1.7
mmin

κ Minimum normalized curvature vector magnitude 0
mmax

κ Maximum normalized curvature vector magnitude 10

TABLE 6.6: Path planning configuration

Parameter Description Value
vmax Maximum allowed speed (km/h) 20
amax,lat Maximum lateral acceleration (m/s2) 1.0
amax,acc Maximum positive longitudinal acceleration (m/s2) 0.4
amax,dec Maximum negative longitudinal acceleration (m/s2) 0.7

TABLE 6.7: Speed planning configuration

6.4.5.1 Scenario 1: Urban-like route through tight curves

This scenario presents a highly sharp road corridor in which the trajectory generator is
tested. The route includes the entrance and exit of a small roundabout and several 90o

curves in a single narrow lane of 5 meters wide approximately. Figure 6.24 shows the valid
candidates evaluated in different planning request during the trial. Notice that invalid can-
didates has not been plotted in this sub-figures and still the trajectory generation algorithm
can choose the final candidate among a number of valid candidates that evaluated in each
planning request

Figure 6.25 shows the path seen by the vehicle controllers and the real vehicle path dur-
ing the performed trial. As can be visually noticed, the whole path presents a smooth shape
similar to typical vehicle paths obtained when a human is driving.

Figure 6.26 shows information of the trajectory tracking during the full trial in scenario
1. In addition to the visual perception of the path smoothness of figure 6.24 and 6.25, in
figure 6.26a it can be seen that both lateral and angular errors used in the lateral control
present a smooth behaviour, even though the trajectory is updated 13 times during the trial.

Moreover, figure 6.26d shows the instant and mode of the planning requests performed.
It can be noticed that the mode of the first planning request is 0, corresponding to plan from
the current vehicle pose as there no initial trajectory. Since this scenario does not comprises
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(A) Planning request 1. Instant t=5.367 s (B) Planning request 2. Instant t=5.467 s

(C) Planning request 4. Instant t=5.666 s (D) Planning request 5. Instant t=8.765 s

(E) Planning request 6. Instant t=13.154 s (F) Planning request 8. Instant t=20.253 s

(G) Planning request 9. Instant t=23.960 s (H) Planning request 12. Instant t=43.495 s

(I) Planning request 13. Instant t=45.825 s

Road corridor
Path candidates
Selected path section
Full path followed
Planning requested

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized path candidates cost

(J) Legend

FIGURE 6.24: Valid and selected candidates at some of the planning requests
during the trial in scenario 1
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FIGURE 6.25: Final reference path and vehicle path in the scenario 1 trial

obstacles, the rest of the planning requests are performed in mode 1 (extend current trajec-
tory). In addition, it can be observed that the first four planning requests are consecutively
performed. This is caused by the minimum remaining path length requirement, that makes
the manoeuvre planner to send planning requests to the trajectory generator with planning
mode 1 (extend current trajectory) until this requirement is met.

Finally, figure 6.26c shows the reference speed and measured vehicle speed during the
test.

Regarding the computing time, the mean of the processing time per planning request is
56.37 ms with and standard deviation of 14.69 ms. Furthermore, more information of each
planning request is shown in table 6.8.

Planning
request ID

Request
time-stamp (s)

Planning
mode

Planning
time (ms)

Valid candidates
(%)

1 5.37 0 73.96 33.51
2 5.47 1 64.43 21.80
3 5.56 1 61.04 16.11
4 5.67 1 65.50 12.38
5 8.77 1 64.24 5.93
6 13.15 1 52.98 3.44
7 16.61 1 57.44 17.27
8 20.25 1 51.61 4.04
9 23.96 1 58.29 7.04

10 32.33 1 76.77 35.11
11 42.15 1 42.90 9.80
12 43.50 1 42.01 12.00
13 45.83 1 21.61 14.42

TABLE 6.8: Additional information related to relevant planning requests dur-
ing the trial in scenario 1

Regarding the speed planning, the maximum positive longitudinal, negative longitu-
dinal and lateral accelerations were set to 0.4 m/s2, 0.7 m/s2 and 1.0 m/s2, respectively.
To analyze the resulting behaviour of the vehicle in terms of occupant comfort, figure 6.27
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(A) Lateral and angular control errors during the trial.
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(B) Path curvature and steering wheel angle during the trial.
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FIGURE 6.26: Trajectory tracking in scenario 1 trial
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shows a density plot of the real longitudinal and lateral accelerations to measured along the
trial. This figure depicts that most of the acceleration measurements fall within the dashed
white rectangle that represent the stated acceleration limits.

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Lateral acceleration (m/s2)

-1

-0.5

0

0.5

1

L
o

n
g

it
u

d
in

al
 a

cc
el

er
at

io
n

 (
m

/s
2
)

A
cc

el
er

at
io

n
 a

p
p

li
ca

ti
o

n
 t

im
e 

(s
)

0

0.8

1.6

2.4

3.2

4.0

4.8

FIGURE 6.27: Density graph of measured acceleration in the vehicle during
the trial in scenario 1

To conclude, this experiment showed that the proposed algorithm is able to generate a
number of valid candidates and select the optimum candidates in a few milliseconds even
in sharp areas where consecutive curves must be overcome by the vehicle.

6.4.5.2 Scenario 2: Static and dynamic obstacles avoidance

The scenario of this experiment includes static and dynamic obstacles located at different
places of the route that the vehicle is following to reach the destination point, which was set
a few meters behind the initial point as can be seen in figure 6.28. As this scenario includes
a greater complexity with respect to the previous one, and consequently a higher number of
planning request is carried out, only the valid path candidates of five representative plan-
ning requests (1, 6, 16, 40, 42) during the trial are plotted to improve the readability of this
figure. To complement the understanding of this plot, table 6.9 shows relevant information
about the representative planning requests of figure 6.28. In this table the planning modes
correspondence is 0 - re-plan from current pose, 1 - extend current trajectory, 2 - avoid static
obstacle, and 3 - avoid dynamic obstacle. Moreover, the percentage of valid candidates and
the processing time in milliseconds at each request are also shown in this table. The average
planning time for the whole trial was 37 ms with a standard deviation of 25 ms for the whole
experiment.

Furthermore, figure 6.29 shows the speed profile and vehicle speed (left ordinate axis)
together with the planning requests during the experiment (right ordinate axis). In this fig-
ure it can be seen how and when the planning requests are triggered with different planning
modes depending on the situation: at the beginning, the first trajectory is planned from the
current vehicle pose (mode 0). At instant t=31.47 s, a dynamic obstacle is detected and con-
sequently a new planning request is carried out (request ID 10). Later, at instant t=45.54 s,
the first static obstacle is detected and a planning request of mode 2 is sent (request ID 16).
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Afterwards, successive planning requests are closely triggered (request IDs 17-42). This is
caused by the small shape and localization changes of the perceived obstacles at different
consecutive instants, which leads to launch the candidates evaluation procedure at a higher
frequency. Note that the trajectory is quickly corrected to avoid the obstacles satisfacto-
rily even with highly noisy perception information. It is also to be noticed that although
the speed profile is smooth and continuous almost at every moment, there are two instants
(planning requests 10 and 11), where the sudden incursion of the pedestrian in the road
forces to reduce the target speed so that the vehicle keeps in the safe envelope.

FIGURE 6.28: Resulting paths in scenario 2
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FIGURE 6.29: Resulting speed profile and planning requests in scenario 2

In order to analyse the comfort inside the vehicle during the test, figure 6.30 shows a
density map to represent the measured longitudinal and lateral accelerations. In these tests,
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the maximum positive longitudinal, negative longitudinal and lateral accelerations were set
to 0.4m/s2, 0.7m/s2 and 1.0m/s2, respectively.
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FIGURE 6.30: Density graph of measured acceleration in the vehicle during
the trial in scenario 2

Figure 6.30 shows how most of the measured acceleration values fall within the limits
(marked with a dashed white rectangle in figure 6.30) established in the planning. How-
ever, some values are outside mainly due to the joint effect of vibrations induced by road
imperfections and road and vehicle pitching and rolling. It can also be noticed that since
the vehicle must go through more right turns than left ones to reach the destination, more
negative (acceleration applied in left direction) than positive lateral acceleration values are
measured.

Planning
request ID

Request
time-stamp (s)

Planning
mode

Planning
time (ms)

Valid candidates
(%)

1 0.092 0 54.45 30.18
6 12.70 1 36.66 33.22

10 31.47 3 1.01 -
16 45.54 2 67.23 34.24
40 48.34 2 70.40 27.56
42 48.43 2 14.49 41.47

TABLE 6.9: Additional information related to relevant planning requests dur-
ing the trial in scenario 2

6.5 Occupancy grid-based motion planning

As described in section 4.6, when maps are used as a part of the environment understand-
ing, the good localization with respect to the map becomes critical. To deal with localization
uncertainty in motion planning when map data is used, the grid-based approach presented
in section 4.6 has been implemented. By means of this approach the probability of occupa-
tion of each grid cell is obtained, thus providing more information about the occupancy of
the nearby environment that merely the road corridor as considerer so far.
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In order to use the occupancy probability information in the local planning, the stages
problem initialization and candidates evaluation (described in section 6.4.4.2) have been
extended. As described in section 6.4.4.1, this first stage of the trajectory generator is in
charge of defining the search space to create the path candidates. Taking into account the
size of the occupancy grid, the problem initialization states the path candidates from the
reference points that falls within the grid.

The size of the occupancy grid is updated every time it is computed. This is carried out
to cover a specified amount of meters ahead the current vehicle position measured over the
centreline of the road corridor. In this context, the road corridor ahead the vehicle is used
to calculate the width and height of the occupancy grid ensuring that both left and right
boundaries from the vehicle position until the last considered point centreline point fall
within the grid. Moreover, the occupancy grid is always aligned with the vehicle orientation.

6.5.1 Candidates evaluation with occupancy grid

The main difference when using the occupancy grid for motion planning with respect to the
general approach presented in section 6.4.4.2 is found in the candidates evaluation stage.
In this case, instead of having the drivable space boundaries as input for the evaluation the
validity of each path candidate and the path cost related to its smoothness, the occupancy
grid is the information baseline to compute both the candidates validity and cost.

The validity is determined similarly than in the general case i.e. by checking the three
verifications: firstly (i) the maximum curvature of the path candidate (kpc

max) must be lower
than the maximum curvature feasible by the vehicle (kv

max); after that, (ii) it is checked if the
path is inside the road corridor and also (iii) if there is a collision with any obstacle.

One of the main advantages of the occupancy grid approach is that it allows to fuse
environmental information coming from different sources. In this case, both the road cor-
ridor and the static objects perceived by exteroceptive sensors are rasterized into the grid.
This method allows to abstract the motion planning algorithm to the different information
sources, focusing only in one occupancy grid. That means that points (ii) and (iii) mentioned
in the paragraph above can be verified at once. Therefore, instead of using the algorithm
proposed in [57] to check if the path is inside the road corridor and check possible collision
with static obstacles, the occupancy values of grid cell occupied by the candidate are used
to accomplish this.

