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Abstract 59 

 60 

 61 

We present shipborne measurements of size-resolved concentrations of 62 

aerosol components across ocean waters next to the Antarctic Peninsula, 63 

South Orkney Islands and South Georgia Island, evidencing aerosol features 64 

associated to distinct eco-regions. Non-methanesulfonic acid Water Soluble 65 

Organic Matter (WSOM) represented 6-8% and 11-22% of the aerosol PM1 66 

mass originated in open ocean (OO) and sea ice (SI) regions, respectively. 67 

Other major components included sea salt (86-88% OO, 24-27% SI), non sea 68 

salt sulfate (3-4% OO, 35-40% SI), and MSA (1-2% OO, 11-12% SI). The 69 

chemical composition of WSOM encompasses secondary organic 70 

components with diverse behaviors: while alkylamine concentrations were 71 

higher in SI air masses, oxalic acid showed higher concentrations in the open 72 

ocean air. Our online single-particle mass spectrometry data exclude a 73 

widespread source from sea bird colonies, while the secondary production of 74 

oxalic acid and sulfur-containing organic species via cloud processing is 75 

suggested. We claim that the potential impact of the sympagic planktonic 76 

ecosystem on aerosol composition has been overlooked in past studies, and 77 

multiple eco-regions act as distinct aerosol sources around Antarctica. 78 

 79 
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 93 

 94 

1. Introduction 95 

 96 

 97 

Remote from most human influences, the Southern Ocean (SO) is one of the 98 

most pristine regions on Earth, and a window to the preindustrial atmospheric 99 

conditions and processes1-5. It is the stormiest of all oceans, and its 100 

atmospheric and oceanic circulations impact the entire Southern hemisphere 101 

and beyond. The surface of the ocean closer to the Antarctic continent 102 

undergoes an annual freezing cycle, forming a layer of sea ice that generally 103 

extends over an area ranging from 4 x106 km2 in the summer to approximately 104 

19 x 106 km2 in late winter1. This large area increases surface albedo and 105 

controls the air-sea gas exchange. Sea ice ecosystems are also one of the 106 

largest biomes on earth, providing a stable habitat for diverse microbial 107 

assemblages2,3. 108 

Currently, many unknowns remain about atmospheric and oceanographic 109 

processes in this region, and their linkages. Climate models are prone to large 110 

biases in the simulation of clouds, aerosols and air-sea exchanges4. This is 111 

largely due to the poor understanding of aerosol sources and processes in 112 

this region. Overall, two natural sources largely govern the aerosol population, 113 

sea spray (primary) and non sea salt sulfate (nssSO4
2–; secondary). Sea 114 

spray (mostly composed of sea salt) generated by breaking waves is often 115 

reported as the main source of supermicron aerosols in marine areas6,7. 116 

Recently, blowing snow over pack ice has been suggested to contribute sea 117 

salt aerosol in similar amounts to breaking waves8-10. The other major 118 

component of Antarctic aerosols, nssSO4
2–, is mainly derived from 119 

atmospheric oxidation of dimethylsulfide (DMS), a trace gas produced by 120 

marine plankton. The marine sulfur biogeochemical cycle received much 121 

attention after the proposal by Charlson et al. (1987)12 that the principal 122 

source of cloud condensation nuclei (CCN) in the marine environment is 123 

DMS-derived nssSO4
2– 13 . Such a hypothesis of a central role for DMS was 124 

questioned by Quinn and Bates (2011)14 as the large variety of ocean-emitted 125 
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aerosol components was being disclosed, but mounting evidence has been 126 

collected thereafter that DMS emission chiefly contributes to aerosol formation, 127 

growth and activation as CCN over the oceans15-18. In the atmosphere, DMS 128 

is oxidized also into aerosol-prone methanesulfonic acid (MSA), which peaks 129 

in the summer and is found predominantly as methanesulfonate in the 130 

submicron size range19. Unlike nssSO4
2–, which may originate also from 131 

anthropogenic and lithogenic sources, MSA has been proposed as a proxy for 132 

oceanic DMS emissions. However, the overall interpretation of MSA and 133 

nssSO4
2– is far less straightforward than initially thought20, given complex 134 

ecological and biogeochemical processes controling the DMS marine 135 

emissions21 and variable MSA oxidation yields22.  136 

The relative roles of secondary aerosols produced from biogenic sulfur versus 137 

primary sea-spray aerosols in regulating cloudiness above the SO is still a 138 

matter of debate23-27. Mc Coy et al. (2015)25 reported observational data 139 

indicating a significant spatial correlation between regions of elevated Chl-a 140 

and particle number concentrations across the SO, and showed that modeled 141 

organic mass fraction and sulfate explain 53 ± 22% of the spatial variability in 142 

