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In this work we analyze asymptotically flat, spherically symmetric spacetimes in which an event horizon
is present without any trapped surfaces. We identify two types of such spacetimes, each related to the
asymptotic behavior (in time) of one of the two degrees of freedom of the metric. We study the causal
structure of both types, showing that one almost always has a Cauchy horizon beyond which it is
extendable, while the other is inextendable but has two separate future null infinity regions on either side
of the horizon. We also study what energy conditions can be satisfied by the matter around the horizon.
Some of these spacetimes were first introduced in an earlier work in which semiclassical effects near black
hole horizons were analyzed. Here, we generalize this analysis to a larger family of geometries.
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I. INTRODUCTION

Black hole spacetimes, a prediction of standard general
relativity, are the most clear situation begging for an
appropriate admixture of general relativity and quantum
mechanics. The presence of trapped surfaces and their
associated singularities make it necessary to seek out the
quantum physics, which is related to these geometric
features. Black holes are, therefore, among the best testing
grounds for theories attempting to mix these two ingre-
dients. A very successful way to inquire about quantum
effects in gravitational settings has been the use of quantum
field theory in curved backgrounds. It was using this
framework that Hawking arrived at his most famous
discovery [1]: black holes should emit thermal radiation
and evaporate accordingly.
Quantum fields develop subtle effects when evolving

through geometries which generate trapping horizons or
through regimes in which the formation of trapping
horizons is close to occurring. For instance, in a previous
paper [2] we analyzed and compared the form of the
Renormalised Stress-Energy Tensor (RSET) [3,4] in sev-
eral situations of this sort. Particularly, we confirmed the
result discussed previously in [5], namely that when the
generation of a horizon happens at a slow pace, e.g., when
the collapse of a ball of matter occurs at low velocity, the

RSET can acquire large values near the horizon. This
implies that such hypothetical evolution could not be
analyzed in the framework of classical general relativity
but would have to include semiclassical effects.
Another rather interesting situation analyzed in [2] is

one in which there is light-trapping behavior without the
presence of actual trapped surfaces. Since Hawking’s
original calculation, Hawking radiation appeared to be
strongly tied up to the existence of a trapping horizon.
However, in a series of papers [2,6–9] it has been shown
that from a purely geometrical point of view it is possible to
have Hawking-like radiation without really generating any
trapped surfaces. These works consider geometries which
tend toward the formation of trapping horizons but only
asymptotically in time or, more generally, producing by
whatever means an exponential peeling of geodesics during
a sufficiently long period of time [8,9].
In this work we are interested in further exploring the

properties of these particular geometries. Specifically, after
presenting a set of geometries with the trapping behavior
mentioned above (Sec. II), we will start analyzing their
distinctive causal behavior (Sec. III). The interesting feature
of these spacetimes from a purely geometric perspective is
that they contain no trapped surfaces yet form an event
horizon, as we will discuss in detail. Initially, we will present
them as geometric ad hoc constructions, although later in the
paper (in Sec. IV) we will analyze in detail whether they
could be obtained as solutions of Einstein equations for some
plausible matter content, discussing the energy conditions
that can be satisfied around the trapping region while

*carlos@iaa.es
†vboyanov@ucm.es
‡raul.carballorubio@ucf.edu
§luisj.garay@ucm.es

PHYSICAL REVIEW D 102, 045001 (2020)

2470-0010=2020=102(4)=045001(13) 045001-1 © 2020 American Physical Society

https://orcid.org/0000-0002-2134-377X
https://orcid.org/0000-0002-2458-7200
https://orcid.org/0000-0001-6389-6105
https://orcid.org/0000-0002-3943-7782
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.045001&domain=pdf&date_stamp=2020-08-03
https://doi.org/10.1103/PhysRevD.102.045001
https://doi.org/10.1103/PhysRevD.102.045001
https://doi.org/10.1103/PhysRevD.102.045001
https://doi.org/10.1103/PhysRevD.102.045001


supporting these configurations. Finally, wewill also analyze
the characteristics of the Hawking radiation that these
configurations can generate.