The path occupancy polygon of the candidate is computed just as in the general case (see
section 6.4.2). However, once it has been verified that the maximum curvature verification
has been passed, the cells that the candidate occupies are found. To do that, firstly the
candidate polygon is rasterized on a empty grid with the same size that the occupancy grid
and the scan-line flood fill algorithm is used to find the cells that fall within the polygon.
Thus, a list of all cells occupied by the candidate is obtained and can be used to extract
occupancy data from the occupancy grid to verify its validity and compute its cost. An
example of the rasterization of a path-polygon is shown in figure 6.31.
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FIGURE 6.31: Example of path-polygon rasterization over an occupancy grid

To determine the validity of the candidate, the occupancy probability of each cell occu-
pied by the candidate must be below a given occupancy probability threshold (Pvth). Thus,
the candidate is valid if the following equation is verified:

Pc
max < Pvth (6.37)

where Pc
max is the maximum occupancy of the cells occupied by the candidate.

Once the validity of the candidate is checked, its cost is computed. The cost function
used in this case is similar to that used in the general approach (see equation (6.36)). Never-
theless, a new component has been added to the function to represent the mean occupancy
probability over the path candidate (Ppc). Moreover, wog is used to weight the occupancy
mean over the path with respect the other function components:

Jp = wogPpc +
1

wLp Lp

∫ s f

s0

κ̇(s)2 + wκ̈ κ̈(s)2 ds (6.38)

6.5.2 Motion planning results using the occupancy grid

Different trials has been carried out in three different scenarios to test the proposed motion
planning algorithm based on occupancy grid. The same scenarios used to test the trajectory
generator in section 6.4.5 are used to test the adapted motion planning algorithm using the
occupancy grid (scenario 1 and 2). Finally a third scenario that with a longer route has been
tested.
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The grid-based approach required the specification of new parameters: on the one hand,
those used to define the occupancy grid properties are shown in table 6.10. On the other
hand, the localization uncertainties used to apply the algorithm proposed in section 4.6 are
shown in table 6.11. The values of both tables have been the used for the three experiments
carried out. Regarding trajectory generation algorithm, the same parameters used in the tri-
als presented in section 6.4.5 are applied in the subsequent experiments, with the exception
of minpl , that has been set to 50 m instead 55 m. This parametrization have been selected
empirically in order to find a balance between computing time, grid accuracy and distance
ahead the vehicle.

Parameter Value
Distance ahead (m) 60
Grid cell size (m) 0.2

TABLE 6.10: Occupancy-grid parameters

Parameter Value
σx (m) 0.02
σy (m) 0.02
σθ (rad) 0.05

TABLE 6.11: Considered localization uncertainties

6.5.2.1 Scenario 1: Urban-like route through tight curves using the occupancy grid

This scenario consists of an urban-like layout where the vehicle has to drive through con-
secutive tight curves. The details of this scenario are the same that those defined in sec-
tion 6.4.5.1.

Figure 6.25 shows the concatenation of all paths followed by the vehicle and the real
vehicle path during the performed trial. The resulting path is similar to the one obtained in
the case tested in section 6.4.5.1 which presents a smooth shape.

In figure 6.33, results of the trajectory tracking during the full trial in scenario 1 is shown.
Again, the resulting vehicle behaviour when following the planned trajectories is similar to
those obtained when the occupancy grid is not used for motion planning purposes. Never-
theless, it is observed a higher amount of planning requests are performed in this case (19,
in contrast to 13 in the case of section 6.4.5.1), as can be seen on figure 6.33d. This is due to
the shorter distance ahead used in this case in order to obtain a reasonable grid size. Note
that the higher the grid size, the longer the grid computing time. Moreover, as in the case in
section 6.4.5.1, all planning requests are performed with mode 1 except the first one, which
is performed with mode 0, as expected since there is no obstacles in this scenario.

Finally, figure 6.33c shows the reference speed and measured vehicle speed during this
trial.
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FIGURE 6.32: Final reference path and vehicle path in the scenario 1 using the
occupancy grid

Regarding the planning time, the mean of the processing time per planning request is
112.99 ms with a standard deviation of 64.10 ms. Although this results shows that the plan-
ning time last approximately twice as long as when the occupancy grid is not used, it is still
reasonable.

To analyze the resulting behaviour of the vehicle in terms of occupant comfort, fig-
ure 6.34 shows a density plot of the real longitudinal and lateral accelerations to measured
along the trial. As in the similar case in section 6.4.5.1, this figure depicts that most of the
acceleration measurements fall within the dashed white rectangle that represent the stated
acceleration limits.

Figures 6.35a and 6.35b show the computation time and the number of grids of grids
generated during this experiment, respectively.

The histogram in figure 6.35b depicts the distribution of the number of computed grids
during the test (60 s approximately), according to their sizes. As can be seen, the size of most
grids is between 20000 and 50000 cells in this case. Figure 6.35a shows the computation time
of the grids with respect to their size of all the grids computed. In this case, the computation
times of most grids concentrates between 60-90 ms, what is a reasonable value.

In conclusion, this experiment showed that the proposed motion planning algorithm
using the occupancy grid as input is able to generate a number of valid candidates and select
the optimum candidate in a few milliseconds, even in sharp areas where consecutive curves
must be overcome by the vehicle. The main difference with regard to the same experiment
carried our without the occupancy grid relies on the computation time, obtaining a worse
performance in this sense. However, this method consider the localization uncertainty as it
has been previously propagated over the occupancy grid.
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(A) Lateral and angular control errors during the trial.
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(B) Path curvature and steering wheel angle during the trial.
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FIGURE 6.33: Trajectory tracking in scenario 1 using the occupancy grid
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FIGURE 6.34: Density graph of measured acceleration in the vehicle during
the trial in scenario 1 using the occupancy grid
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(A) Computation time of occupancy grid cal-
culations regarding the grid size.
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(B) Histogram with respect of grid size.

FIGURE 6.35: Occupancy grid results in scenario 1
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6.5.2.2 Scenario 2: Static obstacles avoidance using the occupancy grid

This scenario is similar to the one presented in section 6.4.5.1. It includes static obstacles
located at different places of the route that the vehicle is following to reach the destination
point. Thus, this scenario includes a greater complexity with respect to the previous one.

Figure 6.36 shows the concatenation of final paths together with the real path of the
vehicle. In this case, just like in the similar scenario without using the occupancy grid (sec-
tion 6.4.5.1), the trajectory is quickly corrected to avoid the obstacles satisfactorily even with
noisy perception information. In addition, figure 6.37 shows two consecutive screenshots of
the 3D visualization while the vehicle was avoiding the obstacles and figure 6.38 shows two
front vehicle pictures at similar instants of the trial, where static obstacles (two cardboard
boxes) can been seen.
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FIGURE 6.36: Resulting paths in scenario 2 using the occupancy grid

Regarding computing time, the average planning time for the whole trial was 193.18 ms
with a standard deviation of 144.58 ms for the whole experiment. In comparison with the
previous case, the mean planning computation time has been increased due to the static
obstacles avoidance requests. Note that depending on the shape of the ahead section of
the road corridor that fall within the grid, the amount of reference points used to generate
path candidates vary along the trial. Taking into account that the occupancy grid has been
parametrized to achieve a balance between computing time, ahead distance and planning
space exploration, typically a lower number of reference points are used and consequently
a lower amount of candidates are generated. However, when a planning request to avoid
a static obstacle is carried out, all the generated reference points (as shown in figure 6.22)
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(A) Avoiding first static obstacle. (B) Avoiding second static obstacle.

FIGURE 6.37: 3D visualization screenshots while avoiding static obstacles

(A) Avoiding first static obstacle. (B) Avoiding second static obstacle.

FIGURE 6.38: Pictures of the frontal vehicle view while avoiding static obsta-
cles
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6.5. Occupancy grid-based motion planning

falls within the grid. Thus, a higher number of candidates are evaluated in these type of
requests, causing higher values of mean and standard deviation values. This effect could be
mitigated by distributing a low number of reference points when avoiding a static obstacle.

Figure 6.39 depicts the same information about the trajectory tracking than has been
shown in the previous cases. As can be observed, the vehicle is able to smoothly follow the
trajectory during the whole trial, even when the static obstacles are being avoided.
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(A) Lateral and angular control errors during the trial.
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(B) Path curvature and steering wheel angle during the trial.
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FIGURE 6.39: Trajectory tracking in scenario 2 using the occupancy grid

In order to analyse the comfort inside the vehicle during the test, figure 6.40 shows a
density map to represent the measured longitudinal and lateral accelerations. Figure 6.40
shows how most of the measured acceleration values fall within the limits (marked with
a dashed white rectangle) established in the planning. However, some values are outside
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mainly due to the joint effect of vibrations induced by road imperfections and road and
vehicle pitching and rolling.
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FIGURE 6.40: Density graph of measured acceleration in the vehicle during
the trial in scenario 2 using the occupancy grid

Finally, figures 6.41a and 6.41b show the computation time and the number of grids of
grids generated during this experiment, respectively. In this case, the computation times
of the grids concentrates in around 75 ms for most of the grids computed during the test,
whose sizes are mostly between 35000 and 55000 cells. Although this scenario includes static
obstacles, these results are similar to those obtained in the previous experiment. Note that
the distribution of the grids according to their size is different from the previous case. This
is caused by the different route followed in this scenario.
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(A) Computation time of occupancy grid cal-
culations regarding the grid size.
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FIGURE 6.41: Occupancy grid results in scenario 2
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6.5.2.3 Scenario 3: Long urban route using the occupancy grid

Figure 6.42 shows the road corridor used together with the full path followed by the vehicle
until the destination point is reached. Moreover, figure 6.43 shows a screen shot of the 3D
visualization of one occupancy grid and path computed (left) and a front picture (right)
during a real trial.
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FIGURE 6.42: Road corridor, full concatenated planned and vehicle paths

FIGURE 6.43: Screen shot of the 3D visualization during the trial

The performance in terms of path smoothness of the paths generated using the occu-
pancy grid approach is similar than in the case of the general approach as the cost function
is quiet similar in both cases. However, it can be noticed how the path obtained through the
occupancy grid approach tends to be more centred in the lane since the occupancy proba-
bility is typically lower in the centre of the lane than in the vicinity of the edges.

Regarding the planning computation time, when the occupancy grid-based planning ap-
proach is used, it is expected a different performance with respect to the general approach
since the computationally expensive process of collision checking with static objects and the
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“inside corridor” verification is replaced by the probability thresholding of equation (6.37).
However, the computation time of the uncertainty propagation along the grid must be con-
sidered. The mean planning time in this test was 143.51 ms with a standard deviation of
130.08 ms.