observed particle concentration, suggesting that primary marine organic 143 

aerosols are important in this region, similarly to other remote marine 144 

regions28. Despite the increasing awareness of their importance, 145 

measurements of organic components in SO aerosols are scarcer than 146 

inorganic measurements, and the overall apportionment of primary versus 147 

secondary marine aerosol in the southern hemisphere is not known. First 148 

observations of organic carbon (OC) in size-segregated aerosol samples 149 

collected at a coastal site in the Weddell Sea (Virkkula et al., 2006)29 showed 150 

that MSA represented only a few % of the substantial amount of OC observed 151 

in the submicron fraction. However, Zorn et al (2008)30 showed that MSA 152 

dominated Antarctic OC, whereas non-MSA organic compounds dominated 153 

SO OC. Recent measurements over the SO (43°S−70°S) and the Amundsen 154 

Sea (70°S−75°S) showed that Water Insoluble Organic Carbon (WIOC) 155 

accounted for 75% and 73% of aerosol total organic carbon in the two regions, 156 

respectively31. In the Amundsen Sea, WIOC concentrations correlated with 157 

the relative biomass of a phytoplankton species (Phaeocystis antarctica) that 158 

produces extracellular polysaccharide mucus. Whilst sympagic and pelagic 159 
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plankton biomass controls biological productivity and the organic mass budget 160 

of the Southern Hemisphere2,3, including organic emissions to the atmosphere, 161 

insular terrestrial biomass emissions contain large amounts of OC32-34.  162 

Here, we report atmospheric measurements during a 42 day cruise in the SO 163 

near Antarctica. We previously showed that the microbiota of sea ice and the 164 

sea ice-influenced ocean can be a source of atmospheric organic nitrogen 165 

(ON), specifically low molecular weight alkylamines35. In a follow-up paper, we 166 

reported a specific analysis of the primary ON aerosol detected by bubble 167 

bursting chamber experiments on board, and also showed that alkylamines 168 

form in the ambient aerosol by secondary processes involving volatilization 169 

from the ocean surface and re-condensation onto acidic aerosol particles36. 170 

Using valuable high time resolution data from the same campaign, and 171 

selecting 12 pseudo-steady state periods (where aerosol microphysical 172 

properties varied less than 20% over eight hours), Fossum et al (2018)27 173 

evaluated the relative contributions of primary and secondary aerosols to SO 174 

cloud condensation nuclei, and concluded that both sea salt and non-sea-salt 175 

sulfate were major CCN components. In the selected cases studied, non MSA 176 

organics contributed in the range 2-10% of aerosol mass. 177 

In the present work, we (1) report the aerosol water soluble fraction 178 

composition for the whole campaign; (2) report the size-resolved 179 

concentrations of oxalic acid and alkyl amines in PM10 aerosols; (3) discuss 180 

the mixing state of oxalic acid by means of single particle mass spectrometry; 181 

and (4) discuss the processes and sources responsible for the measured 182 

patterns, stressing that multiple eco regions govern the aerosol population 183 

numbers and composition. Such detailed chemical characterization of the 184 

water soluble fraction of marine aerosol, including tracers of secondary 185 

aerosol formation processes, has never been achieved before close to the 186 

Weddell Sea region. We highlight that water soluble aerosol components 187 

contribute to aerosol hygroscopicity and influence the ability of particles to 188 

activate into cloud droplets, therefore being climate relevant. The role of 189 

water-soluble organics in these processes in the Antarctic atmosphere is far to 190 

being understood, mainly due to the lack of quantitative observations. 191 

 192 
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2 Methodology 193 

 194 

The Cruise.  195 

We conducted extensive aerosol measurements on board of the RV 196 

Hesperides from January 2 to February 11, 2015 under the project PEGASO 197 

(Plankton-derived Emissions of trace Gases and Aerosols in the Southern 198 

Ocean). Different air masses were sampled, including the regions of Antarctic 199 

Peninsula, South Orkney, and South Georgia Islands. 200 

 201 

Aerosol offline measurements.  202 

 203 

Off-line aerosol samples were collected on the upper deck by using a 5-stage 204 

Berner impactor (hereafter BI5; type LPI80, Hauke; cut-offs at 0.06, 0.14, 0.42, 205 

1.2, 3.5 and 10 μm) and a high volume PM1 sampler (hereafter HIVOL; 206 

TECORA). Ion chromatography was used for the quantification of water-207 

soluble inorganic ions, oxalic acid and low molecular weight alkyl-amines 208 

(methyl-, ethyl-, dimethyl-, diethyl- and trimethylamine)37 in the BI5 water 209 

extracts, while an elemental analyzer (Shimadzu TOC-5000A) was used to 210 

quantify the water-soluble organic carbon content both of the impactor stages 211 

and of the HIVOL filters. The water soluble organic carbon content was 212 

measured on both kinds of samples to assess the impact of the sampling 213 

technique upon the measured value. Indeed, impactor samples may be 214 

subject to negative artifacts due to loss of semi-volatiles at the low operating 215 

