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Abstract: Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of
choline results in the production of trimethylamine (TMA), which, upon absorption by the host is
converted into trimethylamine-N-oxide (TMAO) in the liver. A high accumulation of both components
is related to cardiovascular disease, inflammatory bowel disease, non-alcoholic fatty liver disease,
and chronic kidney disease. However, the relationship between the microbiota production of these
components and its impact on these diseases still remains unknown. In this review, we will address
which microbes contribute to TMA production in the human gut, the extent to which host factors
(e.g., the genotype) and diet affect TMA production, and the colonization of these microbes and the
reversal of dysbiosis as a therapy for these diseases.

Keywords: choline; TMA; TMAO; non-alcoholic steatohepatitis (NASH); cardiovascular disease (CVD);
chronic kidney diseases (CKD); probiotics; gut microbiota; polyphenols; fecal microbiota transplantation

1. Introduction

Choline is an essential nutrient for humans throughout their life. Although humans can produce
choline in small quantities through the hepatic phosphatidylethanolamine N-methyltransferase
pathway, most individuals need to increase choline ingestion through their diet, in order to
prevent deficiency [1–4]. The main dietary sources of choline include eggs, fish, grains, meat,
milk, and their derived products, and to a lesser extent, some vegetables such as soybeans and
potatoes [1,3,5,6]. In foods, choline is found as both water-soluble (free choline, phosphocholine,
and glycerophosphocholine) and lipid-soluble (phosphatidylcholine and sphingomyelin) forms [7];
however, cooking methods can reduce the amount of choline content in the diet and increase
the phosphatidylcholine contribution [8]. Different forms of choline influence the absorption and
metabolism of this nutrient throughout development. Indeed, water-soluble forms that are mainly
present in human milk enter the portal circulation and reach the liver, while lipid-soluble forms,
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which can be found in foods, are absorbed and transported through the lymphatic circulation [3,9].
Therefore, the intake of choline varies in accordance with different stages of development.

The majority of people do not meet the dietary requirements for choline, particularly those on
vegetarian or vegan diets and pregnant or lactating mothers [1]. Lactation has been associated with an
increased choline demand [10], whilst the maternal choline intake could be linked to enhanced placental
health [11] and positive neurocognitive effects on the offspring [12]. Therefore, these sub-groups of
people should be monitored closely in order to ensure appropriate choline intakes [1,13,14].

Choline metabolism can be divided into four main pathways, which are involved in the synthesis
of acetylcholine, betaine, phospholipids, and trimethylamine (TMA; overviewed in Figure 1) [3].
Choline metabolites have a wide range of functions in organisms [1,15]. Choline is catalyzed by choline
acyltransferase into acetylcholine, which is key in cholinergic neurotransmission [15,16]. Moreover,
choline can be oxidized to obtain betaine, which is an important osmolyte, a methyl donor implicated in
the epigenetic regulation of DNA [15,17], and a requirement in the synthesis of phosphatidylcholine [3].
Special attention needs to be given to phosphatidylcholine, the most abundant phospholipid in the
body, which is not only a major component of cellular membranes and needed for cell division and
growth [18,19], but also plays a role in cell signaling as a donor to synthesize sphingomyelin from
ceramide [18,20]. Moreover, sphingomyelin is required for myelination processes in the nervous
system [21].
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hepatic monooxygenases. Finally, TMAO is distributed to organs, where it can be eliminated 
(kidneys) and accumulated (tissue). However, it could cause impairment in high concentrations 
(cardiovascular damage, for a detailed review see Section 5). 

Moreover, we want to place a special emphasis on choline metabolism in the large intestine 
where it is metabolized to TMA by the gut microbiota prior to absorption [22]. The human microbiota 
harbors trillions of microbes including bacteria, archaea, viruses, phages, yeast, and fungi [23]. It 
starts to develop in the perinatal period and becomes diverse and complex in adulthood. Several 
intrinsic and extrinsic factors may affect the microbiota during infancy such as mode of delivery, the 
gestational age of birth, the infant feeding mode, the maternal diet, environmental factors such as 
family lifestyle and geographical location and host genetics, and adulthood such as physiological 
changes of the digestive tract, the modification of dietary patterns, and the impairment of the immune 
system [24,25]. These factors may disrupt the microbiota composition, causing so-called dysbiosis 
[26]. The composition of the adult human gut microbiota is mainly represented by the phyla 
Bacteroidetes and Firmicutes, followed by Actinobacteria, Proteobacteria, and Verrucomicrobia as minority 

Figure 1. Overview of choline metabolism from the diet. Choline is taken from the diet and gut
microbiota trimethylamine (TMA) lyases transform it into TMA. TMA is absorbed by the intestine
and delivered to the liver, where TMA is metabolized into trimethylamine N-oxide (TMAO) by host
hepatic monooxygenases. Finally, TMAO is distributed to organs, where it can be eliminated (kidneys)
and accumulated (tissue). However, it could cause impairment in high concentrations (cardiovascular
damage, for a detailed review see Section 5).

Moreover, we want to place a special emphasis on choline metabolism in the large intestine
where it is metabolized to TMA by the gut microbiota prior to absorption [22]. The human microbiota
harbors trillions of microbes including bacteria, archaea, viruses, phages, yeast, and fungi [23].
It starts to develop in the perinatal period and becomes diverse and complex in adulthood. Several
intrinsic and extrinsic factors may affect the microbiota during infancy such as mode of delivery,
the gestational age of birth, the infant feeding mode, the maternal diet, environmental factors such
as family lifestyle and geographical location and host genetics, and adulthood such as physiological
changes of the digestive tract, the modification of dietary patterns, and the impairment of the immune
system [24,25]. These factors may disrupt the microbiota composition, causing so-called dysbiosis [26].
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The composition of the adult human gut microbiota is mainly represented by the phyla Bacteroidetes
and Firmicutes, followed by Actinobacteria, Proteobacteria, and Verrucomicrobia as minority phyla [25].
The gut is home to more than 1000 microbial species [27] and all of these bacteria encode a microbial
gene pool, exceeding the size of the human genome, known as the microbiome [27]. The functions
encoded in this microbiome expand the host’s physiological potential, playing an important role in
health and disease. This uniqueness of the host microbiota makes it difficult to devise therapies that
can work across the population (see Section 6). This has led some authors to consider the intestinal
microbiota as a “forgotten organ” [28]. The major function of the gut microbiota is to help in the
harvesting of nutrients and energy from our diet. Moreover, it participates in the development of a
host’s immune system, brain, and behavior; protects against pathogens; and is a factory of bioactive
compounds [29,30].