The resulting trajectory could be easily followed by the vehicle. Figure 6.44 shows rele-
vant tracking variables logged during the test. It can be noticed the continuity of both lateral
(lateral and angular error, see figure 6.44a; and path curvature and steering angle, see fig-
ure 6.44b) and longitudinal (reference and vehicle speed, see figure 6.44c) control variables.
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(A) Lateral and angular control errors during the trial.
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(B) Path curvature and steering wheel angle during the trial.
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FIGURE 6.44: Trajectory tracking information in scenario 3

Furthermore, figure 6.45a shows the computation time of the grids with respect to their
size of all the grids computed during the test (110 s approximately). Note that the compu-
tation times of the grids concentrates in around 70 ms, what is a reasonable value. Besides
this scatter plot, the histogram in figure 6.45b depicts the distribution of the amount of com-
puted grids according to their sizes. As can be seen, the distribution of the number of grids is
sightly different to the previous scenarios since the route followed by the vehicle is different.
In this case, the size of most grids is between 20000 and 50000 cells.
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(A) Computation time of occupancy grid cal-
culations regarding the grid size.
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FIGURE 6.45: Occupancy grid results in scenario 3
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Chapter 7

INTEGRATION AND
DEMONSTRATIONS

7.1 Introduction

Once all decision-making architecture modules have been presented in chapters 4 – 6, this
chapter describes how they are integrated in the architecture presented in chapter 3. For
that purpose, the detailed description of the experimental platform used to evaluate the
proposed architecture in a real environment is firstly provided in section 7.2. This section
focuses in both hardware and software aspects of the vehicle components, providing an
in-depth description of sensor and actuation systems as well as a detailed insight of the
software architecture.

Besides the specific validation of the architecture modules that has been presented in
chapters 4 – 6, several live demonstrations, detailed in section 7.3, were carried out to show
the set of capacities of the proposed architecture.

7.2 Experimental platform

This section introduces the experimental platform used to test and validate the proposed
decision-making algorithms in a real environment.

7.2.1 Experimental platform components

With the goal of demonstrating the system reliability and its possible applications, the archi-
tecture has been implemented in one of the cars of the AUTOPIA Program fleet. Neverthe-
less, it is applicable to any test car as the implementation of each module has been developed
as general as possible, providing only those customizations that are only necessary for its
application to this specific car.

The car is a conventional Citroën DS3 which includes hardware modifications for the
automated control of throttle, gearbox, brake and steering systems. Moreover, a set of pro-
prioceptive and exteroceptive sensors have also been installed. As on-board unit, the test
car has one standard PC installed in the trunk. This computer runs a linux-based OS on a
machine with an Intel i7-3610QE processor, 8 GB of RAM memory and a solid-state drive.
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FIGURE 7.1: DS3: the test platform

The first step to control any system is the data acquisition, and for a self-driving car this
is not different. When a person is driving a car on the road, he manages information about
his own vehicle, the road and the nearest cars at the same time. In this section, the on-board
sensors considered in the implemented perception stage are presented. Nevertheless, note
that the architecture is open to include any additional source of information.

The following subsections introduce the installed sensors, controllers, actuators as well
as the software architecture.

7.2.1.1 Proprioceptive sensors

CAN Bus

Nowadays, cars have a high number of on-board sensors to capture data about the vehicle
state. This information is used at the same time by several modules with different purposes –
e.g. the information about the wheels speed is used for showing the driver the current speed
of the vehicle, but it is also used by the anti-lock braking system (ABS) and the electronic
stability program (ESP). To share all this data, cars have an on-board network, usually under
the CAN protocol, to interconnect all the sensors and modules.

Having so much data flowing through the vehicle network, the idea of incorporating this
information to the control architecture for automated driving is straightforward. To achieve
this goal, a PCI CAN adapter is used to connect the on-board PC to the vehicle network as
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another on-board module. However, the writing capability of the adapter has been removed
for safety reasons, so this connection does not interfere with the performance of any ECU
in the car. Once the computer is part of the car network a program is able to receive and
decode all the data in a similar way it was made with previous sensors.

Due to the different rates and nature of the data coming from the CAN BUS, the CAN
reader module has been deployed with a set of different output channels:

• CAN_CAR_GEARBOX: Contains gearbox state information such as current gear change
mode, current engaged gear or current requested gear.

• CAN_CAR_CONSUMPTION: Contains engine consumption data.

• CAN_CAR_STEERING: Include steering wheel position and speed, steering column
torque, etc.

• CAN_CAR_BRAKE_ABS: Contains the braking pressure, yaw rate and lateral acceleration.

• CAN_CAR_CABIN: Includes the activation state of brake pedal (pressed or not pressed),
ABS activation and vehicle ignition state.

• CAN_CAR_ENGINE: Contains the engine speed, real torque and requested torque.

• CAN_CAR_SPEED: Contains vehicle longitudinal speed and acceleration, and the speed
of each wheel separately.

Inertial measurement unit

Although a DGPS equipment could be considered precise enough to estimate the vehicle
position, there are some scenarios where the GPS measurements are affected by interference
in the satellite signals (e.g. buildings, trees or clouds) reducing the accuracy of the measure-
ment [65]. Moreover, the vehicle could be in an area where there is not a clear sky-view such
as tunnels or under bridges, making impossible to get a reliable position just using a GPS
unit. A common solution to this problem is to incorporate inertial sensors to the architec-
ture, meaning that even when there is not GPS availability, the position could be estimated
from previous ones through Dead Reckoning techniques [38].

In our case, a Crossbow VG440 unit has been installed near the centre of gravity of the
vehicle. This inertial measurement unit (IMU) provides information about the angular rate
and acceleration of the vehicle in three axes with a sampling rate up to 100 Hz. The data is
transmitted by serial port to the on-board unit, where a dedicated program decodes it and
transmits it as a LCM message. A serial-connection between the GPS and the IMU allows
synchronizing both sampling and reference time with the internal clock of the GPS unit.

7.2.1.2 Exteroceptive sensors

GPS

In this architecture, the GPS represents the backbone of the localization system for two rea-
sons: on the one hand, by using a differential GPS equipment (DGPS) it is possible to get the
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vehicle position with a very high accuracy; and on the other hand, the GPS receivers have a
high-accuracy internal clock that can be used as control clock reference for the entire system.

For the implementation we have selected the model Trimble BD960. This device is able
to work with a rate up to 20 Hz. The prior architecture was designed to work with 10 Hz
GPS data. However, it has been configured to provide localization information at 20 Hz in
the new architecture since higher accuracy can be achieved by the developed state estimator.

The receiver offers centimeter-level accuracy based on carrier phase RTK. It is able to
use the differential GPS correction obtained through the WAAS/EGNOS network or from
nearby reference stations, increasing the position accuracy up to 2 centimetres. As output,
this equipment provides several data frames under the NMEA0183 protocol [105] through
both serial and socket interfaces.

In order to process the data and make them available to all the system, a decoder pro-
gram reads three NMEA frames through one of the available interfaces and publishes it in
a dedicated LCM channel. From the GGA, VTG and GST messages it is possible to extract
information about the vehicle: position (in geographic coordinates), speed, orientation and
altitude; resolution mode of the GPS: fix quality, error ellipsoid and standard deviation. Be-
fore building the LCM message and transmitting it over the channel, the program calculates
the position in UTM coordinates.

LiDAR

The vehicle is equipped with a LiDAR (Ibeo Lux 4l) sensor on the front (see figure 7.1). This
sensor is used to detect the surroundings of the vehicle and/or the objects located within
the field of view. To that end, it scans the surroundings with several rotating laser beams,
receives the echoes with a photo diode receiver, processes the data by means of a time of
flight calculation and issues the processed data via the interfaces Ethernet and/or CAN.

The sensor characteristics are shown in table 7.1.

Specifications Ibeo Lux (4 layers)
Horizontal field 85o (35o to -50o)
Horizontal angular resolution 0.125o

Vertical field 3.2o

Vertical angular resolution 0.8o

Range 200 m
Update frequency 12.5/ 25.0/ 50.0 Hz

TABLE 7.1: LiDAR sensor specifications

The object data include information on a high level. Instead of raw data, a set of objects
and their properties (such as size, position, absolute/relative speed and object type) is pro-
vided. The sensor has been configured to issue the object data at 12.5 Hz. These data have
been used to validate the motion planning algorithms proposed in this thesis.

An example of the data provided by the Ibeo Lux 4l is shown in figure 7.2, where
raw data is represented by straight segments from the sensor to the impact point, and are
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coloured according to the layer they belong. Moreover, the detected objects are bounded by
rectangles.

(A) Short distance example (B) Long distance example

FIGURE 7.2: 2D representation of LiDAR output data

7.2.1.2.1 Stereoscopic camera Vision sensors are usually equipped in automated vehicles
to provide useful information about the surroundings that could assist its navigation. In
this sense, our experimental platform incorporates a stereoscopic sensor that can be used to
compute depth information from two synchronized and perfectly correlated images.

The camera is located inside the car behind the rear-view mirror at a height measured
from the ground of 1290 mm. In order to perceive as much relevant information as possible
assuming right lane driving, the camera is placed with a yaw angle of 2 degrees and a pitch
angle of 5.2 degrees with respect to the car reference system. In this way, the field of view
covers part of the left lane.

The camera sensor specifications are shown in table 7.2.

Specification Bumblebee2
Resolution 1032 × 776
Frame Rate 20 FPS
Megapixels 0.8 MP
Sensor Name Sony ICX204
Sensor Type CCD
Sensor Format 1/3"
Pixel Size 4.65 µm
Focal Length 3.8 mm, 65o HFOV
Aperture f/2.0
Interface FireWire 1394a
Dimensions 157 × 36 × 47.4 mm

TABLE 7.2: Stereo camera sensor specifications

The stereoscopic camera is used provide visual information to the visio-based road cor-
ridor adaptation algorithm included in the proposed architecture.
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7.2.1.3 General inputs & outputs

This section covers a description of several hardware components that can be used at the
same time for different software modules in different stages. The section is divided in two
groups of components: I/O modules and Communication modules.

Input & output modules

The previous section includes some of the sensors that are fundamental to acquire the
needed data to control the vehicle automatically. However, there are other variables in a
car that should be sampled in order to increase the safety of the entire system and improve
the experience of a human driver. Most of these values can be measured directly from ana-
logue or digital signals in the car wiring. For example, it is possible to determine whether
the driver is braking the car by reading the state of the brake pedal. Moreover, the same
wiring could be used to turn on the braking lights when the autonomous control system
is activated. For these reasons, the installation of digital/analogue I/O modules is fairly
convenient.

For the implementation of AUTOPIA fleet, we have selected two different I/O modules.
The first one is a module that can be controlled with a CAN bus. This unit has 2 analog
inputs, 2 analog outputs, 4 digital inputs and 8 digital outputs. Each digital output is asso-
ciated to the activation of one relay, reducing the limitation to control signals with different
reference values. The second unit is a PCI analogue output card with a 16-bit DAC. This
card allows using analogue values requiring a higher resolution since the first unit has a 0.1
volts accuracy.

To allow other software modules in the architecture to use these units, each of them is
managed by an adequate control program. This software has two main goals: (i) it reads
all the module inputs and publishes this information in one LCM channel at 25 Hz. (ii) the
program subscribes to a dedicated LCM channel where the output commands are published
by the external programs that need to use the unit. In each command message, a priority
field has been included. This allows the unit control program to manage the orders correctly
when several modules are sending commands at the same time. An example of this program
in one of the implemented software modules is schematized in Figure 7.3.