pressure and to bouncing, while HIVOL samples on quartz filters may be 216 

affected by positive artifacts38. 217 

Sampling was allowed only when the samplers were upwind the ship exhaust 218 

with a relative wind speed threshold of 5 m s-1. Due to the necessity of 219 

collecting sufficient amounts of samples for detailed chemical analyses, 220 

sampling time was of the order of ~50 h for each sample. Samples were 221 

stored at −20 °C until the chemical analyses. One field blank per sample was 222 

collected during the cruise and the concentrations were corrected for the 223 

blank values, which resulted negligible for amines and oxalate. A carbon-to-224 

mass conversion factor of 2 was used to estimate the WSOM from organic 225 
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carbon measurements. This value is in line with state-of-the-art marine 226 

organic aerosol measurements39. The non-sea-salt fraction of aerosol 227 

chemical components was derived based on the standard seawater chemical 228 

composition using Na+ as the sea-salt tracer.  229 

 230 

Aerosol online measurements. 231 

 232 

The online instruments34 were kept inside the bow of the ship, sampling was 233 

done with an purposely designed inlet, 9m in length followed by a cyclon with 234 

a cut-off of approximately 5um at a flow rate of 5 L min−1. All downstream 235 

online instruments were isokinetically subsampling from it and dried to below 236 

40% relative humidity. The ATOFMS (model 3800-100, TSI, Inc.) allowed 237 

collection of mass spectra (both positive and negative) of single particles 238 

roughly between 500 and 1500 nm. The ATOFMS mass spectra were 239 

imported into Yet Another ATOFMS Data Analyzer (YAADA), and adaptive 240 

resonance theory neural network, ART-2a (learning rate 0.05, vigilance factor 241 

0.85, and 20 iterations) was run40. The size resolved non-refractory chemical 242 

composition of submicron aerosol particles was measured with an Aerodyne 243 

High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS, 244 

Aerodyne, Billerica, MA)41, hereafter indicated as AMS. 245 

 246 

 247 

Bioregion classification 248 

 249 

We collected aerosol data in the areas of the Antarctic Peninsula, South 250 

Orkney, and South Georgia Islands. We ran 117 air mass back trajectories 251 

(6h resolution, 42 days) and classified them into two broad source regions 252 

according to the characteristics of the overflown areas: “open ocean” (OO) 253 

and “sea ice” (SI). Out of the 6 samples analyzed, PE24, PE28 and PE06 254 

were assigned to OO, and PE09, PE13 and PE18 were assigned to SI35. A 255 

detailed characterization of the air mass history, ground type contribution and 256 

water soluble organic features of each sample have been presented in 257 

Decesari et al.42, where a map of the sampling locations can also be found. 258 

As we have previously showed35,36,42, SI samples are influenced by aerosol 259 
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precursors emitted by the peculiar microbiota thriving in sea ice and sea ice-260 

influenced waters, while OO samples are representative of the open Ocean 261 

biota. This results in distinct chemical compositions, which we will investigate 262 

in detail below. 263 

 264 

3 Results 265 

 266 

3.1 Overall aerosol chemical composition 267 

 268 

Six shipborne aerosol filters are reported in this study. Figure SI1 and SI2 269 

show the remarkable similarity among the sub-micron OO and SI samples 270 

(within the same group).  271 

The average concentrations of the PM1 aerosol water soluble fraction in the 272 

OO and SI samples are shown in Figure 1 and reported in Tables SI1. Sea 273 

salt dominates the PM1 water soluble fraction in OO samples, with average 274 

concentrations of 2.39±2.36 µg m-3 (n=3; min, max: 0.79-5.1 µg m-3) 275 

representing on average 87% of the mass. In the SI region, sea salt 276 

concentrations were ten fold lower, average of 0.198±0.056 µg m-3 (n=3; min, 277 

max: 0.143-0.254 µg m-3), representing on average only 25% of the aerosol 278 

water soluble mass. By contrast, in the SI region the dominant species was 279 

nssSO4
2–, with average concentrations of 0.295±0.061 µg m-3 (n=3; min, max: 280 

0.228-0.348 µg m-3) representing on average 37% of the water soluble 281 

fraction. This was the third lowest species in OO air masses, with average 282 

concentrations of 0.099±0.014 µg m-3 (n=3; min, max: 0.087-0.114 µg m-3) 283 

representing on average only 4% of the aerosol water soluble mass. 284 

As expected, MSA exhibited similar patterns to nssSO4
2-. Higher 285 

concentrations were seen from the SI region, with average concentrations of 286 

0.088±0.032 µg m-3 (n=3; min, max: 0.061-0.123µg m-3) representing on 287 

average 11% of the water soluble fraction. High MSA concentrations over the 288 

Weddell Sea were previously attributed to emissions from the marginale ice 289 

zone biota35,36,42 in agreement with the global MSA climatology43. In the OO 290 

region, average concentration was 0.043±0.012 µg m-3 (n=3; min, max: 0.036-291 

0.057µg m-3), representing on average 2% of the aerosol water soluble mass. 292 
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Minor concentrations of ammonium were found for the SI region, average of 293 