As we have previously pointed out, among these bioactive compounds, the gut microbiota is able
to produce TMA, which is absorbed in the intestinal epithelium and subsequently delivered to the
liver through the portal circulation. There, it will be metabolized into trimethylamine N-oxide (TMAO)
by host hepatic monooxygenases [31,32] such as flavin-containing monooxygenases 3 (FMO3) [33].
Ultimately, TMAO is distributed throughout the body so that it can accumulate in tissues as an
osmolyte [34,35] whilst the rest of it is mostly cleared by the kidney, which is in charge of excreting it
through the urine (overviewed in Figure 1) [34].

Therefore, choline is important for the function and structure of membranes including their
signaling, transport, and repair [36–38]. Moreover, as we have previously mentioned, it is the key in
the synthesis of acetylcholine, methylation, gene expression [39], and liver and muscle function [36].
However, it has recently gained attention due to its association with adverse health outcomes [3].
Currently, the identification of the type of bacteria involved in TMA synthesis and the mechanisms by
which choline and its metabolites TMA and TMAO contribute to the risk of disease need to be properly
evaluated, in order to understand choline’s impact on health.

In this review, we will revisit the relationship between gut microbiota populations and circulating
TMA and TMAO levels, highlighting not only the microbiota genetics behind these changes but
also how host genetics can influence the gut microbiome. We will also discuss the relationship
between choline-microbiota changes and their impact on different diseases as well as explore microbial
modulation as a potential therapeutic treatment.

2. The Impact of Gut Microbiota on Choline Metabolism

The ingestion of food containing choline or other trimethylamine-containing compounds is
followed by the synthesis of TMA in the gut by microorganisms including both Gram-positive and
Gram-negative bacteria (Figure 2). Therefore, the magnitude of the production of TMA is influenced
by the composition of the microbiota of the individual. It is important to note that only a minor
fraction of the microorganisms present in the intestine (less than 1%) harbor the genes required
for TMA production [40]. However, even very low concentrations of these microorganisms seem
to be sufficient for TMA production, which illustrates the importance of the gut microbiota in this
context [41]. Indeed, the presence of increased TMA and TMAO levels has been associated with
higher activity of bacterial members of the phylum Firmicutes and Proteobacteria, which are known
producers of this metabolite [40,41]. Moreover, TMA and TMAO levels have been linked to an elevated
Firmicutes/Bacteroidetes ratio with higher levels of Firmicutes and lower levels of Bacteroidetes [42,43] due
to the inability of Bacteroidetes to produce TMA [44,45].
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Figure 2. Microorganisms involved in the metabolism of dietary choline and other trimethylamine-containing
compounds. Following ingestion of foods containing choline/lecithin, or L- carnitine, certain intestinal
microorganisms metabolize these compounds to trimethylamine (TMA) by different metabolic pathways.
TMA can then be absorbed and transformed into trimethylamine N-oxide (TMAO) in the liver, or it can be
reduced by methanogenic archaea in the gut to produce methane and ammonium.

Recently, the genetics that underpin TMA production in the microbiota has received a great
deal of attention. This has led to the identification of different gut microbial genes and gene-clusters
involved in the catabolic reactions converting dietary compounds into TMA. Among them, the cluster
CutC/CutD, which codes for the choline TMA-lyase and its activating protein [46], seems to be key in the
intestinal environment [47], whereas the carnitine oxygenase (CntA) contribution to TMA production
is lower [48].

Moreover, betaine (choline-derived metabolite) reduction by the action of the microbial enzyme
glycine betaine reductase coded by the gene GrdH seems to play a minor role in TMA production in the
gut [40]. This also seems to be the case for the production of TMA via the intermediate γ-butyrobetaine
derived from carnitine by the action of the YeaW/YeaX cluster [49].

Although the CutC/CutD cluster appears to be the most widely distributed mechanism for TMA
production from choline, it has been demonstrated that a quarter of TMA production is linked to CntA,
which is present in lower amounts [32]. Moreover, a recent study [40], in which mammal species
were compared, revealed that herbivores harbor a lower relative abundance of CutC while lacking
CntA. These results point to the influence of the evolving relationship between host genetics and diet
in the prevalence of these genes, as illustrated by the differences between herbivores and carnivores.
It is also important to note that our knowledge in this area is limited and some pathways involved
in TMA production are still unknown. Supporting this, Wu et al. [50] found no association between
CntA and serum TMAO levels after carnitine consumption, suggesting that other pathways such as the
γ-butyrobetaine pathway may also be of relevance in the gut environment. In addition, the lack of any
known TMA-producing gene in Edwardsiella tarda—a known TMA-producing microorganism—also
suggests the existence of other unknown pathways [47].

Regarding the microbial taxa harboring these genes, it was found that the cluster CutC/CutD
is the most widely distributed, not only being present in a variety of intestinal microorganisms,
in particular in Firmicutes, especially the Clostridium cluster XIVa and Eubacterium strains, but even in
some Actinobacteria and Proteobacteria [40]. GrdH also seems to be mainly distributed among Firmicutes,
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but it has been found in some Spirochaetes. On the contrary, the presence of CntA and YeaX/Y is mainly
associated with the bacterial phyla of Proteobacteria, with Escherichia and Acinetobacter being the main
genera harboring these genes in the human gut [40].