II. THE GEOMETRIES

Let us start by writing a generic family of spherically
symmetric metrics of the form

ds2 ¼ −fdv2 þ 2gdvdrþ r2dΩ2; ð1Þ

where f and g are generally functions of v and r, or just of r
in static cases. We use an advanced null coordinate v
because we are interested only in the future causal structure
of these spacetimes. We will also assume that the geom-
etries are regular at r ¼ 0. We use this simplifying
assumption to avoid causal aspects associated with singu-
larities and concentrate just on those due to the presence
of horizons. However, we note that our analysis can be
generalized straightforwardly to geometries with singular-
ities, so long as they do not overlap with the region of light-
ray trapping we will study. We restrict our analysis to this
local region, which can easily be inserted into a spacetime
with a different global structure with much the same
consequences.
We will work with two types of geometries, both of

which trap outgoing light rays but are otherwise quite
different from one another. Let us present these two cases
by first looking at two static configurations, which will later
become the asymptotic limit in time of our dynamical
models discussed in Sec. II B.

A. Static configurations

The two cases which we will study originate from a
simple consideration. From the line element (1) with f and
g depending only on r, the equation which governs the
paths of the outgoing light rays is

dr
dv

¼ 1

2

fðrÞ
gðrÞ : ð2Þ

From this equation, it is apparent that these null trajectories
do not distinguish between a situation in which f is zero
(as it occurs for some values of the radial coordinate in
Schwarzschild, Reissner-Nordström, or similar spacetimes)
and one in which g diverges. Needless to say, the two
situations are physically quite different in spite of this.
In these static configurations we will assume that in

either case the right-hand side of (2) is zero at some radius
rh and that it can be expanded in a power series around this
point approaching both from the inside r < rh,

1

2

fðrÞ
gðrÞ ¼ k1ðrh − rÞ þ k2ðrh − rÞ2 þ � � � ; ð3Þ

and from the outside r ≥ rh,

1

2

fðrÞ
gðrÞ ¼ k̃1ðr − rhÞ þ k̃2ðr − rhÞ2 þ � � � : ð4Þ

Since we want the only zero of these expressions to be at rh,
and we want to avoid creating a trapped region, we require
that the first nonzero coefficients ki and k̃j of both series be
positive. If gðrÞ ≃ const around rh, then we have a black
hole which allows ingoing causal trajectories across rh but
not outgoing ones. On the other hand, if fðrÞ ≃ const, then
gðrÞ diverges as the inverse of a polynomial, which results
in the same behavior for outgoing light rays as before (since
f=g is the same), but for ingoing ones there is a difference:
they are actually unable to cross the surface r ¼ rh either.
This can be deduced from the expressions which describe
their paths in this coordinate system, namely the geodesic
equations for their radial trajectory ðvðσÞ; rðσÞÞ,

v ¼ const; ̈r ¼ −
∂rgðrÞ
gðrÞ _r2 ≃

m
r − rh

_r2; ð5Þ

where the dot denotes the derivative with respect to the
affine parameter σ, and m is the order of the first nonzero
term in the expansion (4). Integrating this equation allows
one to see that the affine parameter reaches an infinite value
when the ingoing ray gets to rh (e.g., for m ¼ 1,
r − rh ∝ e−cσ, with c > 0), indicating that, as seen from
the outside, this surface is actually an asymptotic region
(i.e., part of future null infinity). The interior region r ≤ rh
is, therefore, entirely separate from the exterior spacetime.
To understand this situation better, we remind the reader

that there is a more well-known spacetime in which g
diverges: that of a traversable wormhole. Particularly,
this same configuration would be a standard spherical
wormhole [10] if the expansion (4) had a leading term of
order ðr − rhÞk, with 0 < k < 1, as can be seen by
calculating the proper radial length l in slices of constant
Schwarzschild time (defined by dt ¼ dv − ðg=fÞdr) and
expressing the radial coordinate r as a function of l around
rh. On the other hand, when the leading order in the series is
1 or greater, as in our working case, the proper length
diverges and space becomes infinitely stretched around the
neck of the wormhole, becoming an infinite tube.
Therefore, the static geometry we are considering here
actually consists of two disconnected spacetimes, both
having one infinite tubular ending (see Fig. 1).