0.068±0.017 µg m-3 (n=3; min, max: 0.055-0.087 µg m-3), which represented 294 

on average 9% of the water soluble fraction (n=3; min, max: 7-10%). These 295 

were much lower in the OO region, as previously discussed in Dall´Osto et al. 296 

(2017)35: average of 0.027±0.005 µg m-3 (n=3; min, max: 0.022-0.031 µg m-3), 297 

representing on average 2% of the water soluble mass (n=3; min, max: 0-3%). 298 

Low ammonium concentrations made the submicron aerosol particles rather 299 

acidic as in many other remote regions. 300 

A key observation was that non-MSA organic compounds (see Methods) 301 

represented an important aerosol component. The average non-MSA WSOM 302 

concentration from the BI5 was 0.083±0.022 µg m-3 (n=3; min, max: 0.058-303 

0.10 µg m-3) and 0.17±0.02 (n=3; min, max: 0.15-0.19 µg m-3) in SI and OO 304 

regions, respectively, while from the HIVOL samplers concentrations as high 305 

as 0.19±0.05 (SI, n=3; min, max: 0.21-0.22 µg m-3) and 0.21±0.05 (OO, n=3; 306 

min, max: 0.17-0.26 µg m-3) were obtained. Consequently, non-MSA-WSOM 307 

accounted for 11% (n = 3; min, max: 9-16%) and 6% (n=3; min, max: 3-13%) 308 

of total sub-micrometer water soluble mass in SI and OO regions, respectively, 309 

when considering the BI5 results, and 22% (n=3; min, max; 18-27%) and 8% 310 

(n=3; min, max: 4-15%), using the HIVOL data. Although the concentration 311 

differences between the two datasets are notable (particularly for the Si 312 

region), the non-MSA WSOM was the third most abundant component in SI, 313 

and the second in OO, independent of the sampling technique.  314 

Parallel AMS measurements performed during the cruise27,35 were averaged 315 

over the filter sampling times in order to provide a further evaluation of the 316 

organic aerosol concentration over the two regions. An excellent agreement 317 

was observed for MSA concentrations between AMS and BI5 samples (n = 6; 318 

slope: 1.04; R: 0.66), while more significant differences were reported for the 319 

total organics. Comparing the non-MSA organic aerosol concentration by 320 

AMS with the non-MSA-WSOM measured on the BI5 samples, we got a slope 321 

of 0.53 (n=6; R: 0.74, OM/OC = 2, see Par. 2.), indicating at least a factor two 322 

overestimation of the organic fraction on the BI5 samples with respect to AMS 323 

measurements. The overestimation was obviously higher if we compare the 324 

AMS with the HIVOL samples (n=6; slope: 0.33, R: 0.56). Accordingly, if we 325 

assume that all the organics measured by the AMS contribute to the WSOM 326 
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measured offline, a reduction of the average non-MSA WSOM contribution 327 

over the SI region is obtained, from the range 11-22% by offline 328 

measurements, down to 8%. 329 

This discrepancy between the sub-micrometre non-MSA organic aerosol 330 

quantification by offline and online techniques is consistent with the existing 331 

literature. Virkkula et al. (2006)29 reported a high contribution of non-MSA 332 

organics in Antarctic samples (~50% of PM1 mass) by offline chemical 333 

analyses, while Zorn et al. (2008)30 reported a negligible non-MSA organic 334 

contribution in sub-micrometre Antarctic aerosol through online AMS 335 

measurements. Although the existing measurements are too scarce to derive 336 

any sound conclusion, the evidenced tendency is worthy of investigation and 337 

proves the necessity for further organic aerosol characterization studies over 338 

Antarctica. 339 

Considering the PM10 size range (Table SI2), sea salt dominated in both OO 340 

and SI samples, with average concentrations of 7.93±3.99 µg m-3 (n=3; min, 341 

max: 5.20-12.51 µg m-3) and 2.17±0.83 µg m-3 (n=3; min, max: 1.22-2.77 µg 342 

m-3) respectively, representing on average 94 and 78% of the aerosol water 343 

soluble mass. 344 

Whilst the speciation of individual organic compounds was treated in a 345 

separate paper42, the next section discusses two chemicals of interest as 346 

markers of secondary aerosol sources. 347 

 348 

3.2 Alkylamine and oxalate measurements 349 

 350 

In this Section, we present the atmospheric concentrations of selected 351 

secondary aerosol formation process tracers: alkyl amines and oxalic acid. 352 

The former have been associated to secondary aerosol formation based on 353 

acid-base reactions37, including new particle formation35. The latter was 354 

identified as one of the most abundant single oxygenated compounds in many 355 

marine aerosol studies at different latitudes44-48. All the tracers were 356 

characterized by high quantification precision even at the low aerosol 357 

concentrations typical of Antarctica. 358 

 359 

3.2.1. Aerosol size-resolved mass concentrations  360 
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 361 

Figure 2 shows that alkylamines were 5 times higher (t-test, significantly 362 

different, p<0.01) in aerosols from the SI region (n=3; 9.1±4.5 ng m-3) than 363 

from the OO regions (n=3; 1.8±1.1 ng m-3). In a previous paper35 we had 364 

reported alkylamines only in PM1 aerosols, here we present the PM10 365 

concentrations. Contrasting with the amines, oxalate concentrations were 9 366 

times higher (t-test, significantly different, p<0.05) in OO (n=3; 1.98±1.44 ng 367 