In the specific case of choline metabolism, TMA is formed through the action of the microbial
choline TMA-lyase (Figure 3) [51]. Specifically, the intestinal bacteria in charge of TMA production
from choline include Anaerococcus hydrogenalis, Clostridium asparagiformis, Clostridium hathewayi,
Clostridium sporogenes, Desulfovibrio desulfuricans, Escherichia fergusoni, Ed. tarda, Klebsiella pneumoniae,
Proteus penneri, and Providencia rettgeri [41,52].
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Once TMA is formed, it will be subsequently oxidized into TMAO in the liver through the
enzyme FMO3 [53]. It is worth noting that some bacteria from the phylum Proteobacteria may also be
able to metabolize the TMAO ingested via the diet into TMA via TMAO reductase using metabolic
retroconversion [54]. Finally, it has recently been found that intestinal archaea such as some members
of the order Methanomassiliicoccales are able to reduce TMAO to methane [55]. Therefore, a current
area of research relies on the use of such microorganisms as potential probiotics, in order to reduce the
circulating levels of TMAO, which have been associated with an increased cardiovascular disease risk.

3. Diet Impact on Microbiota-Choline Metabolism

It has been demonstrated that the composition and diversity of gut microbiota can be influenced by
the diet, since it is, in turn [56], an important source of variability in serum TMAO levels. In this regard,
long-term individual dietary habits have been proven to influence microbiota enterotypes [57,58].
Indeed, Wu et al. [58] observed that a Western diet consumption—typically represented by a high
consumption of animal proteins, saturated fats, and low fiber—was associated with the Bacteroides
enterotype, whereas a carbohydrate-based diet mainly consumed by agrarian societies, was linked to
a Prevotella enterotype. Western diets are characterized by animal products such as liver, pork meat,
and eggs, which contain large amounts of choline [59] and are known not only to increase blood and
urine TMAO levels [41] but even have an effect on the gut microbiota. In fact, Manor and colleagues [60]
observed a positive correlation between intestinal microbial clades such as Neisseriaceae or Desulfovibrio
and TMAO levels, which were also elevated in symptomatic coronary vascular disease (CVD) patients
and those consuming an animal-based diet. Another study from Cho et al. [42] reported that men with
elevated levels of TMAO in the body after consuming dietary eggs tended to have a higher abundance
of Firmicutes; meanwhile, individuals with lower levels of TMAO exhibited a higher abundance of
Bacteroidetes.

Similar differences in microbiota and TMAO levels have been reported between vegetarian and
omnivorous diets, which were also accompanied by a lesser ability to produce TMA in vegetarians [61].
These observations reinforce the potential of modulating dietary habits to reduce the risk associated
with high TMAO levels.

Nevertheless, due to the importance of choline as an essential nutrient, choline-deficient diets may
also induce gut microbiota alterations and health problems [62–65]. Indeed, a human trial in which
the choline intake was controlled demonstrated that the gut microbiota composition changed with
dietary choline levels and specific alterations in Gammaproteobacteria, and Erysipelotrichi members were
associated with changes in liver fat during choline depletion [66]. These results confirm the impact of
diet on both gut microbiota and TMAO levels [61,66]. In addition, it has been reported that FMO3
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expression is closely related to the composition of intestinal flora [53,67]. The changes observed after
choline-dietary interventions, together with the putative host´s genes, could be used for predicting
and modulating the risk of developing diseases related to this nutrient (overviewed in Figure 3).

4. Host Genotype Impact on Microbiota Choline Metabolism

The concentration of TMA/TMAO in plasma has been linked to the composition of intestinal
microbiota and differences among microbiota enterotypes [57] have been proposed [68]. Nevertheless,
it may be considered that the high inter-individual variability in the composition of the
intestinal microbiota results in a large variability in its enzymatic capabilities [69]. Furthermore,
this inter-individual variability is linked to different factors including the host’s genetics.

Over a period of decades, different studies have tried to understand how a host’s genetic
background may influence the overall microbiome. The proportion of phenotypic variation in a trait
that is attributable to genetic variation among individuals is known as heritability [70]. Among the gut
microbiota, a few bacteria and archaea have arisen as heritable and have been associated with host genes.
In line with this, twin studies have observed a higher similarity in the gut microbiota composition
between monozygotic than dizygotic twins, which is attributable to shared genes. These studies
also identified heritable bacteria including Christensenellaceae (later associated with a low body mass
index), the methanogenic Archaea Methanobrevibacter smithii, and the genus Blautia [71,72]. Moreover,
microbiome genome-wide association studies have also identified associations between human genes
and the gut microbiome such as the lactase gene LCT and the abundance of Bifidobacterium [73,74] or
the vitamin D receptor gene and microbial diversity [75].

Focusing on how host genetics can influence the gut microbiome in a disease context, several
associations between specific single nucleotide polymorphisms or genetic variants of host genes and
intestinal bacteria have been identified (Table 1). These support the idea that host genes involved
in the digestion of sugars, dietary preference, and immunity can alter the composition of the gut
microbiome [76–81]. There is a lack of knowledge on the relationship between host genetics and
gut microbiota in choline-mediated diseases. However, regarding liver diseases, one study has
identified a quantitative traci loci (QTL) in chromosome 7 of the mouse genome (MM7) that showed
genome-wide linkage with the relative abundance of Turicibacter, which was overlapped with the HCS1
QTL for susceptibility to murine hepatocellular carcinomas [82]. This opens up the door to investigate
how specific host genes mediate an altered gut microbiota composition, contributing, in this way,
to its abnormal function and the development of diseases such as those studied in this review.