A/D

module

IOMOD_ORDER

any < 100 Hz

LCM CHANNEL

Message Rate

IOMOD_DATA

25Hz

FIGURE 7.3: LCM input & output channels for one of the I/O modules imple-
mented
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Communications

A human driver uses the information about his own car, as well as information about other
vehicles and the environment. A common approach to make this possible with an au-
tonomous car is the implementation of communications systems that allow the vehicles
to exchange data among them and with the road infrastructure [138, 141]. Through this
communications links, the on-board control programs are able to get information about the
localization of the other cars as well as the relevant information about the road as traffic and
weather conditions.

In order to provide our architecture with the capability for information exchange with
other vehicles and the infrastructure, two hardware modules have been integrated. The
first module is a PCMCIA card that works under the WiFi protocol. This card permits the
interaction between the car and a central system that manages the information coming from
all the vehicles in the nearby area. Details of this implementation are widely described
in [93] and [96]. The second system is the communication box developed for the Grand
Cooperative Driving Challenge, which is based on the IEEE 802.11p [142]. This system has
been developed for both V2V and V2I communications.

From the point of view of the other modules in the architecture, both communications
units are totally transparent and can be used indistinctly as UDP sockets from each program.
However, to preserve a certain order in the communication system and reduce the amount
of data transmitted over the links, it is recommended that only the main control program
will implement the communications part.

7.2.1.4 Actuation

We will describe now the actuation stage before considering the development of the deci-
sion stage. As with a human drivers, the on-board computer must be able to control, at least,
the principal actuators of the vehicle: throttle, brake and steering wheel. To this end, some
hardware modifications must be applied over each actuator before controlling them. How-
ever, each one of these modifications depends on the particular capabilities of the vehicle to
be controlled. This section presents the hardware implementation for each actuator in our
vehicle.

Throttle

Under normal conditions, the throttle in our vehicle is controlled by an electronic pedal that
transduces the pressure applied by the driver as two analog signals (one of them twice the
other) and sends them to the engine controller. In order to emulate the behaviour of the
pedal, a low-level program has been developed. This software is in charge of reading all the
throttle commands sent by the control program through a LCM channel with the final goal
of determining and sending the corresponding orders to the I/O analogue card to generate
the adequate signals to control the throttle.

For the development of the program, two important considerations have been made:
First, throttle command values must be normalized, meaning that only values between 0 –
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FIGURE 7.4: Brake actuator

no throttle – and 1 – maximum throttle – are accepted. Values out of this range are approx-
imated to the nearest limit. The second consideration is related to safety. After a throttle
command is processed and sent to the analogue card, the program waits up to 250 ms for a
new command to arrive. If no command is received within this time then the program dis-
ables the throttle. This prevents the throttle from keeping the last value in case the control
program crashes or it is ended by the user.

A switch installed in the board allows the driver to commute between manual and au-
tomatic throttle. The state of the switch is associated to two relays that toggle the throttle
connections between the electronic pedal and the analog card output.

Brake

The brake system plays a key role in the safety of the vehicle. Thus, its automation is as
important as tricky since it must not interfere with the standard vehicle brake. As in other
vehicles of AUTOPIA Program [111], an electric motor was coupled to the brake pedal al-
lowing the computer to brake the car (see figure 7.4).

As it was made for throttle control, a low-level program has been developed to control
the position of the brake pedal. The software subscribes to a reserved channel for brake com-
mands and processes all the received messages. For each command the program calculates
the corresponding value of the valves control signals and sends the order to the low-level
controller. This program implements normalized brake commands between 0 and 1, where
0 means no brake and 1 the maximum brake pressure. As for throttle, a safety timer has
been also implemented, disabling the automatic brake when an order has not been received
for 250 ms.

The automatic braking mechanism allows to automatically press the brake pedal as a
human driver would do, allowing also the occupant to press the pedal if needed. In addi-
tion, a pressure sensor has been installed under the pedal pad i.e. where the driver applies
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FIGURE 7.5: Steering wheel actuator

the braking force. A dedicated microcontroller is in charge of detect if the brake pedal is
pressed by the occupant in order to override the automatic brake control system if needed.

Steering wheel

The steering wheel is the most delicate actuator to be automated. Due to the reduced avail-
able space, the addition of external mechanical systems is difficult and the limitations in
performance are not negligible. As in previous works [100], a low-level position control has
been developed and implemented. It is composed by an electric motor coupled to the steer-
ing bar through a set of gears. The control was performed by a hardware module and an
encoder connected to the back of the motor.

In our case, the vehicle has an electric power steering system designed to reduce the
driver effort when turning the steering wheel. Although this electric power steering motor is
not accessible to be controlled, this system reduces the load of the externally installed motor.
Moreover, among the information available over the CAN bus, it is possible to extract the
position and turning speed of the steering wheel with a 100 Hz rate. Using this resource we
have developed a low level architecture for steering angle control.

An external motor controller was selected due to its high current capacity (up to 60A) at
low voltage levels (12 to 24V) is in charge move the steering wheel when the automatic mode
is activated (see figure 7.5). It has two control interfaces: RS-232 and CAN bus, that can be
used to receive control references. To control the steering wheel position, a PID controller
has been used.

The developed software subscribes to a dedicated channel where the position reference
for the steering is published as a normalized value between -1 (maximum at right) and 1
(maximum at left). Information about steering position and speed is read from the output
LCM channel of the software implemented for the CAN bus of the car (see section 7.2.1.1).
The control loop is executed each time that a steering message from the car’s CAN bus
is received, meaning a control frequency of 100 Hz. As safety measurement, the program
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leaves the motor in a free wheel mode if a reference command within the 250 ms-range after
the last command, so a human driver can retake the control in case of failure.
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FIGURE 7.6: Summary for the actuation stage

7.2.2 Software architecture

After defining the general outline of the experimental platform components, the next step is
determining how modules will communicate with each other. When a one-block program
is running, a memory space is allocated, dynamically or statically, to store all the program
variables. As result of this, the different classes and threads of a program can share vari-
ables and function calls in an easy way. However, when software is decomposed in several
processes, the information exchange among them is not trivial. This problem is well known
in computer science and it is studied as interprocess communication (IPC).

Nowadays, several solutions to the IPC problem are available in the commonly used
Operating Systems (OS). The most used ones available for UNIX-based OS are listed below:

• Shared and mapped memory: allow process to communicate by reading and writing
to a specified memory location.

• Pipes and FIFOs: permit sequential communication among process.

• Sockets: allow communication between different processes even if they are executed
in different computers.

The choice of the most adequate IPC technique for an application depends on different
factors as: relationship between the processes (related or unrelated), number of processes
to communicate with, synchronization among them, writing and reading limitations and
number of host computers used [98].

Beyond the listed options, several communications packages have been already devel-
oped for different platforms and applications. These packages offer a more developers-
friendly option to implement IPC and, in some cases, help to keep a standard among de-
velopers regardless of the development platforms or programming languages. One of these
alternatives is the Lightweight Communications and Marshalling library (LCM), which is
described in detail in the next subsection.
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7.2.2.1 LCM as IPC mechanism for software architecture components

Lightweight Communications and Marshalling (LCM) provides a set of libraries and tools
for IPC in real-time systems. It was originally developed and used by the MIT DARPA
Urban Challenge Team as message passing system for its vehicle [79]. Its designers have
presented LCM as a low-latency, high-throughput solution and it has been compared with
similar systems oriented to the robotic field such as ROS [120], presenting significant advan-
tages [59].

LCM is based on a publish-subscribe message passing model using UDP multicast as
underlying transport layer [60]. Under this model, processes publish data over a particular
channel identified by a unique name and subscribe to those channels required to complete
their tasks. Moreover, by using UDP multicast the system becomes highly scalable since the
bandwidth required for the transmission of one message is independent of the number of
subscribers.

The first benefit of using LCM package is that there is not a set of predefined messages.
They are defined and customized by the developers according to their application require-
ments. To achieve this goal, LCM supplies its own type specification language and a code
generation tool that automatically generates a language-specific representation of the mes-
sage. Supported languages are C, C++, Java, Python, MATLAB and C# [59]. As second
advantage, LCM provides each message definition with the marshalling capabilities to en-
code and decode the data transmitted over the network, instead of using long strings of
human-readable messages [60].

In addition to these advantages, LCM provides several tools that are very helpful to de-
velop or inspect a system, namely (i) the logging/replaying tools which allow recording the
LCM traffic in a file for future playback or analysis. (ii) A spy tool that analyses, decodes
and displays the live LCM traffic. Moreover, the latter tool provides statistics for each chan-
nel as message rate, message counter and bandwidth consumption. Both tools have been
developed so that their use does not affect the system performance.

7.2.3 Implementation and integration of new software modules in the architec-
ture

The new integrated modules are summarized in the following list:

• Vehicle state estimator module.

• LiDAR objects perception module.

• Camera perception module.

• HMI

• Adjustments of longitudinal and lateral controllers.

Figure 7.7 depicts all modules implemented in the architecture.
The following subsections describe in detail the implementation of the new modules

added to the architecture.
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7.2.3.1 Local planner implementation

The local planner and control modules have been integrated in a multi-threaded C++ ap-
plication. Taking into account that the generated trajectories are only required by the con-
trol module (as depicted in figure 7.7), the main motivation to integrate both modules is to
avoid the latency in the case that the generated trajectories would be sent through LCM.
In this way, the trajectory used by control module is updated as fast as possible after it is
generated.

Figure 7.8 shows an UML sequence diagram to show how the manoeuvre planner thread
interacts with other architecture components in the case that a new planning request is
needed after analysing the perceived objects.

Local plannerModuleControlModule PerceptionModule

Trajectory generator thread Manoeuvre planner threadControl thread Motion predition Perception

Loop()

Perception request()

Compute control commands()

Return perceived objects

Compute predictions()

Return predictions

Collision checking

Planning request()

Update trajectory()

FIGURE 7.8: UML sequence diagram of local planner interactions in case that
a new planning request is needed

The candidates evaluation stage is the most computationally expensive task of the tra-
jectory generator of the local planner as it has to evaluate the validity and cost of each candi-
date. With the goal of achieving a motion planner as deterministic as possible, the quantity
of candidates is fixed for every planning request during a mission. In this way the computa-
tion time of the trajectory generator is limited when a new trajectory is requested. It should
be noted that the computation needed for each candidate is regardless of their length as the
discretization of the parametric curve and curvature of each candidate is carried out with
the same resolution. As parameters such as number of candidates and discretization reso-
lution plays a key role in the performance of the algorithm, a configuration file is used to
set-up these and other parameters.

Besides the limitation of the quantity of the candidates, three evaluation details are
added to considerably reduce the computation time:
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• The collision checking algorithm is only run if the maximum allowed curvature of the
candidate is not exceeded. As a result, the collision checking algorithm is not launched
when a candidate is known to be invalid.