m-3) than in the SI (n=3; 0.20±0.09 ng m-3) region (Figure 2a). 368 

Concerning their size distributions, clear differences were seen (Figure 2b). 369 

Whilst amines occurred mainly in the fine mode, the oxalate size distribution 370 

was different between regions. In SI samples, the sub-micron oxalate 371 

concentration was below detection limit in two samples out of three, while 372 

non-negligible concentrations were always detected in the 1.2-3.5 µm size 373 

range, resulting in the coarse-mode dominated distribution of Figure 2. In OO 374 

samples, the oxalate distribution peaked in fine particles (0.42-1.2µm). Very 375 

few measurements of oxalate in the SO exist. Xu et al (2013)49 reported low 376 

concentrations, 3.8 ± 3.8 ngm-3 (range: 0 to 9.1), over the SO, and 2.2 ± 1.5 377 

ngm-3 (range: 0 to 4.6) over coastal Antarctica. These results were in line with 378 

data collected in Aboa Station29  and in the region of >50°S,130°E–150°E49. In 379 

this latter study, oxalate size distributions over the SO were bimodal, with 380 

peak at <0.49 μm and 0.95–1.5 μm, whereas over coastal East Antarctica 381 

oxalate concentration peaked at 0.56–1.8 μm.  382 

 383 

3.2.2 Mixing state of oxalate containing particles  384 

 385 

In this section we investigate the aerosol mixing state, broadly defined as the 386 

distribution of the chemical component within the aerosol population. In 387 

Dall´Osto et al., (2019)36 we compared ATOFMS spectra of particles 388 

generated by bubbling melted sea ice with those produced by bubbling 389 

surface sea water. Here, we only consider the mass spectra of ambient 390 

aerosols. We expanded the analysis by running ART-2a on mass spectra 391 

containing a peak (m/z -89, [(C2O4H)H]-, approximately 1,300 single particle 392 

mass spectra) representative of oxalic acid51. The small peak at m/z 179 is 393 

attributed to the oxalic acid dimer [(C2O4H)2H]-, which is commonly observed 394 
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in the spectra of oxalic acid standards. Unfortunately, the temporal trends of 395 

the ATOFMS particles detected did not allow differentiation of the SI and OO 396 

regions due to low counts and poor statistic. Nevertheless - broadly - three 397 

particle types were seen: 398 

(a) ATOFMS Na-OX (about a quarter of the total mass spectra identified): Sea 399 

spray particles containing organic carbon including oxalic acid. Peaks at m/z 400 

23 (Na+), m/z 24 (Mg++), m/z 39 (K+) (positive mass spectra) and m/z -16 [O]-, 401 

-17 [OH]-, -35 (Cl-), -46 [Na2]
-, 62 [Na2O]+, and 63 [Na2OH]+ consistent with 402 

sea salt in sea spray (Figure 3a). The negative ion mass spectrum shows 403 

prominent peaks at m/z -26 [CN]- and m/z -42 [CNO]-, indicating that all 404 

particle types presented were internally mixed with organo-nitrogen species. 405 

In the negative spectra, putative peaks of oxalate (m/z -89) are seen also with 406 

larger mass peaks, likely due to unidentified large chemical compounds. This 407 

particle type likely corresponds to degraded primary marine organic aerosols 408 

internally mixed with sea spray.  409 

(b) ATOFMS biogenic-OX (about a quarter of the total mass spectra identified). 410 

Peaks due to Na+ (m/z 23), K+ (m/z 39) and phosphate (m/z -63 [PO2]
- and 411 

m/z -79 [PO3]
-) characterize this particle type (Figure 3b). The ATOFMS has 412 

already proved to be a good tool to separate dust (mainly Ca-rich or Al-Si rich) 413 

and biological particles52,53. Briefly, biological mass spectral signatures can be 414 

differentiated from crustal dust on the basis of abundant organic and 415 

phosphorus ions, as well as a lack of key dust markers, such as aluminium 416 

and silicates. Additionally to the peak of oxalate (m/z -89) a strong peak at m/z 417 