Moreover, genotype-associated differences in TMAO and TMA levels were also suggested in
a murine model. Romano and colleagues [41] observed higher levels of serum TMAO in female
mice, which were associated with higher relative abundances of TMA-gut microbial producers
rather than their male counterparts. These gender-associated variances were attributed to the higher
hepatic flavin-containing mono-oxygenase (FMO) activity in females, in line with other studies [53,69].
However, contradictory results were found for the TMAO concentration related to gender differences in
humans, which have been linked to several confounding variables such as age, body mass, and blood
pressure [34].
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Table 1. Host genetic variants with an effect on the gut microbiota (adapted from Spor et al., 2011 [70]).

Host Genetic Variant Gut Microbiota Impact Diseases or Adverse Phenotypes

MEFV
encodes pyrin, one of the regulators of innate immunity [83]

Changes in bacterial community structure, mainly in
Bacteroidetes, Firmicutes, and Proteobacteria; loss of

bacterial load and diversity depended on the allele
carrier status of the host [83]

Mutations in MEFV: Familial Mediterranean fever
(autoinflammatory disorder) [83]

APOA1
major component of the high-density lipoprotein (HDL) [84]

Changes in community structure in APOA1-deficient
mice [84]

SNPs in APOA1: risk of obesity, cardiovascular
disease, and hyperlipidemia [84]

MyD88
adaptor for multiple innate immune receptors that recognize

microbial stimuli [85]

Change in distal gut microbiota composition: higher
Lactobacillaceae, Rikenellaceae, and Porphyromonadaceae

abundances in MYD88-deficient mice [85]

Loss of MYD88: comprised innate immune response
to pathogens [85]

NOD2
intracellular pattern recognition receptor of muramyl

dipeptide constitutively expressed in human Paneth cells [86]

Increased load of commensal resident bacteria in
Nod2-deficient mice and shifts in the relative

frequencies of Faecalibacterium and Escherichia [86]

Mutations in NOD2: risk factor for Crohn´s disease
and diminished ability to prevent intestinal

colonization of pathogenic bacteria [86]

HLA
proteins that are encoded by the major histocompatibility

complex (MHC) gene complex in humans [87]

Correlation between higher genetic risk and bacterial
groups: Streptococcus-Lactococcus, E. rectale-C. coccoides,

Clostridium, Bacteroides-Prevotella groups and total
Gram-negative bacteria [87]

Variation in HLA genes: risk of celiac disease [87]

SLC39A8
encodes alanine or threonine at position 391 in the zinc

transporter solute carrier family 39, member 8 protein [76]

Association between the risk locus that carries
SLC39A8 and the abundance of Anaerostipes,

Coprococcus, and Lachnospira [76]

Variants of SLC39A8: associated with inflammatory
bowel disease (IBD) and distinct phenotypes

including obesity, lipid levels, blood pressure, and
schizophrenia [76]

α-defensin
[88]

Alpha-defensin-dependent changes in microbiota
composition, but not in total bacterial numbers.

Lower segmented filamentous bacteria numbers [76].

Changes in the copy numbers in defensin genes:
Crohn’s disease [88].

IgA locus>
[89]

Predominant and persistent expansion of segmented
filamentous bacteria throughout the small intestine in

activation-induced cytidine deaminase, which
produces an absence of IgA [89].

Lack of IgA: higher incidence of inflammatory bowel
diseases [89]
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5. Choline Intake and Its Relationship to Disease

As previously mentioned, TMAO is correlated with disease and all-cause mortality [90,91].
Low serum TMAO induced by choline-deficits diets is associated with non-alcoholic steatohepatitis
(NASH), while high concentrations of TMAO are associated with CVD and chronic kidney disease
(CKD). Here, we will discuss the mechanisms through which varying levels of choline intake cause
disease (overviewed in Figure 4).
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Figure 4. An overview of the ways in which choline intake may cause disease. Abbreviations: GVB,
gut vascular barrier; IBD, inflammatory bowel disease; MI, myocardial infarction; NASH, non-alcoholic
steatohepatitis; TMAO, trimethylamine-N-oxide.

Average plasma TMAO in humans is around 3.3 µM; however, this can vary greatly after the intake
of certain foods that are rich in choline and returns to the baseline within a few hours [35]. CKD sufferers
often have persistent exaggerated levels of plasma TMAO, although, following a kidney transplant,
the TMAO concentration was shown to reduce to almost control levels [91,92]. However, it remains
unclear whether this is simply a marker of renal impairment or whether TMAO plays an active role in
renal function. Tang et al. [93] found an upregulation of phosphorylated Smad3, a profibrotic marker,
and KIM-1 (kidney injury marker) in male mice fed choline- and TMAO-supplemented diets [94].
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This was accompanied by increased collagen deposition and tubulointerstitial fibrosis, suggesting that
high levels of TMAO may result in renal pathology and subsequent impairment such as endothelial
dysfunction [93,95].

The inability to regulate the vascular tone is an early marker of CVD and may lead to
atheroma-development. Mice fed a choline-supplemented diet displayed significantly less reverse
cholesterol transport with reductions in mRNA of Cyp7a1 and Cyp27a1. This attenuated the conversion
of cholesterol into bile acids, resulting in cholesterol build-up [68]. Furthermore, increased TMAO levels
upregulate macrophage scavenger receptors such as CD36 and the recruitment of leukocytes [34,96,97].
Together, these promote the formation of foam cells, which build-up to form atherosclerotic plaques [98].
With the build-up of atheroma, myocardial infarction and stroke present the greatest risk, with thrombi
more likely to occlude the entire arterial lumen [31,90,99]. Following arterial injury, choline-rich diets
reduce the time required for vessel occlusion, which is accomplished by the TMAO-induced release
of intracellular calcium ions into the cytosol of platelets, thereby activating platelets and promoting
adhesion [31,99].