• The collision checking ends the evaluation of each candidate when the first point of the
occupancy polygon is detected that collides with and obstacle or is outside the road
corridor. In these cases, the candidate is set as not valid.

• The cost of the candidate is only computed if it is valid, reducing the computation time
in the case of invalid candidates.

7.2.3.2 Global & local planners and HMI interaction

As stated in section 4.3, the global planner is able to interact with the local planner to request
new routes in cases where the current route can not be continued due to road blockage due to
road works, accidents, etc. To implement this interaction, specific LCM messages have been
defined to request and send routes as well as to communicate different types of warnings to
the HMI module.

The new defined messages are the following:

• OSM_ROUTE_REQUEST: This message includes the current vehicle pose (position and
heading) and the destination.

• OSM_ROUTE_RESULT: The resulting nodes and the unique identifier of the computed
route are included in this message.

• OSM_CORRIDOR: This message is used to communicate the computed road corridor
based on the nodes that conform the route to the destination. It includes a ordered
list of the control points of the right and left boundaries of the road corridor, as well as
the centreline. Being the road corridor based on Bézier curves the amount of informa-
tion to communicate the road boundaries is considerably reduced in comparison with
sending a full list of 2D points that define the raw road corridor.

• WARNINGS: When a warning needs to be issued to the HMI, this message is used to
include information about the type the warning. Depending of the type of the warning
different additional information can be also included. For example, when a dynamic
obstacle is detected, the position, speed and motion direction can be provided.

As can be seen in the diagram of figure 7.9, besides the request of a new route to the
global planner, a warning message is issued to the HMI module to alert the vehicle occu-
pants of the road state and the future route change.

7.2.3.3 Control module adaptation

The new trajectory generation algorithms include substantial changes with respect to the
previous one in both lateral and longitudinal controller. As described in 3.2.1, the prior gen-
erated trajectories were based on separated waypoints in which a value of the curvature in
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Local plannerModuleGlobal plannerModule PerceptionModuleHMIModule

Manoeuvre planner threadGlobal route calculation PerceptionRoad corridor generationHMI

Loop()

Perception request()

Return perceived objectsNew route request()

New route nodes

Road corridor request()

New road corridor

FIGURE 7.9: UML sequence diagram of global & local planners and HMI in-
teraction

each point was estimated to serve as control input for the lateral controller. With the de-
veloped improvements in trajectory generation in this thesis, finer trajectories are obtained
and the curvature at each point of the path is obtained through analytic Bézier equations,
providing a smooth feed-forward control action to the lateral controller. Figure 7.10 shows
the lateral control scheme used in the real experimental platform.

Fuzzy Lateral 

Controller

k

Steering wheel

angle

Lateral error

Angular error

Path curvature

FIGURE 7.10: Lateral control diagram

The lateral fuzzy controller had to be adapted to fit the new expected error measure-
ments since the new smoother paths are translated into smoother lateral and angular error
measurements. On the one hand, the new state estimation module introduces a high reduc-
tion of measured orientation noise so that the lateral controller could be adapted to expect
lower and smoother values of the angular error. On the other hand, the same occurs to
the lateral error. Being the followed paths smoother, the lateral error can be calculated in a
more accurately manner. Based on this improvements in the input control signals, the fuzzy
controller was adjusted obtaining the membership functions and control surface, shown in
figure 7.11. In consequence, a smoother and more accurate path following performance have
been achieved.
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The longitudinal control scheme remains the same as in prior architecture (see fig-
ure 7.12). Nevertheless, the trajectories generated with the new local planner provide
smoother speed reference values for each point of the planner trajectory. As a result, the
fuzzy longitudinal controller also had to be adjusted since it was designed to work with
step-like speed reference signals while the developed speed planning algorithm developed
in this thesis is able to generated continuous speed reference values with limited longitu-
dinal and lateral accelerations. The final membership functions and control surface of the
longitudinal controller are shown in figure 7.13.
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pedal position

Reference speed

Speed error

FIGURE 7.12: Longitudinal control diagram

7.2.3.4 State estimation module

The goal of the state estimation module is to provide a reliable information about the state
of the vehicle rather than relying only on raw GPS localization data. Different techniques
for state estimation co-exist in the literature. One of the most used in mobile robotics is the
Kalman Filter and variations [24, 91].

Bearing the above in mind, a Kalman Filter has been implemented to fuse information
coming from different on-board sensors. Although GPS data remains the basis of the vehicle
localization, CAN-bus data (vehicle speed, longitudinal acceleration and yaw rate) is used
to improve the state estimation.
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The estimation of the vehicle heading is the most influential variable on the lateral con-
troller performance since its noise is transmitted directly to the angular error (being the
angular error the difference between the heading and the path orientation) and proportion-
ally to the lateral error (as the lateral error is computed with respect to the bumper position).
One of the main improvements achieved with this module is the heading estimation even
at low speeds. Figure 7.14 shows the raw speed and heading together with filtered ones
during a test.

5930 5935 5940 5945 5950

Time (s)

-12

-10

-8

-6

-4

-2

0

2

4

6

8

O
ri

en
ta

ti
o

n
 (

º)

14

16

18

20

22

24

26

28

30

32
S

p
ee

d
 (

k
m

/h
)

Filtered orientation
Raw orientation
Filtered speed
Raw speed

FIGURE 7.14: Raw and filtered heading (left ordinate axis) and speed (right
ordinate axis)

Summarizing, this module provides two main advantages:
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• This module provides reliable information on the state of the vehicle. In this way, the
modules that need this information do not need to apply any processing or filtering of
the vehicle status.

• A better state estimation of the vehicle allows to better control it.

7.2.3.5 LiDAR-based object detection

In order to identify objects in the vehicle surroundings through the LiDAR data, two dif-
ferent approaches have been developed: (i) a library of artificial intelligence-based methods
for obstacle detection from raw LiDAR data, and (ii) a filtering algorithm on the objects data
provided by the LiDAR sensor as described in 7.2. Since the implementation of the artificial
intelligence-based library is still not feasible for a real-time setting, the objects data provided
by the Ibeo processing unit have been used to perform the trials presented in this thesis.

Artificial intelligence-based methods for obstacle detection

Nowadays, many classifiers rely on machine-learning approaches to exploit data redun-
dancy and abundance to find out patterns, trends and relations amongst input attributes
and class labels [119]. Within obstacle-recognition techniques, vector support machines
have been widely applied for classification and regression problems [134]. An interesting
application using machine learning for pedestrian detection in autonomous vehicles based
on High Definition (HD) 3D LiDAR is reported in [103], providing more accurate data to be
successfully used in any kind of lighting conditions.

The library proposed is composed by three classification methods: a multi-layer per-
ceptron neural network (MLP), a self-organizing map (SOM) and a support vector machine
(SVM). The library is integrated into a co-simulation framework for obstacle recognition on
the basis of sensory data provided by a virtual sensor network. This co-simulation frame-
work is designed and built using SCANeR studio (a software suite dedicated to automo-
tive simulation) and Matlab/Simulink as depicted in figure 7.15. Moreover, an assistance-
driving scenario is created in SCANeR in order to emulate the real environment.

FIGURE 7.15: Co-simulation framework set up for obstacle detection
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The whole system is evaluated in a particular use case built from two types of sensory
data (LiDAR and GPS sensors) within the defined scenario. The comparative study demon-
strates that the proposed obstacle detection methods are powerful strategies for pedestrian
detection under good weather conditions.

In the validation study, six performance indices were considered: correct classify sam-
ples or correct rate (CCR), incorrectly classified samples or error rate (ECR), the mean abso-
lute error (MAE), the root mean squared error (RMSE), the relative absolute error (RAE) and
the root relative squared error (RRSE). In the training and validation phase of the classifica-
tion models, the best results were achieved with the multi-layer perceptron and the support
vector machine, but the self-organizing map did not perform so badly as to be discarded
from future analyses. The results of the comparative study of the classifiers are summarized
in table 7.3.

Performance Index MLP SVM SOM
CCR (%) 88.19 91.36 90.91
ECR (%) 11.81 8.64 9.09
MAE 0.12 0.09 0.09
RMSE 0.34 0.29 0.30
RAE (%) 23.64 17.29 18.68
RRSE (%) 9.274 7.93 8.36

TABLE 7.3: Comparative study of MLP, SVM and SOM classifiers under good
weather conditions

The full details about this work can be found in [21], where further evaluation of the
proposed library is also performed in the presence of different weather conditions (rain, fog
and snow).

Although the results of the proposed object recognition and classification library ob-
tained in a simulated environment under Matlab/Simulink are promising, the library is still
not implemented to be run on-line in the experimental vehicle. Therefore, the objects data
provided by the Ibeo processing unit have been used by the planning modules. In this con-
nection, a software module has been developed to acquire and format the object data and
sent them through a dedicated LCM channel.

Rule-based object filtering

Although the object information provided by the LiDAR sensor processing unit contains a
good starting point for estimating the state variables of objects in the environment around
the vehicle, many of the initially detections are not significant or do not correspond to reality.
Indeed, as this sensor has only 4 layers, the accuracy of the perceived objects’ state is not
always reliable enough. However, some cases of inaccurate objects estimation can be easily
filtered to obtain a final set of relevant objects.

Since the goal of the LiDAR-based object detection is to provide reliable object informa-
tion from the objects data to the motion planning algorithm of the architecture, different
filtering rules have been defined to eliminate objects that are clearly outside of the road
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corridor or do not present a hazard for the vehicle (such as small bushes, buildings, walls,
etc.).

Threshold Description
otmin−dist and
otmax−dist

Minimum and maximum distance to the closest
point of the obstacles (m).

otmin−edge Minimum length of object box edges (m)
otmin−age Minimum object age (s)
otmax−σ−pos Maximum value of standard deviation of object

position (m)
otmax−speed Maximum object speed (m/s)
otmax−σ−speed Maximum value of standard deviation of object

speed (m/s)
otdyn Minimum speed threshold to consider an object

as dynamic (m/s)

TABLE 7.4: Threshold used to filter object data from LiDAR

The stated thresholds and their descriptions are presented in table 7.4, where otmin−dist

and otmax−dist allow to specify a region of interest. Concretely, otmin−dist is used to avoid
suddenly detected objects very close to the car, assuming that the object would have been
detected earlier if it were really there. The otmin−edge threshold makes possible to filter really
small objects that do not present hazard for the vehicle. Moreover, the object data structure
include the age of each object in seconds. In this way, otmin−age is used to ignore objects
that have not been detected for a minimum amount of time, taking thus into account false
positive detections in a few frames. Assuming that the absolute speed of the object can not
reach really high values, detections are also limited by the threshold otmax−speed. By means
of this threshold many bad detections can be eliminated. Finally, the data structure also
include the standard deviation of the vehicle position and speed. Therefore, otmax−σ−pos and
otmax−σ−pos allow to identify bad object detections to exclude them.