B. Including time dependence

Having discussed these static spacetimes, we will now
include a time dependence in the metric functions f and g
in order to push the formation of the apparent horizon/
asymptotic region at rh out to the limit v → ∞. In a
previous work [2], we used several such spacetimes
(modeled after collapsing matter) in order to study the
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relation between characteristics of the geometry around the
horizon and Hawking radiation. To do so, we analyzed
what particular types of time dependence are necessary in
order to trap outgoing light rays within a finite spatial
region. Here, we will briefly summarize and expand upon
these results and analyze the causal structure of the
resulting geometries.
We will start with some definitions. First, we will call

the right-hand side of Eq. (2) the generalized redshift
function F,

Fðv; rÞ≡ 1

2

fðv; rÞ
gðv; rÞ : ð6Þ

We will assume that this function has a minimum in r at a
moving point RhðvÞ and that it can be approximated by a
series expansion on either side,

Fðv; rÞ ¼ δðvÞ þ k1½RhðvÞ − r� þ k2½RhðvÞ − r�2 þ � � �
ð7Þ

for r < RhðvÞ, and

Fðv; rÞ ¼ δðvÞ þ k̃1½r − RhðvÞ� þ k̃2½r − RhðvÞ�2 þ � � �
ð8Þ

for r ≥ RhðvÞ (see Fig. 2). Note that δðvÞ is a function of v,
which decreases and tends to zero in the limit v → ∞. The
function RhðvÞ tends to a point rh in the same limit. Our
only simplifying assumption will be that the first nonzero
coefficients ki and k̃j of the expansion on either side, aside
from being positive, are approximately constant at large
times [or, equivalently, that they tend to a constant at least
as quickly as RhðvÞ].
It is worth mentioning that if either or both k1 or k̃1 are

nonzero, then the function F is continuous but not smooth

at rh. Through Eq. (6), we see that this translates into a
sharp peak in either f or g (or both) in slices of constant v.
The Einstein tensor for the metric (1) only has a second
partial derivative of f with respect to r (in its angular
components), meaning a peak in f corresponds to a
spherical thin shell of matter. If the peak is in g, the tensor
is only discontinuous and so are the matter density, flux,
and stress seen by any observer. We note that the geometry
is perfectly regular in spite of this discontinuity, unlike what
one might expect in, e.g., a static stellar configuration
where a jump in pressure leads to a singularity.
Regardless of the presence of the nonsmooth peak (and

its corresponding nonzero surface gravity), we will call all
geometries in which F has one zero (or an appropriate
tendency to produce one zero; see the discussion below)
and is positive everywhere else, extremal configurations.
We use this name because of a shared characteristic they
have with the standard extremal black hole solutions: the
presence of an outer and inner horizon, which degenerate to
the same radial position. We only extend the standard
definition by allowing for a nonzero surface gravity on
either side of the horizon.
If both δðvÞ and dhðvÞ ¼ RhðvÞ − rh tend to zero

sufficiently fast, then after some point in time some of
the light rays which are inside the sphere of radius rh
remain trapped inside, the outermost of which defines the
event horizon. In [2] we assumed that these functions
tend to zero at the same rate (e.g., e−v, 1=v, etc.), and the
condition for light-ray confinement turned out to be a
relation between this rate and the order of the first nonzero
coefficient (and its value if the order is 1) in the expansion
of F for the interior (7). Specifically, we showed:

(i) If δðvÞ ∼ dhðvÞ ∼ 1=vn, then light rays are trapped if
the power n and the order of the first nonzero
coefficient in (7), which we will call m, satisfy

n − 1 >
1

m − 1
:

FIG. 2. Slice at constant time (v ¼ const.) of the generalized
redshift function Fðv; rÞ around RhðvÞ. There is a discontinuity in
the first derivative of this function at RhðvÞ if either k1 ≠ 0 or
k̃1 ≠ 0, which through the Einstein equations can translate into
either a thin shell of matter or into a discontinuity in pressure,
depending on how the two individual degrees of freedom
(f and g) of the geometry, which comprise Fðv; rÞ, behave.

FIG. 1. A qualitative representation of the relation between the
radial coordinate r and the proper length in the radial direction l
for a geometry in which g diverges at some radius rh. This
divergence corresponds to an infinite stretching of l, which
completely severs the interior and exterior geometries.
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(ii) If δðvÞ ∼ dhðvÞ ∼ e−αv, then we can have anym ≥ 1.
If m ¼ 1, then there is the additional condition
α > k1.