114 can be seen, previously demonstrated to be preserved in particles that 418 

contain amine salts and that have undergone photo-oxidation54,55. This 419 

particle type may correspond to biogenic material in general, but not enough 420 

mass spectra (about a dozen) were collected to obtain more information.  421 

(c) ATOFMS SOA-OX (about half of the total mass spectra identified). This 422 

particle type was seen associated with secondary organic components in both 423 

positive and negative mass spectra (Figure 3c). Beside the previously 424 

described peaks associated with amines and oxalic acid, a unique peak at m/z 425 

59, ([N(CH3)3]
+) is attributed to trimethylamine (TMA). Previous studies 426 

showed that cloud/fog processing can increase gas-to-particle partitioning of 427 

TMA56, and potentially form non-salt organic aerosols57. The unique mass 428 



 14 

series of m/z −81, −97 and m/z −111 is due to species [HSO3]
−, [HSO4]

− and 429 

[HOCH2SO3]
−. ATOFMS particle spectra of this type have previously been 430 

shown to arise from hydroxymethanesulphonate in both laboratory studies 431 

and field experiments58,59. Minor peaks can also be seen at m=z 58, 74, and 432 

128, which were previously attributed to alkyl ammonium nitrate salt particles 433 

formed by reaction of nitric acid and amines60.  434 

Our ATOFMS mixing state results confirm that a complex mixture of oxalate 435 

containinig particles contributes to the chemical composition of Antarctic 436 

aerosol, including primary Na-containing aerosols and non-MSA marine 437 

secondary organic particles.  438 

 439 

 440 

4 Discussion  441 

 442 

WSOM was found present in non-negligible concentration during our study, 443 

although with significant uncertainty due to its dependence on the 444 

measurement technique. Even though alkylamines and oxalic acid altogether 445 

represented a minor fraction of the total water soluble organic mass (see 446 

Tables SI1 and SI2), these compounds can be used as proxies to discuss 447 

processes and sources of secondary organic aerosols in the study area.  448 

 449 

4.1 Multiple processes driving the observed aerosols patterns  450 

 451 

4.1.1 Amines  452 

 453 

Aliphatic amines are known important organic compounds in the marine 454 

atmosphere. An important contribution of biogenic amines to marine organic 455 

aerosol was first reported by Facchini et al. (2008)37, pointing to a secondary 456 

formation pathway for alkylammonium salts. Indeed, in our study the size 457 

distribution peaked in the accumulation mode and exhibited a good correlation 458 

with nssSO4
2-, NH4

+ and MSA, which is indicative of an acid-base reaction of 459 

gaseous amines with sulfuric or sulfonate acids. In our previous study35 we 460 

demonstrated that the microbiota of sea ice and the sea ice-influenced ocean 461 
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is a source of atmospheric organic nitrogen, including low molecular weight 462 

alkylamines. In a follow up study36, thermodynamic equilibrium calculations 463 

suggested that the alkylamine shift from seawater to atmospheric secondary 464 

aerosol is driven by the very low pH expected in fine and ultrafine particles. 465 

Furthermore, a detailed analysis of single particle mass spectra of sea-spray 466 

(primary) aerosols artificially generated by bubbling seawater samples 467 

showed that in ambient aerosol the fingerprint of primary alkylamine-rich 468 

particles represents only a minor percentage (11-25%). Here we report an in-469 

depth analysis of total aerosol mass as well as the size distribution of 470 

alkylamines, which show that these compounds occur in different aerosol 471 

modes from oxalic acid.  472 

It should be kept in mind that ammonia and organic nitrogen in general - 473 

including alkylamines - may also be important contributors to new particle 474 

formation and growth in the SO. Indeed, using an unprecedented suite of 475 

instruments, Jokinen et al. (2018)61 showed that ion-induced nucleation of 476 

sulfuric acid and ammonia, followed by sulfuric acid–driven growth, is the 477 

predominant mechanism for new particle formation and growth in eastern 478 

Antarctica a few hundred kilometers from the coast61. Dall´Osto et al (2017)35 479 

suggested that the microbiota of sea ice and sea ice-influenced ocean were a 480 

significant source of atmospheric nucleating particles (size of 1-3nm). It must 481 

be noted, though, that new particle formation and growth is a key process that 482 

governs particle number concentrations but does not play an important role in 483 

governing aerosol mass.  484 

 485 

4.1.2 Oxalate  486 

 487 

Our study supports the existence of a natural source of oxalic acid to the 488 

marine atmosphere62,63. Previous studies44,62,63, 64, 65 showed that oxalate was 489 

distributed along a wide aerosol size range, including the sub-micrometer and 490 

a super-micrometer mode. This suggests that oxalate of marine origin must be 491 

produced through a combination of processes. These may include: 492 
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(1) Cloud processing‐from oxidation of gaseous glyoxal and mediated by 493 

particulate water, occurring over remote oceanic regions, which may 494 

contribute oxalate to submicrometer aerosols44,45, 46, 66, 67. 495 

 496 

(2) Photochemical degradation of fatty acids of biological origin at the ocean’s 497 