Rises in TMAO related with CKD and CVD have been associated with an increased abundance of
TMA-producing bacteria [60]. Romano and colleagues [100] have suggested that choline-consuming
microbiota compete with the host for choline, in order to produce TMA, and thereby reduce the
bioavailability of this nutrient. Subsequently, this leads to a reduction in S-adenosylmethionine (SAM)
methyl-donor groups, for which choline is a major source. The loss of methyl donors may cause
epigenetic dysregulation and hypomethylation of the host’s genome [100,101]. Indeed, the global
hypomethylation of DNA has been associated with CKD and atherosclerosis [102,103]. Equally,
hypermethylation has also been correlated with CKD and therefore illustrates the complexity of
epigenetic regulation and the need for further research [104,105]. Interestingly, Romano [100] found
that maternal epigenetic profiles can be passed on to offspring through pregnancy and may alter the
offspring’s epigenome in utero. This may have long-term post-natal effects such as behavioral and
cognitive changes [100,101,106,107]. The potential for nutritional intake to have inter-generational
impacts through epigenetic profiles is highly undocumented territory and may present one way
through which parent biology may affect the offspring long-term, independent of the genotype.

Choline-deficient diets have also been associated with NASH and may result in obesity and
hyperglycemia [64–66,108]. Research indicates the role of choline-deficient diets in intestinal dysbiosis
by reducing the microbiota diversity and altering the microbial population representation within
the microbiome [64,65,109]. Subsequent transplantation of the microbiome of NASH individuals is
sufficient in inducing NASH in otherwise healthy individuals [65,110].

Choline-deficient diets interfere with and disrupt the intestinal barrier [64,111,112]. Downregulation
of the Wnt/β-Catenin pathway following a methionine-choline-deficient diet (MCD) results in disruption
of the gut vascular-barrier (GVB) and upregulation of PV1, a marker of GVB [112,113]. In addition,
zona occludens-1, a tight junction protein and permeability marker, is lower in those receiving a MCD
diet [109,114]. This increases bacterial infiltration from the gut into peripheral organs such as the liver and
leads to steatosis and lipid accumulation.

Lipid accumulation may be a result of reductions in fatty acid esterification genes, which
prolong the half-lives of injury-inducing lipids [115,116]. Moreover, the downregulation of genes in
very-low-density lipoprotein (VLDL) secretion and reduced phosphatidyl choline and triglyceride
contents of VLDLs promote the build-up of cholesterol and fats in the liver [116–118]. These surplus
fatty acids may promote the activation of inflammasomes [119].

Dysregulation in the microbiome is correlated with the activation of the Nod-like receptor protein 3
(NLRP3) inflammasome which is necessary for fibrosis in developing NASH pathology [120]. Moreover,
NLRP3 activation may be involved in patients suffering from inflammatory bowel disease (IBD).
In this regard, it has been demonstrated that an elevation of NLRP3 levels exacerbates inflammation in
colitis mouse models for IBD [121]. Despite this, NLRP3 deficiency has been seen to both exacerbate and
attenuate intestinal inflammation, highlighting the complexity of NLRP3’s role in inflammation [122].
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Abnormal choline-intake is involved in the pathogenesis of major debilitating diseases such
as CKD, CVD, and NASH (Table 2). Despite an overwhelming amount of evidence demonstrating
correlations between choline, and its metabolite TMAO, in terms of disease onset, it is not uncommon
to see conflicting data and reports of no correlation between them. Some inconsistencies revolve
around L-carnitine and betaine showing protective effects against CVD and therefore casts doubt on
TMAO’s involvement. However, we cannot rule out the possibility that betaine or L-carnitine have
some regulatory effect on TMAO that reduces the proatherogenic effect of TMAO just as much, as these
studies suggest that TMAO is beneficial [123,124]. As a result, these present an inherent problem
when trying to draw conclusions about the effects of choline intake on disease. Historically, it has
been impractical to measure choline levels alongside TMAO and TMA concurrently. Despite TMA
being the main intermediate in the formation of TMAO, it is not routinely tested for (with TMAO
being preferred). It is possible that studies that report no correlation with TMAO may instead show
correlations between TMA and disease [125,126]. In line with this, a new methodology by Wu and
colleagues [127] allows for the simultaneous measurement of TMA and TMAO and provides the
opportunity to establish the exact role and associations of these choline metabolites and disease in
future research.
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Table 2. Summary of the association between disease, TMAO levels, and their effects on metabolites and microbiota.

Disease and Its Associated
Constituents TMAO Levels Effect on Metabolites Effect on Microbiota/Additional Comments

CKD ↑
↑ Phosphorylated Smad3, Cystatin C, Kim-1

[93,128], Nox-4, TNF-α, IL-1β [128].

↑ TMA-producing bacteria [60,129]: Desulfovibrio [60,130],
Dehalobacterium [60,106], Clostridiaceae [60,68],
Christensenellaceae [60,131], Proteobacteria [132].

Endothelial Dysfunction
(Seen in CKD and CVD models) ↑

↑ IL-6, TNF-α, hsCRP, HMGB1
[91,96,97,133–135]

↓ Firmicutes, Actinobacteria, Roseburia, Coprococcus,
Ruminococcaceae, Prevotella [132].

↑ VCAM1 [97,136]
Increases in TMA-producing bacteria are associated with

high-TMAO levels and therefore, also present in CVD with
similar levels of TMAO

↓ eNos [133] .
↓ IL-10 [134]

↑ Superoxide [133]
↑ NLRP3, Caspase-1, IL-1β [137]

Atherosclerosis ↑ ↓ Cyp7a1; Cyp27a1 [68]
↑ CD36 [34,96–98]

↑ Leukocyte Recruitment [34,97,98]
↑ Galectins [60]

↑ TNF-α, HMGB1 [138]
↑ IL-1β [139]

↑ Prevotella, Tenericutes [68], Allobaculum [99].
↓ Lachnospiraceae, Candidatus Arthromitus, Peptococcaceae [99].