(iii) If these functions decay more quickly that an
exponential, then there are no restrictions to the
series (7).

These results were obtained by analyzing the large v limit
of the solutions of Eq. (2) for r < Rh. With the series (7) we
can write this equation as

dr
dv

¼ δðvÞ þ k1½RhðvÞ − r� þ k2½RhðvÞ − r�2 þ � � � : ð9Þ

In this work we assume that the two functions δðvÞ and
dhðvÞ ¼ RhðvÞ − rh decay to zero independently, which
leads to a generalization of the above rules.
Let us first see the case in which k1 ≠ 0. We write Eq. (9)

up to leading order as

dr
dv

≃ δðvÞ þ k1dhðvÞ − k1ðr − rhÞ: ð10Þ

From the functions δðvÞ and dhðvÞ on the right-hand side
(rhs), we only need to consider the one which decays more
slowly for the asymptotic solution. For example, if the
slower of the two decays as be−αv (with b and α some
positive constants), then we can ignore the other one and
obtain solutions of the form

r − rh ≃ −
b

α − k1
e−αv þ ce−k1v; ð11Þ

where c is an integration constant. There are trapped
solutions, which approach rh asymptotically from below,
only if k1 < α: they correspond to the values c < 0. On the
other hand, if the slower of the two functions δðvÞ and
dhðvÞ goes to zero more quickly than an exponential, then
we again have a solution with a leading-order term ce−k1v

and corrections which decay much faster, asymptotically
recovering the same solutions as above for any value of k1.
Finally, if the slower of the two functions goes to zero more
slowly than an exponential, e.g., as 1=vn, then there are no
trapped solutions at all.
Now let us see the case in which k1;…; km−1 ¼ 0 and

km ≠ 0. Equation (9) becomes

dr
dv

≃ δðvÞ þ kmdhðvÞm þ k2ðrh − rÞm þ � � � ; ð12Þ

where we have omitted the cross terms in the leading order.
If we assume the ðrh − rÞm term dominates the rhs, we
obtain solutions of the type

r − rh ∼ −
1

ðv − cÞ 1
m−1

; ð13Þ

where c is again an integration constant, and we have
omitted a positive constant multiplying factor. These
solutions are consistent with the assumption used above
to obtain them as long as both δðvÞ and dhðvÞm decay at
least as quickly as 1=vn with

n − 1 >
1

m − 1
: ð14Þ

On the other hand, if we assume one of the terms δðvÞ or
dhðvÞm dominates the rhs of Eq. (12), then we get a solution
of the type

r − rh ∼
Z

v
dv0 max½δðv0Þ; dhðv0Þm�; ð15Þ

where the maximum is taken at sufficiently large v to be in
the asymptotic regime of the two functions. This solution is
again only consistent with the assumption for the rhs of the
differential Eq. (12) if the larger of the two functions decays
at least as quickly as 1=vn with n satisfying (14).
In summary, the generalization of the rules in the above

itemized list for this case is fairly simple: they are the same
but must be satisfied by the two functions δðvÞ and dhðvÞm
independently, or equivalently, by the one which goes to
zero more slowly.
In these cases, the fact that the confined light rays do not

reach the exterior future null infinity indicates the presence
of an event horizon. This horizon’s surface is described by
the trajectory of the first trapped light ray, which can be
seen to correspond to the solution (15). Any outgoing rays
which are outside it reach the asymptotically flat exterior
region, and their dispersion is related to the presence and
temperature of Hawking radiation. As for those on the
inside, they must go to a different asymptotic region. How
they end up depends on whether the asymptotic approach to
zero in F is due to a zero in f or a divergence in g, as we
will now see.