In addition of the filtering threshold of table 7.4, and taking advantage of the road cor-
ridor generated by the global planner, the static obstacles that are outside the road corridor
are considered as irrelevant. This strategy allows to exclude obstacles that can be potentially
detected by the sensor, such as big objects that are clearly outside the road corridor but its
bounding box falls within it. This strategy is not applied to dynamic obstacles as they could
be moving to the road corridor area e.g. pedestrian crossing the street or unidentified mov-
ing objects that could present a hazard to the vehicle safety. However, the obstacles that are
outside the road corridor but exceed a defined speed threshold (otdyn) are also considered
as dynamic objects. Thus, the algorithm is able to return a list of the relevant static and
dynamic objects.

With the above in mind, let define and object structure (o) composed of objects informa-
tion such that oi = (di, ai, si, sxi, syi, σpi, σsi), where di is the distance to object, ai is the
age of the object, si is the speed of the object, sxi and syi are dimensions of the bounding rect-
angle, and σpi and σsi are the standard deviation of object position and speed, respectively.
Then, the filter is applied in a general case with n objects as represented in algorithm 2.
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Input: Raw objects structure (o), Thesholds in table 7.4
Output: Filtered objects
oFS ← Define empty structure for filtered static objects;
oFD ← Define empty structure for filtered dynamic objects;
foreach i← 1 to n do

if di < otmax−dist ∧ di > otmin−dist then
if ai > otmin−age then

if si < otmax−speed then
if sxi < otmin−edge ∧ syi < otmin−edge then

if (σpi < otmax−σ−pos ∧ σsi < otmax−σ−speed ∧ si > otdyn) ∨
IsInsideRoadCorridor(oi) then

if si > otdyn then
oFD ← oi;

else
oFS ← oi;

end
end

end
end

end
end

end
return oFS, oFD;

Algorithm 2: Rule-based object filtering algorithm

where IsInsideRoadCorridor(oi) is the function that checks if the object oi is inside the
road corridor, oFS and oFD are the data structures containing the static and dynamic objects,
respectively.

The most computationally expensive section of the algorithm is the function
IsInsideRoadCorridor(oi). Note that it is only called if the rest of thresholds have been
verified, thus avoiding to check if the object is inside the corridor when the object is not
considered as relevant.

7.2.3.6 Camera acquisition module

A software module for camera acquisition has been implemented to capture, process and
send the image through LCM API as depicted in figure 7.7. Although this figure only shows
one image processing module, the proposed architecture enables to include modules to extract
different image features that can be sent through LCM. So far, the features include the lane
detection information that is used to adapt the self-generated road corridors from OSM.

Given the large amount of information provided by the camera, the implementation of
this module also foresees the sending of images through shared memory to modules that
requires the raw image. This strategy will avoid the available bandwidth in the vehicle local
network to be fully occupied by raw data sent through LCM.

159



Chapter 7. INTEGRATION AND DEMONSTRATIONS

7.2.3.7 HMI & visualization interfaces

In order to facilitate the vehicle-user interaction, three different tools have been developed.
One of them provides a way for the user to select the destination point thought a friendly
Android environment, while the others are dedicated exclusively to visualization (both a
better situation awareness and for debugging purposes): (i) a 2D tool integrated with the
control program and a (ii) 3D standalone tool that is fed from LCM information. Both are
described in dedicated paragraphs below.

The implementation of visualization tools was motivated by the need of interpreting and
understanding the vehicle state, the perceived environment and the outputs of the software
components of the architecture. These tools have made easier the development and debug-
ging tasks needed in the implementation stage of the algorithms presented in this thesis.

Android tablet interface

An on-board Android human-machine interface relying on open source project Os-
mAnd [106] has been implemented. This application is able to work with OSM data and
provide some general information about the global route the vehicle is following: the route
itself, estimated time to destination, the vehicle speed, etc.

To adapt the original Android application to the decision-making architecture needs,
some modification have been carried out over the existing application:

• An Android service has been developed to enable the communication through LCM
from the Android tablet using wired connection. Thus, the application is able to send
and receive information from other architecture modules.

• A new option to select the global planner used in the new architecture (see section 4.3)
has been added. This option allows to activate the sending of route requests to the
global planner module, that is run in the on-board PC.

• The application has been modified to show the most relevant information perceived
by the embedded sensors. Thus, when a static/dynamic obstacle or a blocked lane is
detected, a specific warning is shown in the screen (see figure 7.16).

2D visualization interface

This interface was initially developed to represent the planned trajectories as well as the
vehicle historic positions. This made it easier to evaluate the performance of the controllers
while the vehicle is following a trajectory. However, more information has been subse-
quently added. It was designed to be integrated with the control-planning application of
the new architecture to avoid sending data for visualization through IPC, using valuable
network bandwidth.

Different kind of data are included in the interface. Firstly, the raw GPS data and the
localization data provided by the state estimation module are used to locate the vehicle
with respect to a global coordinate system. In addition, the road corridors generated by
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(A) No warnings (B) Static object detected

(C) Dynamic object detected (D) Blocked lane detected

FIGURE 7.16: Screen shots of the Android application issuing warnings in
specific situations
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the global planning components are also plotted. Regarding the perceived static objects,
only the objects of interest selected after the application of the rule-based filter described
in 7.2.3.5 are represented. With respect to dynamic objects, their current location as well as
the predicted path are shown in this interface as can be seen in figure 7.17. Thus, the objects
taken into account by the planning algorithms are shown in runtime.

FIGURE 7.17: 2D visualization interface screen shot while a dynamic obstacle
is detected

The output of local planner is also plotted in the 2D visualization: the current path that
the vehicle is following is plotted. Furthermore, the path-polygon is also delineated for
debugging purposes.

3D visualization interface

A 3D visualization tool is useful when the amount of data to be interpreted by the user
becomes high. A firstly developed simulation and visualization tool [9, 4, 8] based on Mat-
lab/Simulink was useful to simulate and reproduce trials carried out with the real test plat-
form. However, the need of representing more information such as occupancy grids or
perceived objects motivated the development of a new tool dedicated exclusively to visual-
ization.

The application is based on RViz, a visualization package included in ROS libraries [120].
Since the communication among the different software components of the AUTOPIA archi-
tecture is based on LCM and RViz needs ROS messages, the implemented tool receives LCM
messages containing information to be represented and generates similar ROS messages that
are sent to Rviz.

Besides the vehicle itself (a 3D model of the vehicle is included), useful data is also vi-
sualized. On the one hand, perceived information is represented: the localization of the
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vehicle is used to locate the vehicle with respect to a global coordinate system, where the
road corridors are also represented. On the other hand, both intermediate and final compu-
tations of architecture algorithms are represented. Firstly, the probabilistic occupancy grid
used to place the localization uncertainty dependent road corridor and the perceived ob-
jects is showed. Moreover, the final computed path is also visualized. This tool is useful to
understand the information coming from the sensors (localization, perceived objects)

The represented information in this tool is: the vehicle localization from the state estima-
tion module, the perceived objects by the LiDAR sensor, the road corridors generated by the
global planner components, the probabilistic occupancy grid and the current planned path.
All this information is updated in runtime. A screenshots is shown in figure 7.18.

FIGURE 7.18: 3D visualization interface screen shot

This interface offers some advantages over the 2D visualization tool described above.
One of them is that it can be run in a different computer connected to the vehicle network. As
a result, the resources of the on-board PC dedicated to control the vehicle are not employed
to create computationally expensive visualizations. Moreover, the use of a 3D visualization
improves the situation awareness for the user by enabling to set specific points of view in a
three dimensional world.

7.2.3.8 Architecture profiling

Since some of the modules in the architecture require considerable computational resources,
it is important to quantify their computing times in order to know the approximate response
times and to detect possible bottlenecks. To this end, different measurements of execution
times have been carried out for each of the algorithms of the architecture. The results of the
approximated computing times ranges are summarized in the table 7.5.

Note that the computing time of the global route calculation and the road corridor gen-
eration depend on route length. For large routes these times increase. The computing time
of the localization uncertainty propagation algorithm depends on the number of cells of the
grid, as shown in section 6.5.2.
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Algorithm Module Computing time (ms)

Global route
calculation algorithm

Global route
calculation

1-3

Road corridor generation
Road corridor generation
& adaptation

5-20

Vision-based road
corridor adaptation

Road corridor generation
& adaptation

25-35

Occupancy grid: localization
uncertainty propagation

Road corridor generation
& adaptation

5-100

Risk estimation algorithm Motion prediction 100-200
Simplified motion
prediction

Motion prediction <1

Manoeuvre planner
algorithm

Manoeuvre planner <1

Trajectory generation
algorithm

Trajectory generation 15-75

Trajectory generation
(using occupancy grid)

Trajectory generation 110-200

TABLE 7.5: Results of computing time measurements of the implemented al-
gorithms

In the case of the risk estimation algorithm, the calculation time depends to a large extent
on the following factors: (i) the number of traffic agents that are around the ego-vehicle, and
(ii) the number of particles used in the performance of the algorithm. The computing time
range shown in table 7.5 for this algorithm, has been obtained by using 1600 particles in the
test cases presented in section 5.3.3.

As can be seen in table 7.5, the most computationally expensive algorithms are the risk
estimation algorithm, the localization uncertainty propagation over the grid, and the tra-
jectory generation when using occupancy grid (as described in section 6.5). The timing
performance of these algorithms can be improved by using parallel computing in their im-
plementations.

7.3 Demonstrations

In addition to specific validation performed for each of the architecture modules presented
in chapters 4, 5 and 6, the proper operation and integration of the whole architecture has
been verified through several live demonstrations in two different events.(i) 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2018), that was held in Madrid
from 1st to 5th October 2018, and (ii) S-Moving 2018 event, which was held in Palacio de Ferias
y Congresos de Málaga (FYCMA), Malaga.

Both demonstrators showed the capabilities of the architecture proposed in this thesis
through different scenarios, using the fully automated Citroën DS3 described in section 7.2.
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7.3.1 Demonstration at IROS 2018

This demonstration took place in the Autonomous Driving Events section of the 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2018) that was held at the
Centre for Automation and Robotic (CSIC-UPM) facilities in Arganda del Rey, Madrid. The
test track used in the demonstration mimics an urban environment including tight curves,
straight sections, several intersections, a roundabout and traffic lights (see figure 7.19).

FIGURE 7.19: Test track at the Centre for Automation and Robotics (CSIC-
UPM), Arganda del Rey, Madrid

Within this event, five participant teams coming from different institutions – Consejo Su-
perior de Investigaciones Científicas (CSIC - AUTOPIA), Universidad Carlos III de Madrid
(UC3M), Universidad Alcalá de Henares (UAH – Robesafe and INVETT), Institut National
de Recherche en Informatique et Automatique (INRIA) – performed several exhibitions fo-
cusing on one or several of the following aspects:

• Low speed (20 km/h) or high speed (40-50 km/h)

• Perception (static and moving obstacles, road signs, etc.)