Changes in Clostridiales [139].

Vessel Occlusion ↑ ↑ Platelet (Ca2+)i [31,99]
Prevotella/Cyanobacteria [99] negatively correlates with vessel

occlusion time. Peptococcaceae positively correlates with
vessel occlusion time.

↑ TF, Thrombin [138]
↑ CD36 [140]
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Table 2. Cont.

Disease and Its Associated
Constituents TMAO Levels Effect on Metabolites Effect on Microbiota/Additional Comments

MCD-Induced NASH ↓ ↑ PV1 [112,113]
↓ ZO-1 [64,109,111,114]

↓ Phosphatidyl choline/Triglyceride in LDLs
[116–118]

↑ Caspase-2 [116]
↑ TGFβ, αSMA, COL1A1, CRP2 [141,142]
↑ NLRP3, Caspase-1 [116,118,121,141,143]
↑ IL-18, IL-1β [119,141,142,144–146]

↓ Verrucomicrobia, Actinobacteria, Proteobacteria,
Bifidobacteriaceae [64], Lactobacilli [65,110], Akkermansia [65].
↑ Lachnospiraceae, Barnesiella, Allobaculum [110,118],

Ruminococus [65,147], Bacteriodetes [64,147], Tenericutes,
Desulfovibrio, Enterobacteriaceae [64], Firmicutes,

Helicobacteraceae [64,118].
Allobaculum negatively correlated with ZO-1 [118].

IBD ↓ NLRP3 changes as detailed under NASH
above

↓ ATG16L1, LC3-II, P62 [148]

↑ Firmicutes, Proteobacteria, Verrucomicrobia, Fusobacteria [149]
↓ Bacteriodetes, Cyanobacteria [149].

Abbreviations: CKD, chronic kidney disease; CVD, coronary vascular disease; TNF-α, Tumor Necrosis Factor α; IL- (1β, 6, 10), Interleukin-; hsCRP, high sensitivity C Reactive Protein;
HMGB1, High Mobility Group Box 1; VCAM1, Vascular Cell Adhesion Protein-1; eNOS, endothelial Nitric Oxide Synthase; NLRP3, Nod-like Receptor Protein-3; (Ca2+)I, Intracellular
Calcium Ions; TF, Tissue Factor.
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6. Potential Therapies in Choline-Related Diseases

Data from associative and mechanistic studies draw a strong link between dysbiosis and
pathobiotic bacteria in the gut, the microbiota-dependent production of TMAO, and an increased risk
of cardiometabolic and gastrointestinal disorders [98,113,150–153]. Since many of those disorders lack
effective treatments, the gut microbiota has emerged as an attractive therapeutic target (see Table 3).
Interventions designed to reverse dysbiosis and lower TMAO levels by (i) inducing alterations in the
microbiota composition, which boosts the abundance of beneficial bacteria and reduces the TMAO
production capacity, and (ii) directly disrupting the TMAO biosynthesis pathway are being developed
as potential treatments (overviewed in Figure 5).
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As we have previously described, diet is an important lifestyle determinant of gut health.
This makes dietary modification a potentially easy and relatively risk-free strategy for reducing
TMAO-related health risks. Studies investigating the effect of diet on intestinal microbiota and
TMAO levels have largely focused on the Mediterranean diet and veganism, both of which
are rich in plant-derived polyphenols, high in fiber, and associated with multifaceted health
benefits [154,155]. Epidemiological studies have reported an inverse correlation between habitual
adherence to the Mediterranean diet and urinary [156] as well as plasma [157] TMAO levels in the
Southern European population. However, six months of Mediterranean dietary intervention failed
to reduce the fasting TMAO concentration in healthy North American volunteers at risk of colon
cancer [158]. This discrepancy may be explained by population differences, which are known to affect
the microbiota composition [159]. It also suggests that short-term interventions may be insufficient to
induce re-modeling of intestinal microbiota shaped by years of the habitual consumption of a Western
diet, known to cause dysbiosis and elevate TMAO levels in rodents [130].
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Similarly, long-term adherence to a vegan diet is linked with a diminished capacity to biosynthesize
TMAO from the dietary TMAO precursor L-carnitine [68], but studies comparing the baseline plasma
concentration of TMAO between vegans and omnivores have yielded conflicting results [68,160].
This discrepancy may be explained by differences in inclusion criteria, with studies applying stricter
criteria taking into account individuals’ dietary history reporting more significant changes, suggesting
an inverse correlation between years’ spent vegan and TMAO levels. Notably, background diet was
found to influence the meat consumption-induced TMAO concentration in a porcine model, with pigs
fed high-fiber diets showing a significantly lower increase in TMAO levels compared to those kept on
a high-fat Western-like background diet [161]. This emphasizes the modulatory effect of a habitual diet
on short-term dietary intervention-related health outcomes.

‘Functional foods’ can exert beneficial effects on human health beyond their basic nutritional value.
One example is given by prebiotics, defined as non-digestible food components selectively degraded by
bacteria in the gut [162] that act to promote the growth of health-benefiting microbes. Non-digestible
carbohydrates are the most commonly prescribed prebiotics, with a plethora of clinical data supporting
their role in promoting microbial diversity [163]. Notably, prebiotic supplementation with soluble
dietary fiber not only boosted the abundance of beneficial bacteria, but also significantly diminished
TMA and TMAO metabolism (by 40.6% and 62.6%, respectively) in mice fed a red meat rich diet.
Moreover, this was accompanied by a marked reduction in weight, decrease in energy metabolism,
and improved lipid and cholesterol markers [164]. Similarly, in humans, the consumption of an
arabinoxylan-oligosaccharide-enriched prebiotic extract as part as an intervention trial in overweight
adults was shown to increase the prevalence of Prevotella normally associated with non-Western diets
low in processed foods [165]. Notably, the Prevotella abundance was also associated with an increase in
short chain fatty acids and a rise in plasma phosphatidylcholine, indicative of a reduced availability
of choline for TMA biosynthesis and a potential protective role in promoting metabolic health [165].
Likewise, long-term adherence to a diet enriched with dietary fiber was associated with a reduction in
the TMAO concentration, accompanied by changes in the gut microbiota and improved metabolic
health in obese children [166].