III. CAUSAL STRUCTURE

A. Causal structure for finite g

Let us assume that any light-ray trapping is due to an
approach to zero in f of form (7), and that g remains finite
(we will in fact assume g ¼ 1 for simplicity). The causal
structure of the spacetime in this case almost always ends
up being the same as that of an extremal (regular) black
hole, shown in Fig. 3. In the limit v → ∞, the surface
r ¼ rh becomes a Cauchy horizon, beyond which the
geometry is extendable.
To show this, we can turn to one of the geodesic

equations for a radial trajectory ðvðσÞ; rðσÞÞ in our metric,

v̈þ ∂rf
2

_v2 ¼ 0: ð16Þ
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If the first nonzero coefficient in (7) is k1, then the solution
to this equation close to RhðvÞ is

k1 _v0ðσ − σ0Þ ≃ 1 − e−k1ðv−v0Þ; ð17Þ

where the subscript 0 refers to initial values. Since k1
must be positive, when the affine parameter σ reaches the
finite value

σh ¼ σ0 þ 1=ðk1 _v0Þ; ð18Þ

the geodesic has reached the limit v → ∞ and, in the
absence of singularities, can be extended past this point. Of
course, this is the case only if the geodesic stays close
enough to RhðvÞ so as to keep the approximation (7) valid.
As mentioned earlier, if k1 ≠ 0 then for light rays to be

trapped below rh the functions δðvÞ and dhðvÞ must both
tend to zero at least as quickly as an exponential. For
example, if

δðvÞ ¼ e−αv; dhðvÞ ¼ e−βv; ð19Þ

with α and β some positive constants, then the solution for
the trajectories of outgoing null geodesics is asymptotically

rðvÞ ≃ rh −
1

α − k1
e−αv −

k1rh
β − k1

e−βv þ ce−k1v; ð20Þ

where c is an integration constant. There are trapped null
solutions if minðα; βÞ > k1. They correspond to the values
c ≤ 0 for the integration constant (c ¼ 0 for the horizon
itself). The approximation resulting in Eq. (17) is valid for
these trajectories (since they approach Rh), and they are,
therefore, extendable past the v → ∞ limit. At this limit
they reach r ¼ rh, making this surface a Cauchy horizon, as
shown in Fig. 3.
As for spacelike and timelike geodesics, the equivalent

of Eq. (2) is

dr
dv

¼ Fðv; rÞ � 1

2gðv; rÞ_v2 ; ð21Þ

with þ for spacelike and − for timelike ones. Since we are
interested in the region around rh at large v, we only look
for geodesics which stick close to this radius asymptoti-
cally. Using this as an assumption for the solutions for
gðv; rÞ ¼ 1, it is easy to check that with Eq. (17), _v
diverges quickly enough for the new term in (21) (with
respect to the null case) to become negligible at leading
order in the asymptotic expansion. Thus, for every null
geodesic of the type (20) there are also a spacelike and a
timelike geodesic with the same approximate expressions.
From the signs of the additional term in (21), it can be seen
that further approximation would reveal that in terms of
radius the spacelike geodesics are actually slightly above
the null ones, while the timelike ones are slightly below.
Equation (17) is also a valid approximation for the
affine parameter of these geodesics, meaning they are
also extendable.
The same occurs even when k1 ¼ 0: geodesics which try

to escape from the interior region reach the v → ∞ limit in
a finite affine parameter. For example, if k2 ≠ 0 we can
solve Eq. (16) in the vicinity of rh and see that the value this
parameter reaches when v diverges is

σh ¼ σ0 þ
1

_v0k2ðrh − r0Þ
: ð22Þ

There are only two exceptions to this scenario of
extendable geodesics. The first one is the case in which
the function f is constant in r, making all coefficients ki
in the expansion (7) zero; Eq. (16) then implies v ∝ σ and
there is no Cauchy horizon for trapped geodesics. The
second exception is, in a sense, a generalization of the first:
it is the case in which the function f is nonanalytical in the r
direction about its minimum, and all its derivatives are zero
there. In other words, we can generalize from the case of
constant f in r and maintain the nonextendibility by
sacrificing the analytic nature of the function. Let us
provide an example: suppose we have