• Localization & mapping

• Control, planning & decision-making

• V2X-based cooperative systems (merging, intersections, roundabouts management)

• V2I cooperation with traffic lights system

• Driver-vehicle interaction

The AUTOPIA demonstration was entitle “OSM-based navigation and decision-
making”. It showcased the proposed navigation architecture in this thesis by using the
experimental platform described in section 7.2. To that end, different trials ranging from
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dynamic global planning to local motion planning, including obstacle avoiding, were per-
formed. The static and dynamic obstacles were detected on the road by a multi-layer LiDAR,
the planner evaluated whether an avoiding manoeuvre was feasible in the pre-computed
route, or an automatic re-routing request could be performed.

The live demonstration of AUTOPIA consisted of five different scenarios that used the
proposed decision-making architecture in this thesis:

• Scenario 1: Low speed driving

• Scenario 2: High speed driving

• Scenario 3: Static obstacle avoidance

• Scenario 4: Dynamic object avoidance

• Scenario 5: Automatic re-routing due to road blockage.

In scenarios 1 and 2, predefined trajectories were used to show the capabilities of the
vehicle control while overcoming tight curves and driving at high speeds, respectively. In
contrast, scenarios 3, 4, and 5, the motion planning capabilities of the architecture: global
planning from the initial vehicle pose to the given destination (performing re-routing when
needed), and local planning to overcome the obstacles encountered while the vehicle is on
its way to its destination.

In addition to the on-board decision system, V2I communications were used to show
the cooperation with traffic lights system installed in the four-lanes intersection placed in
the central point of the test track. In the five trials carried out, an intersection management
system connected to the traffic lights was aware of the position and direction of travel of the
vehicle and prioritized the vehicle passing by changing the lights states when the vehicle
was approaching to the intersection from any of its ways.

Figure 7.20 shows a external picture and screen shot of the HMI and frontal vehicle image
while driving automatically at 50 km/h during the second scenario.

(A) HMI and frontal vehicle im-
age

(B) Picture of the vehicle while
driving at 50 km/h

FIGURE 7.20: High speed automated driving demonstration while perform-
ing the second scenario

The scenario 3 consisted on travelling from one part of the track to another, through a
route where two static obstacles were hindering the vehicle driving. Figure 7.21 shows a
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picture taken when the vehicle was avoiding two consecutive static obstacles placed in the
road.

FIGURE 7.21: Scenario 3: Two consecutive static obstacles being avoided

Picture on figure 7.22 belongs to scenario 4. It shows the frontal image of the vehicle
when it was adapting the speed profile of its trajectory to avoid the collision with a pedes-
trian that is crossing the street. The collision avoidance was performed successfully.

FIGURE 7.22: Frontal vehicle image in the scenario 4 while avoiding a pedes-
trian that is crossing the street

Finally, the last scenario comprised a road blockage in the route that the vehicle was fol-
lowing to reach the destination as shown in figure 7.23a. When the perception system of the
vehicle detected the static obstacle that was blocking the road, the local planner requested
a new high-level route to the global planner (see figure 7.23b), that was quickly retrieved,
causing a smooth transition that was not even noticed inside the vehicle.

The full demonstration was retransmitted in streaming achieving a high diffusion of
the event. Moreover, a complete video of the whole demonstrator can be accessed in the
following link: https://youtu.be/SGVnmsUS06k. Furthermore specific links to each of the
demonstrated scenarios are provided below:

• Scenario 1: Low speed driving. Link: https://youtu.be/SGVnmsUS06k?t=225
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(A) Obstacles blocking the road at the central
intersecion in scenario 5.

(B) Re-routing due to road blockage. Block-
ing obstacle detected and re-routing request

(C) Re-routing due to road blockage. Route
retrieved

FIGURE 7.23: Frontal vehicle image and HMI screenshots when a static object
that is blocking the lane is detected

• Scenario 2: High speed driving. Link: https://youtu.be/SGVnmsUS06k?t=358

• Scenario 3: Static obstacle avoidance. Link: https://youtu.be/SGVnmsUS06k?t=527

• Scenario 4: Dynamic object avoidance. Link: https://youtu.be/SGVnmsUS06k?t=667

• Scenario 5: Automatic re-routing due to road blockage. Link: https://youtu.be/

SGVnmsUS06k?t=811

7.3.2 Demonstration at S-Moving 2018

The S-Moving event is a space of reference for companies, professionals, entities and public
administrations related to intelligent, autonomous and unmanned vehicles sectors. It was
held in the Palacio de Ferias y Congresos de Málaga (FYCMA), Málaga (Spain), from 17th to
18th October 2018. This event is an international forum dedicated to technologies applied to
intelligent, autonomous, connected and unmanned mobility by land, sea and aerospace and
their infrastructures.

AUTOPIA Program had the opportunity to make live demonstrations during the event.
Just like in the IROS 2018 demonstration (see section 7.3.1), the architecture developed in
this thesis was used to exhibit its automated driving capabilities in different situations.
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(A) AUTOPIA vehicle in the driving area of
S-moving event

(B) AUTOPIA vehicle and static obstacle
used in the demonstation

FIGURE 7.24: AUTOPIA vehicle in the FYCMA facilities at the S-moving 2018
event

Within the driving area (see figure 7.25), the demonstration scenario consisted on a trip
from one extreme to the other while some static and dynamic obstacles were hindering the
way until the destination point.

FIGURE 7.25: The space reserved for the live demonstration is shaded red area

With respect to the IROS 2018 demonstration, the scenario exhibited in the S-Moving
event presented two additional difficulties. On the one hand, the constrained driving area
caused a greater obstacle density during the track so that three obstacles were consecu-
tively placed: two static and one dynamic. On the other hand, the dynamic obstacle was a
pedestrian that stopped walking in the middle of the street while the vehicle was driving
automatically. This included a higher scenario complexity as the dynamic obstacle changed
to be static and the decision-making system had to interpret the situation to find a different
way to overcome the same obstacle. A scheme of the scenario is shown in figure 7.26.

The most critical point of this demonstration was the pedestrian avoidance since it firstly
was moving at constant speed and then stopped abruptly in the middle of the street. To
show the output of the decision-making system at this point, three screenshots of the 3D
visualization of the demonstration are presented in figure 7.27. In these screenshots the
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Destination

Initial point

Static obstacles Dynamic obstacle

FIGURE 7.26: Demonstration scenario at S-moving 2018 event

pedestrian is shown as a small blue rectangular parallelepiped close to the vehicle path, that
is drawn in magenta.

The path planned when the pedestrian was walking and consequently detected as a
dynamic object, is shown in figure 7.27a. In contrast, figure 7.27b shows the planned path
when the pedestrian stopped and was detected as a static obstacle. Finally, figure 7.27c
shows how the new trajectory that avoids the obstacle is extended.

(A) The pedestrian crossing the
street was detected and the vehi-
cle adapted its speed to avoid de

collision

(B) The obstacle suddenly
stopped in the middle of the
street and instantly the vehicle
planned a different trajectory to

avoid it.

(C) The new trajectory is ex-
tended.

FIGURE 7.27: 3D visualization of the planned trajectory and perceived obsta-
cles when the dynamic obstacle is being avoided

In figure 7.28, the vehicle speed during the demonstration is shown. As can be noticed,
at instant t = 10 s, the dynamic obstacle is detected. Consequently, the speed of the vehicle
is reduced to avoid the collision.

This driving scenario was performed several times during the event, and all of the
demonstrations were successfully completed.
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FIGURE 7.28: Vehicle speed during the demonstration

This event was covered by national and regional TV media (RTVE and Canal Sur). A
live recording of one of the demonstration performance can be found in the following link:
https://youtu.be/Q9Oskis7iR0
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Chapter 8

CONCLUSIONS

8.1 General conclusions

The growing interest in ever higher levels of automation involves the development of al-
gorithms capable of making decisions to face increasingly complex driving situations in a
safe and human-like manner. In this regard, this thesis addresses the problem of motion
planning in urban environments by proposing a decision-making and planning architecture
where several modules with different functionalities provide human-like trajectories to the
vehicle according to the perceived situation.

The proposed architecture improvements aims at pushing the navigation capabilities
of automated vehicles when only non detailed and open-source maps are available. To
that end, road corridors are dynamically obtained from these maps. To cope with their
intrinsic uncertainty and low-fidelity, a camera-based lane detection system updates and en-
hances the navigable space, which, in addition, explicitly considers localization uncertainty.
From that point, an efficient and human-like local planner determines, under a probabilistic
framework, a safe motion primitive. LiDAR-based perception is then used to identify the
driving scenario, and eventually re-plan the local path and speed profile, leading in some
cases to re-adapt the route to be followed. These new functionalities represent significant
progress beyond previous architecture of the AUTOPIA Program.

Extensive tests on real environments and different live demonstrations proved the ro-
bustness of the proposed architecture when dealing with different complex situations such
as static and dynamic obstacle avoidance or dynamic re-routing when the high-level route
is blocked.

8.1.1 Contributions

This thesis proposes significant contributions to the prior existing AUTOPIA architecture
for automated driving. The summarized specific contributions are listed below:

• Global planning capabilities: Different global planning functionalities have been
added to the architecture. Firstly, a global routing based on OSM has been developed
to provide a high-level definition of the route for the vehicle to reach its destination.
Furthermore, an automatic road corridor generation algorithm has been developed to
provide the available navigable space to the local planner. Moreover, a vision-based
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road corridor adaptation algorithm has been proposed to deal with possible OSM in-
accuracy. In this context, two different approaches have been proposed to use the
adapted road corridors in the motion planning strategy: (i) Directly use the generated
and adapted road corridor assuming good enough localization, or (ii) a probabilistic
occupancy grid approach that deals with localization uncertainty. This latter approach
proposes a more general way to fuse data coming from maps and perception systems
on the occupancy grid. Moreover, a localization uncertainty propagation algorithm
over the grid has been proposed. Thus, the motion planning algorithms can be influ-
enced by the current localization uncertainty of the vehicle.

• Risk estimation and motion prediction: Through the proposed risk estimation algo-
rithm, which can be classified as an intention-aware prediction approach, it is possible
to differentiate between the road agents close to the vehicle that may compromise the
ego-vehicle safety. As a result, trajectory prediction algorithms can be applied only
to agents that are causing possible risk situations, considerably reducing the num-
ber of predictions improving their accuracy, and therefore reducing the complexity
of decision-making and planning. This is especially relevant in urban environments,
where typically there is a large number of moving objects around the ego-vehicle, but
many of them do not contribute to the generation of risk situations.

• Local planning capabilities: Regarding local planning, an extensive comparison of
state-of-the-art path planning strategies for automated driving was firstly carried out.
The results of the comparison allowed to choose the most appropriate planning strat-
egy among the approaches assessed, taking into account a balance between calcula-
tion time and evaluated search space size. Moreover, the speed planning algorithm
computes the appropriate speed for each point of the generated path considering lim-
ited longitudinal and lateral accelerations to ensure comfort inside the vehicle. On
the other hand, the manoeuvre planning functionality gives the decision system the
ability to select the appropriate planning mode according to the interpretation of the
environment. The different proposed local planning modules have been successfully
tested in a wide range of real scenarios where both static and dynamic obstacles had
to be avoided.