Polyphenols are phytochemicals produced as secondary metabolites in plants and constitute
another class of chemical compounds of dietary origin with extra health benefits, known for their
potent gut microbiota modulating properties. Notably, dietary supplementation with resveratrol
(a stilbenoid polyphenol) increased the abundance of Lactobacillus, reduced the levels of TMAO and
attenuated the atherosclerosis phenotype of ApoE-/- mice fed a high-choline diet [167]. Flavonoids
present in oolong tea extracts and citrus peel were reported to have similar Lactobacillus-boosting
effects, accompanied by a reduction in the carnitine-induced increase in TMAO plasma levels in
mice [168]. A recent double-blind randomized trial evaluating the TMAO-reducing efficacy of Taurisolo,
a polyphenolic-rich pomace extract, found that it induced a significant reduction in TMAO relative to
the placebo (63.6% vs. 0.54%) four weeks post-intervention [169]. However, additional mechanistic
and human intervention studies are needed to further elucidate the relationship between polyphenols,
microbiota-dependent TMAO levels, and human disease.

Another strategy for targeting TMAO is the use of probiotics (i.e., the ingestion of living microbes
in adequate amounts that exert beneficial effects on human health) [170], with studies reporting
promising microbiota re-modeling and TMAO-reducing effects in animal models. Eight weeks of
dietary supplementation with Lactobacillus paracasei F19 protected rats from oxidative stress-induced
liver damage by restoring the intestinal barrier and microbiota diversity [171], while gut colonization
with M. smithii bacterial species was associated with a reduction in the TMAO concentration and
attenuation of atherosclerosis in ApoE-/- mice [172]. Enterobacter aerogenes is another bacterial strain
that has been shown to effectively reduce plasma TMAO and cecal TMAO levels by shifting the ratio
of commensals and pathobionts in mice on a high-choline diet [173]. While the results are promising,
it is important to apply caution when extrapolating findings from animal models into a clinical setting
as the microbiome of rodents and humans are very different [174] and inter-personal differences in the
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microbiota composition resulting from the habitual diet and genetic make-up need to be considered,
as previously explained.

A more recent approach to reversing dysbiosis is fecal microbiota transplantation (FMT), which is
a type of fecal bacteriotherapy that involves complete replacement of the recipient’s indigenous
microbiome with healthy microbiota from a carefully selected donor. Despite positive results in
pre-clinical studies, the method has yielded limited clinical success with antibiotic-resistant Clostridioides
difficile infection being the only human condition for which FMT is currently approved [175]. However,
it is currently unclear whether gut colonization is sufficient for clinical success in diseases beyond C.
difficile infection. In this regard, a small FMT clinical study has shown to reverse gut dysbiosis but
failed to induce remission in patients with chronic active ulcerative colitis [176]. Similarly, FMT in a
double-blind randomized pilot study of 20 obese patients with metabolic syndrome elicited remodeling
of the gut microbiota composition toward that of the vegan donor in some but not all recipients [160].
However, even in individuals that responded to the treatment, changes in the microbiota did not
translate into a reduction in the TMAO production capacity nor alleviation of the atherosclerotic
burden. In the future, precision-medicine-derived approaches could be adapted to transform FTM
from an untargeted global microbiome replacement therapy into a more refined individual- and
disease-specific intervention ensuring host–recipient compatibility by the application of standardized
screening protocols and reliable donor selection criteria. However, this is contingent on developing
an improved understanding of the causative relationship between individual bacterial strains and
disease susceptibility.

Pharmacological agents designed to disrupt microbial metabolite biosynthesis cascades include a
structural analogue of choline 3,3-Dimethyl-1-Butanol (DMB) and the anti-ischemic drug meldonium.
DMB works to reduce TMAO levels and attenuate choline diet-induced atherosclerosis by inducing
the non-lethal inhibition of TMA lyase in the gut, which is hypothesized to be associated with a
reduced risk of resistance compared to antibiotic treatment, which causes considerably more selective
pressure [177]. Despite its success in a pre-clinical model, the drug has never been tested in humans
due to potential off-target adverse effects. Meldonium is a safer alternative, but clinical data suggest
that it only inhibits TMAO produced from carnitine, and not choline [178].

Together, dietary interventions, the use of prebiotics/ probiotics, FMT, and pharmacotherapy
represent an exciting potential avenue for the treatment of human diseases associated with dysbiosis
and elevated TMAO levels. However, the success of microbiome-targeting therapies is contingent on
developing an improved mechanistic understanding of interactions between the gut microbiota and
disease pathogenesis. There is clearly a need for better designed randomized double-blind human
trials with longer follow-up periods and bigger sample sizes. On the other hand, promoting lifestyle
modifications that improve gut health is of significance as evidence suggests that long-term dietary
habits and the state of the microbiome pre-treatment are important determinants of clinical success.
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Table 3. Dysbiosis, microbiota-dependent TMA production, and current treatments in choline-related diseases.

Disorder. Dysbiosis TMA Production Other Components Therapy Effects

CVD/atherosclerosis

Decreased microbial diversity; reduced
abundance of bacteria from

Lachnospiraceae family; correlation
between abundance of Candida,

Campylobacter, Shigella, and Yersinia
pathobions and heart failure

severity [179,180]

Increased [98]

Increased plasma and
urine levels of TMAO;

increased expression of
FMAO3;

dietary choline-induced
formation of foam cells in

mice models [98,181]

Resveratrol Microbiota re-modeling; reduction in
TMAO levels [167].