Fðv; rÞ ≃ e
− 1

ðr−rhÞ2 þ 1

vn
; ð23Þ

FIG. 3. Conformal diagram of the spacetime with g ≃ 1 and f
given by (7) satisfying the appropriate conditions for light-ray
trapping. The dashed line is the event horizon, corresponding to
the first trapped outgoing light ray. The dash-dotted line is the
surface r ¼ rh, which is described by a timelike curve and the
Cauchy horizon. The curves to the left of rs correspond to
surfaces of r ¼ const < rh, while to the right they are
r ¼ const > rh. The lines outside the conformal triangle indicate
the need to extend the spacetime.
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where r and v are expressed in units of some arbitrary
length scale. Then the asymptotic solutions for trapped
outgoing light rays are

r ∼ rh −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðv − cÞp ; ð24Þ

where c is an integration constant and aside from the
asymptotic condition v ≫ 1, the range of validity of each
solution is v > cþ 1. Along these trajectories Eq. (16)
becomes

v̈ ¼ 2

ðv − cÞ½logðv − cÞ�3=2 _v
2; ð25Þ

the asymptotic solution of which is again v ∝ σ, which we
have confirmed both analytically and numerically.
In summary, the requirement on f for the geometry to be

nonextendable is that all derivatives at its minimum in the
direction of decreasing r be zero, either by making the
function constant in r or nonanalytical. These cases seem
rather unphysical, but they do highlight the fact that the
presence of a Cauchy horizon depends entirely on the
knowledge of the derivatives of f about a single radial
point. It is, therefore, a case in which an arbitrarily small
region of the geometry, the description of which may be
expected to change in a complete microscopic theory of
gravity, affects our picture of the global causal structure of
the spacetime.

B. Causal structure with nonvanishing f

If, on the other hand, light rays are trapped not due to a
tendency to zero of f but because of increasing values in g
at RhðvÞ, tending to a divergence in the limit v → ∞, the
situation is quite different. The geodesic equation relating v
to the affine parameter σ is in this case

v̈þ ∂vg
g

_v2 ¼ 0: ð26Þ

For simplicity, wewill considerRhðvÞ≡ rh, since not doing
so does not lead to any qualitative changes in the causal
structure we will obtain (so long as light-ray trapping is
maintained). If k1 ≠ 0, then we can take δðvÞ ¼ e−αv,
with α > k1, as it is the slowest allowed approach to zero.
The trajectories of trapped outgoing null geodesics are
described by (20) without the e−βv term. Then, for large
values of v, Eq. (26) takes the form

v̈ ¼ −
2α

k1jcj
e−ðα−k1Þv _v2: ð27Þ

The solution for the affine parameter σ is an exponential
integral function with argument proportional to e−ðα−k1Þv
and at large values of v is approximated by the relation

σ ¼ a1 þ a2v; ð28Þ

with a1 and a2 being integration constants. Thus, in this
case the affine parameter of these geodesics reaches infinity
at the same time as v, meaning that the rh region does not
become a Cauchy horizon but a part of future null infinity.
If k1 ¼ 0, there is no change in this behavior. In fact,
Eq. (28) is still the approximate solution relating v to the
affine parameter for trapped geodesics at large values of v
[e.g., if k2 ≠ 0 and we take again δðvÞ ¼ e−αv, the term
approximating v on the rhs of Eq. (28) is in this caseR
v
1 expðx2 expð−αxÞÞdx].
This case of diverging g can be interpreted geometrically

from these results for null geodesics: space becomes
stretched in the radial direction at rh as the proper radial
length l approaches a divergence along with g. This
stretching is sufficiently quick so as to asymptotically
freeze these light rays in their approach toward rh (see
Fig. 4). But the key difference with respect to the previous
case is that this occurs without the low values of the redshift
function f, which results in proper time not being slowed
down and observers reaching the asymptotic region v → ∞
in infinite time.
As this situation approaches the static case discussed

above, one might wonder if ingoing rays would also be
affected in a similar manner, becoming unable to cross the
rh surface. This turns out not to be the case. The geodesic
equation relating the affine parameter to the radial coor-
dinate in v ¼ const. Sections is the same as the second
expression in Eq. (5) in terms of g, but in this case, close to
rh it takes the form

̈r ¼ −
∂rg
g

_r2 ≃
mk̃mðr − rhÞm−1

k̃mðr − rhÞm þ δðvÞ _r
2; ð29Þ

where m is again the order of the first nonzero term in the
series expansion of F, and δðvÞ is a (small) constant.
In contrast to the static case, the rhs is not divergent
due to the finite δðvÞ term. Consequently, the affine
parameter is finite when crossing rh (e.g., for m ¼ 2,
r − rh ≃

ffiffiffiffiffiffiffiffiffi
δðvÞp

tan½c1
ffiffiffiffiffiffiffiffiffi
δðvÞp ðσ − c2Þ�, with c1, c2 integra-

tion constants; crossing occurs at σ ¼ c2).