• Interaction capabilities: To facilitate the interaction capabilities of the decision-
making architecture and the vehicle occupants, a human-machine interface has been
implemented. This interface provides a friendly bidirectional communication channel
that allows the occupants to set the destination point while the most relevant informa-
tion about the trip (such as the route, time to destination, vehicle speed, etc.) is shown
in a screen. In addition, the vehicle occupants can make use of the 2D and 3D visual-
ization interfaces to show detailed information about the perceived environment and
the decisions of the vehicle.

• Architecture integration and validation: All the algorithms developed for the differ-
ent modules of the new architecture have been implemented and validated in a real
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experimental platform. For this purpose, different scenarios have been used in real
operating environments and several live demonstrations have been carried out for the
general public.

8.2 Future work

The contributions of this thesis give rise to continuations of the work presented in the dif-
ferent research topics treated. The following list present future work lines grouped by topic:

• Motion planning: Despite the proposed trajectory generation algorithm offers good
results in terms of trajectory quality and computation time, machine learning algo-
rithms can be applied to enable a better use of the available computational resources
when the computation time plays a critical role. This approach would lead to a prior
selection of the path candidates to be evaluated, probably increasing the percentage of
valid candidates by avoiding the evaluation of know-invalid candidates. Thus, besides
saving computational resources, a better search space exploration or a more reduced
planning time could be achieved. Regarding the speed planning, the comfort inside
the vehicle could be improved by introducing methods for jerk limitation.

• Probabilistic occupancy grid enrichment: Currently, the occupancy grid includes the
propagation of the localization uncertainty from the road corridors, and raw perceived
obstacles. Future work around the occupancy grid representation will focus on objects
identification and tracking from raw sensor data. This approach will allow to obtain a
better perception of the near vehicle environment by fusing data coming from differ-
ent perception sensors in the same grid. Furthermore, the uncertainty of the perceived
objects location could be also addressed being propagating over the grid just like the
localization uncertainty. These enrichments in perception would lead to a more effi-
cient and human-like motion planning by avoiding unneeded consecutive planning
requests caused by the bad perceived position of obstacles. Moreover, to improve the
performance of the computation of the grid, parallel computing on GPUs should be
used. In this connection, the right balance between computation time and grid cell
size will be explored to increase the grid accuracy.

• Risk assessment and decision-making: The proposed risk estimation algorithm based
on DBN can be extended for aggregated longitudinal and lateral collision risk estima-
tion with other vehicles. Moreover, risk estimation with pedestrians, which so far are
not considered because of the difficulty of finding decent prediction models, could be
also included. This algorithm can be computationally expensive, so parallel comput-
ing on GPUs can be also used. Regarding the decision-making strategies, the use of
Markov Decision Processes (MDP) could be explored to strengthen the current deci-
sion scheme.

• Motion prediction: The stability and reliability of the motion prediction of other traf-
fic agents can be improved by applying multiple object tracking method using Kalman
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filter that takes as input reliable information of the perceived obstacles coming from
clustering and tracking algorithms applied over the occupancy grid for object detec-
tion. Besides, the combination of probabilistic and machine learning techniques such
as stochastic reachable sets and Gaussian mixtures could be applied to improve the
motion predictions.

8.3 Dissemination

During the development of this thesis, the doctoral candidate has participated in different
research projects, both national and European. This framework has allowed the establish-
ment of working and collaboration links with other research centres, universities and re-
lated companies. This led to a 3-months research stay performed at the “Integrated Vehicle
Safety” department at Netherlands Organisation for Applied Scientific Research (TNO), Neder-
lands, from to 17th April 2017 to 17th July 2017, under the supervision of and Dr. Elham
Semsar Kazerooni.

As a result of the work carried out over the last years, both in the development of this
thesis and in the projects in which the doctoral candidate has participated, several scientific
papers have been published in journals and congresses related to automated driving. These
and other dissemination activities are listed below.

Journal papers

1. Artuñedo, A., Godoy, J., & Villagra, J. (2019). “Motion planning approach for urban
environments based on self-generated road corridors”, IEEE Transactions on Intelli-
gent Transportation Systems, (submitted).

2. Artuñedo, A., Godoy, J., & Villagra, J. (2018). “A Primitive Comparison for Traffic-Free
Path Planning”, IEEE Access, 6, 28801–28817. https://doi.org/10.1109/ACCESS.

2018.2839884

3. Artuñedo, A., Toro, R. del, & Haber, R. (2017). “Consensus-Based Cooperative Con-
trol Based on Pollution Sensing and Traffic Information for Urban Traffic Networks”,
Sensors, 17(5), 953. https://doi.org/10.3390/s17050953

4. Godoy, J., Artuñedo, A., & Villagra, J. (2019). “Self-Generated OSM-Based Driving
Corridors”, IEEE Access, 7, 20113–20125. https://doi.org/10.1109/ACCESS.2019.

2897348

5. Castaño, F., Beruvides, G., Haber, R., & Artuñedo, A. (2017). “Obstacle Recognition
Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System”,
Sensors, 17(9), 2109. https://doi.org/10.3390/s17092109
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IEEE. https://doi.org/10.1109/ITSC.2015.235
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interpolation methods for autonomous driving in urban environments”, In Industri-
ales Research Meeting 2017 (p. 147). Madrid: ETSII, UPM. Retrieved from http:
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5. Artuñedo, A., Haber, R., & Matía, F. (2016). “A co-simulation environment for coop-
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6. Artuñedo, A., Villagra, J., & and Haber, R. (2018). “Adaptive and cooperative decision-
making strategies for autonomous driving in urban environments”, In II Doctorate
Symposium - Universidad Politécnica de Madrid". Madrid. Retrieved from https:

//eventos.upm.es/file_manager/getFile/25023.html

7. Villagra, J., Perarnau, M., Godoy, J., & Artuñedo, A. (2018). “Validación de una es-
trategia para la estimación del riesgo en intersecciones con vehículos conectados”, In
Actas de las XXXIX Jornadas de Automática, Badajoz, Universidad de Extremadura.
http://eii.unex.es/ja2018/actas/JA2018_030.pdf

8. Artuñedo, A., del Toro, R. M., & Haber, R. (2016). “Consensus-Based Cooperative
Control Approach Applied to Urban Traffic Networks”, Proceedings, 1(2), 29. https:
//doi.org/10.3390/ecsa-3-e008

9. Artuñedo, A., del Toro, R. M., & Haber, R. (2016). “Sistema de control cooperativo
aplicado a una red de tráfico urbano”, In Actas de las XXXVII Jornadas de Automática
(pp. 558–565). Madrid: Comité Español de Automática (CEA-IFAC). Retrieved from
http://ja2016.uned.es/assets/files/ActasJA2016.pdf

10. Artuñedo, A., Godoy, J., & Haber, R. (2016). “Entorno avanzado de co-simulación
para maniobras cooperativas entre vehículos”, In Actas de las XXXVII Jornadas de
Automática (pp. 704–709). Madrid: Comité Español de Automática (CEA-IFAC). Re-
trieved from http://ja2016.uned.es/assets/files/ActasJA2016.pdf

177

https://doi.org/10.1109/IVS.2017.7995820
https://doi.org/10.1109/ITSC.2015.235
http://oa.upm.es/46090/
http://oa.upm.es/46090/
http://oa.upm.es/40073/
https://eventos.upm.es/file_manager/getFile/25023.html
https://eventos.upm.es/file_manager/getFile/25023.html
http://eii.unex.es/ja2018/actas/JA2018_030.pdf
https://doi.org/10.3390/ecsa-3-e008
https://doi.org/10.3390/ecsa-3-e008
http://ja2016.uned.es/assets/files/ActasJA2016.pdf
http://ja2016.uned.es/assets/files/ActasJA2016.pdf


Chapter 8. CONCLUSIONS

11. Godoy, J., Artuñedo, A., Haber, R., & González, C. (2015). “Conducción autónoma y
cooperativa – El programa Autopia en España”, In XV Congreso Español sobre Sis-
temas Inteligentes de Transporte. Madrid: ITS Spain.

Book chapters

1. Villagra, J., Acosta, L., Artuñedo, A., Blanco, R., Clavijo, M., Fernández, C., Godoy,
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Master thesis co-direction

1. Parrilla, A., (2018) “Sistema de control para vehículo autónomo: seguimiento de
trayectorias y estrategias de aparcamiento”, Máster de Automática y Robótica, Uni-
versidad Politécnica de Madrid.

2. Pérez, M., (2018) “Detección de objectos mediante LiDAR para conducción
autónoma”. Máster de Automática y Robótica, Universidad Politécnica de Madrid.

Press and media

Demonstration at IROS 2018

• “Autonomous Driving Events” at 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems(IROS 2018). A Link: https://youtu.be/jt4yudeznbw

Demonstration at S-moving 2018

• Live demonstration. Canal Sur, Andalucía, Spain, 18th October 2018, Link: https:

//youtu.be/Q9Oskis7iR0

• TVE News, Spain, 18th October 2018, Link: https://youtu.be/kgNnyXHkAUI

Demonstration at ICVES 2018

• INSIA facilities, 14th September 2018, Link: https://www.icves2018.org/uploads/5/
0/3/9/50391481/icves_2018_demo.pdf

SEAT Autonomous Driving Challenge 2018

• “La Universidad Politécnica de Madrid gana la competición de coches autónomos a
escala”, ABC, 27th November 2018, Link: https://www.abc.es/motor/...

• “Autopia: el proyecto que quiere resolver las dudas de la conducción autónoma”,
Innovaspain, 10th December 2018. Link: https://www.innovaspain.com/

upm-universidad-politecnica-madrid-autopia-conduccion-autonoma/

• “La UPM, campeona nacional del “Autonomous Driving Challenge””, Autocasión,
26th November 2018, Link: https://www.autocasion.com/actualidad/noticias/

la-upm-campeona-nacional-del-autonomous-driving-challenge

• “La Universidad Politécnica de Madrid, campeona nacional del Au-
tonomous Driving Challenge”, RRHH press, 25th November 2018, Link:
https://www.rrhhpress.com/talento/...

• “Estudiantes de la Escuela campeones del Autonomous Driving Chal-
lenge 2018.”, Escuela de Industriales UPM, 30th November 2018, Link:
https://www.escuelaindustrialesupm.com/...
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Dissemination event: “Inventos y avances científicos que están cambiando el mundo”

• “Comienza un ciclo de conferencias sobre los inventos que cambiarán el mundo”,
CSIC, Ciencia y sociedad, 10th January 2018, Link: http://www.csic.es/...

• “Ibercaja Huesca acoge el ciclo de conferencias "inventos y avances científicos
que están cambiando el mundo"”, Web Fundación Ibercaja, 11th January 2018,
Link: https://www.fundacionibercaja.es/salaprensa/7159

• “Los inventos que cambiarán el mundo”, Catalunya Vanguardista,
11th January 2018, Link: https://www.catalunyavanguardista.com/

los-inventos-que-cambiaran-el-mundo/
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