surface, giving rise to oxalic acid and other LMW dicarboxylic acids; these 498 

may be transferred with sea-spray particles to the atmosphere and 499 

subsequently degraded46, 48, 65, 68.  500 

 501 

(3) Neutralization of gaseous oxalic acid (which may originate from points (1) 502 

or (2)) onto sea-salt particles44. 503 

 504 

The broad size distributions of oxalate in the OO region strongly points to 505 

multiple atmospheric processes, in agreement with previous open sea 506 

observations6. By contrast, the oxalate size distribution found in the SI region - 507 

centered in the coarse mode at 1.2-3.5 µm – could be due to the degradation 508 

of primary biogenic organic matter, emitted with sea spray62,63. According to 509 

this hypothesis, the limited importance of sea-spray emissions over the 510 

Weddell Sea35,36 may explain the lower oxalate concentrations observed in SI 511 

samples with respect to OO ones. On the other hand, in Dall’Osto et al. 512 

(2019)36 we have shown that sub-micron aerosol over the Weddell Sea is 513 

extremely acidic, because of the persistent fine-mode sulfate and 514 

methanesulfonic acid particles and the low liquid water content (LWC) (pH_SI 515 

= 1.4; pH_OO = 6.6). The coarse size distribution of oxalate in this region may, 516 

therefore, be driven by the fine aerosol acidity, which would favour the 517 

accumulation of oxalate in the more alkaline coarse mode69. This is the 518 

simplest explanation, which probably accounts for much of the best known 519 

mechanism pattern in the oxalic acid size distribution.  520 

It is also possible that alternative pathways exist, including cloud and fog 521 

processing, as discussed in point (1) above. An example of a real time event 522 

of this process was recorded in the evening of the 14th January 2014 and it is 523 

presented in Figure SI4. The two aerosol size distribution modes indicative of 524 

cloud processing70 can be observed during the event. This event occurred in 525 
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the marginal sea ice region, the research vessel was about 75Km from the 526 

closest coast of the little island of Coronation (South Orkneys). Figure SI5 527 

shows that all air masses were travelling over open ocean and not terrestrial 528 

zones before arriving at the ship. Furthermore, the case study was seen in air 529 

masses that were the most affected by sea ice and the marginal sea ice zone 530 

(Fig. SI5). A clear growth of the smaller mode from 38nm to 43nm was seen 531 

over five hours (1 nm h-1; not shown), in concomitance with an increase of 532 

Relative Humidity due to foggy-cloudy conditions. By contrast, the decrease of 533 

the larger mode (from 105 nm to 87 nm) was likely due to the higher activation 534 

of large aerosol due to higher RH. Immediately after the onset of fog, the 535 

number of ATOFMS counts attributed to the SOA-OX particle type increased. 536 

After the event, the two size modes returned to about 38-40 nm and 181-190 537 

nm. The latter mode was likely due to cloud processing (Hoppel mode70), 538 

which transforms organic and inorganic compounds and shifts the size 539 

distribution to large accumulation mode sizes. After about 4-7am on the 15th 540 

January 2015 air masses changed, shifting towards West Pacific air masses, 541 

hence different aerosols were sampled and the event track was lost.  542 

Recently, Kim et al., (2019)71 demonstrated that aqueous reactions in 543 

atmospheric droplets can significantly modify aerosol composition and 544 

contribute to the formation of oxygenated and nitrogen-containing organic 545 

compounds in atmospheric aerosol particles. Our study shows that chemical 546 

reactions involving organic compounds of biogenic origin (acid-base 547 

neutralization and oxidation reactions) - likely related to marginal sea ice 548 

zones - are also occurring in the Antarctic region, and aerosol chemical 549 

composition may be more complex than solely sulfate and sea spray.  550 

 551 

4.2 Marine vs terrestrial inputs of ammonia, amines and organic aerosol 552 

 553 

According to our previous studies35,36, elevated alkylamine concentrations 554 

originate from melted sea ice and sea-ice-influenced waters. These could 555 

result from degradation of quaternary amine osmolytes, which we also found 556 

in sympagic plankton. Regarding oxalate, the higher abundance in OO 557 

samples suggests that this aerosol component is less related to the coastal 558 

and marginal sea-ice zone.  559 
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An important open question for Antarctic aerosol is the relative role of marine 560 

versus terrestrial sources of organic matter (including organic nitrogen) and 561 