FIG. 4. Relation between the radial coordinate r and the
proper length in the radial direction l for a geometry in which g
tends to a divergence at rh. Outgoing light rays become trapped
in this infinitely stretching region, while ingoing ones pass
right through it.
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Outgoing light rays become trapped due to the fact that
they are moving in a direction in which g increases and δðvÞ
decreases and actually see space stretching as they go. On
the other hand, ingoing rays only see a snapshot of a
partially stretched geometry, through which they can easily
pass given enough time.
The two future null infinities in this spacetime are

separated by an event horizon, as shown in Fig. 5 (left).
The exterior one we assume is in an asymptotically flat
region at r → ∞, while the interior one (at r → r−h ) has a
matter content all the way through, which we will briefly
analyze in the next section.

C. Diverging g in finite time

In Fig. 5, the diagram on the right represents a case in
which the point in time at which g diverges is brought down
to a finite value v ¼ v0 (i.e., δðvÞ ¼ 0 for v ≥ v0). The
spacetime in this case becomes a combination of the static
and asymptotically formed cases and can help shed light
on both.

The infinite tube from the static case is now formed
dynamically, i.e., space stretches in the radial direction and
breaks into two at a point ðv0; rhÞ. For v > v0 and r > rh
the spacetime is part of the exterior region of the static case,
in which the surface r ¼ rh is a future asymptotic region for
geodesics which approach it. As for the interior r < rh
region, from the moment v ¼ v0 on the evolution is no
longer determined by any initial conditions set at any past
spacelike 3-surface, making the surface v ¼ v0 for r < rh a
Cauchy horizon. The conditions needed to fix a particular
extension will generally be determined at a surface which
can be thought of as a second Cauchy horizon in the past of
the extended region, as shown in Fig. 5.
The only thing left to analyze in order to complete our

picture of this geometry is the point ðv0; rhÞ. The first thing
to note is that there is no curvature singularity there.
Considering that it is the point after which r ¼ rh becomes
an asymptotic region, one might initially think of it as part
of this region. Then all geodesics which approach it would
have an affine parameter which tends to infinity there.
We can easily check if this is the case with the geodesic
equations.
As it turns out, the answer is not that straightforward.

Whether this point is part of an asymptotic region for
geodesics or not actually depends on how the divergence in
g is approached, i.e., how quickly space is stretched. This is
encoded in how δðvÞ reaches zero. The details of this
calculation are deferred to Appendix, but the summary is
the following: if we have

δðvÞ ∝ ðv0 − vÞn; ð30Þ

then for all geodesics to have their affine parameters
diverge when they reach this point, the inequality

n − 1 ≥
1

m − 1
ð31Þ

must be satisfied, where m is the lesser of the two numbers
corresponding to the orders of the first nonzero coefficients
ki and k̃i in the expansion of F. If this inequality is not
satisfied, then some geodesics will reach this point in finite
proper time and will be extendable beyond it. For timelike
geodesics, the extensions will be into the interior region
beyond the Cauchy horizon.
On the other hand, in the case in which the divergence

in g is reached in infinite time, i.e., the limit v0 → ∞, all
geodesics which approach this point have their affine
parameter reach an infinite value at the same rate as v
[Eq. (28)]. To understand how the transition from the right
to the left diagram in Fig. 5 occurs, we can think of the fact
that in this limit all ingoing light rays make it through rh are
reflected at the origin and then become trapped in an
approach toward what is essentially the point ðv0; rhÞ from
the inside. The point is then stretched to become a future

FIG. 5. Conformal diagram of the spacetime in which g tends to
a divergence. Left: the divergence is reached in infinite time at the
surface r ¼ rh (the dash-dotted line), which becomes a separate
part of future null infinity for outgoing light rays. This interior
null infinity is denoted by Iþ

ð1Þ, while the exterior one (for escaped
light rays) is Iþ

ð2Þ. Right: the divergence at r ¼ rh is reached at a
finite moment v ¼ v0 (and remains thereafter), making r ¼ rh a
future null infinity Iþ