SCFAs
Vasodilation; decreased plasma TMA

levels and TMA:TMAO ratio; increased
microbial diversity [182].

DMB

Reduction of TMAO and amelioration
of atherosclerotic burden in ApoE-/-

mice; suppression of TMA production
in-vitro [177].

Probiotic
supplementation with

bacteria from M.
smithii/E. aerogenes

strains

Reduced plasma/cecal levels of TMAO
and amelioration of atherosclerosis in
ApoE-/- mice; increased abundance of

beneficial bacteria [172,173].

Allicin
Reduction in carnitine-induced

elevation of plasma TMAO levels in
mice, microbiota re-modeling [183].

Antibiotic therapy

Plasma TMAO levels were greatly
reduced during antibiotic therapy and
quickly recovered after the treatment

was stopped [173].

Inflammatory bowel
disease

Broad gut microbiota dysbiosis;
reduced microbial diversity; decreased

abundance of Firmicutes and
Bacteroides; increased abundance of

Gammaproteobacteria [86,184,185]

Increased [186]

Decreased levels of serum
choline; reduced TMAO

plasma levels in IBD
patients vs. control

population [176,186]

FMT

Re-establishment of healthy gut
microbiota but failure to achieve

disease remission in chronic colitis
patients [176].
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Table 3. Cont.

Disorder. Dysbiosis TMA Production Other Components Therapy Effects

NAFLD

Increased abundance of
Erysipelotrichaceae,

reduced abundance of
Gammaproteobacteria;

reduced cecal abundance of lactic acid
bacteria Bifidobacterium and

Lactobacillus [66,187]

Increased [188] Low choline
bioavailability [66] L-carnitine supplementation

Decreased lipid accumulation and
oxidative stress injury, attenuation of
systemic inflammation and inhibition

of fibrosis progression in mice fed
choline deficient diet; increase in

TMAO levels in human
subjects [189,190].

Probiotic supplementation
with L. paracasei F19

Re-establishment of microbiota
diversity; protection against oxidative
stress-induced liver damage in a rat

model [170]

Probiotic supplementation
with Lacticaseibacillus casei

strain Shirota

Increased abundance of Bifidobacterium
and Lactobacillus in bacteria, alleviation

of NAFLD symptoms (including
altered expression of hepatic genes) in
MCD diet-induced mice model [191].

Obesity/Metabolic
syndrome

Decrease in fecal levels of Bacteroides
vulgatus; increased abundance of

Actinobacteria, Firmicutes, Proteobacteria;
reduced abundance of Bacteroides and

Oscillospira [187,192]

Increased [165]
Increased TMAO

concentration in plasma
and urine [165]

FMT

Microbiota re-modeling towards that of
the donor, but no reduction in TMAO
levels or improvement in metabolic

markers [160].

FMO3 enzyme inhibition
Reduced conversion of TMA into

TMAO, improved lipid metabolism,
and reduction in inflammation [181].

Prebiotics = dietary fiber
enriched diet

Reduced TMAO levels, microbiota
re-modelling and improved metabolic

markers in obese children [166].

Arabinoxylan-oligosaccharide
enriched prebiotic extract

supplementation

Increased abundance of beneficial
Prevotella bacteria and reduced choline
availability for TMA synthesis in obese

adults [165].

Prebiotic supplementation
with soluble dietary fiber

Reduction in TMA and TMAO
metabolism (by 40.6%), increased
abundance of beneficial bacteria,

decreased weight gain, improved lipid
and cholesterol markers in mice fed

with red meat [164].

Abbreviations: CVD, cardiovascular disease; NAFLD, non-alcoholic fatty liver disease; SCFAs, short chain fatty acids; FMT, fecal microbiota transplantation; DMB, 3,3-dimethyl-1-butanol;
MCD, methionine-choline-deficient.
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7. Conclusions and Future Directions

TMAO is a metabolite of dietary choline and is therefore dependent upon the consumption of
precursors, host genetics, and gut microbial enzymatic activity. In this review, we described specific
microbial enzymes involved in TMA production pathways as well as the microbes carrying the genes
for these enzymes [135]. It is worth noting that the production of TMA/TMAO relies not only on gut
microbiota, but also on host genetics, co-metabolism, and diet consumption. This gives rise to large
inter-individual variability, raising the possibility that geographic differences in dietary patterns or
gut microbial composition may affect the generalizability of results or require modifications to dietary
intake [193].

However, important questions remain. Archaea has not received the same level of attention
as bacteria, despite potentially being important in nutrient metabolism including TMA production,
as supported by Fu et al. [194]. Regarding studies supporting the associations between TMAO and
disease such as CVD, it is important to note that they have been mainly performed in people already
with a disease, or at high risk of CVD, renal, or metabolic outcomes [195]. Therefore, it remains
unknown as to whether this relationship is present in the general population. Moreover, TMAO
levels rely on the consumption of dietary precursors, which is an association that should be further
studied [193].

Another emerging field is the role of choline as an epigenetic modifier of the genome by changing
the availability of methyl-donors such as S-adenosylmethionine (SAM). SAM synthesis depends on
dietary choline ingestion and modulates neuronal gene expression and brain function. Therefore,
the identification and implementation of effective nutritional strategies early in life could improve
cognition and mental health [196].

Therefore, the study of the gut microbiome may significantly enhance our understanding of
nutrient metabolism and specific pathways by which diet can influence health and cognition. This may
facilitate the adoption of a individualized nutrition-based approach to target gut microbial structure
and function as well as the potential to alter different metabolites such as TMAO production.
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