ammonia, whose answer is obscured by the scarcity of existing 562 

measurements. Recently, Liu et al (2018)34 showed that atmospheric aerosol 563 

natural organic matter (OM) from a coastal location was 150 times higher in 564 

summer than in winter. Natural sources that included marine sea spray and 565 

seabird emissions contributed 56% OM in summer but only 3% in winter. The 566 

“marine source” was identified by high hydroxyl group fractions, and the 567 

“seabird source” was related to ammonium and an organic nitrogen peak 568 

associated with coastal penguin emissions34. In Bird Island, South Georgia, 569 

Schmale et al. (2013)33 also showed strong influence of sea bird colonies. 570 

Legrand et al. (2012)72 reported oxalate enrichment in aerosols at Dumont 571 

d’Urville Station, which was associated with the high levels of gaseous 572 

ammonia in the atmosphere. It was suggested that seabirds and mammals in 573 

coastal Antarctica could be sources of aerosol oxalate. This idea had also 574 

been discussed in Legrand et al. (1998)61, where ornithogenic soil was 575 

proposed to be a source of oxalate in aerosols. Therefore, oxalate would be 576 

produced and released together with ammonia upon bacterial decomposition 577 

of uric acid. However, it was also stressed that the relationship between 578 

gaseous nitrogen (or carbon)-derived species and emitted oxalate aerosol 579 

was likely a complex one73-74. Legrand et al. (1998)32 and Jourdain and 580 

Legrand (2002)675 proposed nssK+ and nssCa2+ as tracers for ornithogenic 581 

soil (defined as guano-enriched soil) emissions. Based on the proposed 582 

metrics, we can exclude any significant contribution from bird colony 583 

emissions in SI and, more obviously OO, samples. In fact, the K+/Cl- weight 584 

ratio in Si and OO samples is 0.021±0.003 and 0.020±0.002, respectively, 585 

much closer to the seawater value (0.021) than to the proposed values for 586 

ornithogenic soils (0.23-1.4). Similarly, the Ca2+/Cl- weight ratio is 0.026±0.002 587 

and 0.026±0.0003, against a seawater reference value of 0.021 and an 588 

ornithogenic soil value of 0.045. Finally, the formula for calculating the amount 589 

of potassium related to ornithogenic soil emissions (Kor), proposed by 590 

Jourdain and Legrand (2002)75, yielded negative values in both SI and OO 591 

samples, demonstrating a tendency for K+ depletion and certainly not an 592 

enrichment.  593 
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The results presented in this study, together with our previous works from the 594 

same sampling cruise35,36,42 show that alkylamines and oxalic acid have 595 

different spatially located sources in the investigated area, with the former 596 

being more related to sympagic emissions connected with sea-ice melting and 597 

sea-ice influenced waters, and the latter being more related to pelagic 598 

emissions. This suggests that aerosol chemical composition, and likely 599 

physical properties, is strictly related to the biological environment 600 

characterizing the source region35,36,42. Aerosol samples reported in this study 601 

showed no major relation with seabird emissions, even though this does not 602 

exclude that this source may be significant in other Antarctic coastal 603 

environments (eco-regions). 604 

 605 

4.3 Considerations under a changing climate perspective 606 

 607 

The Antarctic region possesses a substantial spatial heterogeneity across 608 

marine, terrestrial and freshwater biomes, with productivity and biodiversity 609 

patchiness superimposed on strong environmental gradients76 .Warming 610 

climate is posing one of the greatest threats to the Antarctic environment. The 611 

Antarctic Peninsula has experienced one of the most rapid temperature rises 612 

in the Southern Hemisphere77. Antarctic terrestrial productivity and 613 

biodiversity occurs almost exclusively in ice-free areas that cover less than 614 

1% of the continent, although these could increase under a strongest forcing 615 

scenario77,78. Changes in the Antarctic environment will feed back to climate 616 

by biosphere and cryosphere exchanges with the atmosphere. Antarctica 617 

harbors extreme physical gradients such as those of incident solar radiation, 618 

UV intensity, ice cover, ocean circulation and temperature, which change over 619 

time as a consequence of global warming. The impacts of these changes on 620 

marine and terrestrial life through nutrient availability, ecophysiological 621 

adaptations, duration of the productivity and breeding seasons, migrations 622 

and location of refugia will affect biogenic emissions to the atmosphere, 623 

aerosol formation and aerosol-cloud interactions. Also physicochemical 624 

transformations of organic matter, as through exposure of snow and the sea 625 

surface microlayer to solar radiation79 will impact the emission of climate-626 

active substances to the atmosphere. Future interdisciplinary studies using 627 
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emerging chemical and statistical analytical techniques are required to tease 628 

out processes across spatial gradients of key environmental factors.  629 
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Figure 1. Composition of PM1 aerosol water soluble fraction in the sea ice 1102 

influenced region (SI) versus open ocean (OO). The “BI5” pies refer to 1103 

measurements performed on Berner impactor, while the “HIVOL” pies refers 1104 

to the WSOM measured on the high volume samples; nmsaWSOM stands for 1105 

non-MSA-WSOM. 1106 
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Figure 2. (a) PM10 concentrations of oxalate and amines in SI and OO 1113 

samples (average and standard deviation). (b) Normalized size distributions of 1114 

oxalate and amines for the 2 regions. 1115 
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Figure 3 Average Art-2a positive and negative mass spectra for (a)ATOFMS 1124 

oxalate internally mixed with sea spray, (b) ATOFMS oxalate in biogenic 1125 

particles and (c) ATOFMS oxalate in secondary organic aerosols 1126 
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