ð1Þ for ingoing light rays with v ≥ v0. The
symbols iþð1Þ and iþð2Þ indicate future timelike infinities for two
different sets of observers (for the diagram on the right this is
conditional; see discussion below). In general, this latter geom-
etry is extendable past the surface v ¼ v0 for r < rh, marked as a
Cauchy horizon. The diagram includes what the extension may
look like, indicating that to be fixed it requires initial data from
another surface, which is effectively another Cauchy horizon in
the past of the region.
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null infinity region for all these rays, as well as a future
timelike infinity for geodesics which may approach it from
below [iþð1Þ] or above [iþð2Þ], as seen in the left diagram

in Fig. 5. These timelike infinities are also the ones for
geodesics which approach the asymptotic region with radii
r < rh and r > rh, respectively.

IV. ENERGY CONDITIONS

The physical picture behind the f → 0 type spacetimes is
roughly that of a collapse of matter which grinds to a halt
asymptotically in time just above its gravitational radius.
On the other hand, the g → ∞ type seems to describe a
stretching of space in the radial direction in a manner similar
to cosmological expansion. These are unusual situations, to
say the least, so it is interesting to see whether some of them
can be associated with the dynamics of classically reasonable
matter, i.e., whether their stress-energy tensors can satisfy
any of the energy positivity conditions.
We will suppose wμ is any timelike or null vector, and

without loss of generality, we will suppose its angular
component is in the θ direction resulting in the inequality

−fðwvÞ2 þ 2gwvwr þ r2ðwθÞ2 ≤ 0: ð32Þ

The only region in which we have needed to fix the
spacetime geometry so far is around RhðvÞ, so we will
analyze how matter behaves there using the expansions (7)
and (8).
Let us again start with the case g ≃ 1. To test the weak

(and null) energy condition, we contract the Einstein tensor
of (1) twice with wμ and see whether the resulting scalar is
positive for all wμ satisfying (32). Since we will only
analyze this condition in the region where we have fixed
the geometry, i.e., around the minimum in F, we can omit
some terms which will not give leading-order contributions
and write

Gμνwμwν ≃
1 − r∂rf

r2
½fðwvÞ2 − 2wvwr�

−
∂vf
r

ðwvÞ2 þ
�
r∂rf þ r2

2
∂2
rf

�
ðwθÞ2: ð33Þ

This quantity can be shown to be positive in many cases
with some simplifications (we will not attempt to derive the
most general conditions for positivity). Particularly, let us
assume that ∂vf is negative [for which δðvÞ must decrease
more slowly than dhðvÞ]. Then the term with this partial
derivative will be positive and can safely be ignored. With
the inequality (32), the sufficient conditions for the rest of
the terms on the rhs of (33) to be positive turn out to be

rh∂rf < 1 and
r2h
2
∂2
rf > −1; ð34Þ

which can be satisfied or violated with an appropriate
choice of coefficients in (7) and (8). If they are satisfied,
then any timelike observer around this region of “slowed
down gravitational collapse” will see a matter distribution
with positive energy density.
With a similar analysis, it can be shown that the strong

energy condition (Rμνwμwν ≥ 0) can be satisfied around
rhðvÞ if

∂vf < 0 and
r2h
2
∂2
rf ≥ maxð−rh∂rf;−1Þ: ð35Þ

As for the dominant energy condition (that is, requiring that
the momentum flux −Tμ

νwν be causal and future pointing),
it can be satisfied if the weak energy condition is, and

ð1 − rh∂rfÞ2 ≥
�
rh∂rf þ r2h

2
∂2
rf

�
2

; ð36Þ

which can again be achieved with an appropriate choice of
coefficients in (7) and (8).
This result implies that it is not necessary to violate

energy conditions locally in order to generate the f → 0
type geometry, but it does not guarantee that for the whole
of our spacetime construction. Indeed, in most cases the
interior of this geometry (r < rh) resembles that of a regular
black hole, where some energy conditions are usually
broken around the origin r ¼ 0 [11–14].
In the local region where energy conditions can be

satisfied, it may also be interesting to see what form the
energy density and pressure perceived by an observer can
take. Let us consider an observer freely falling in the radial
direction, who has a four-velocity wμ and, for simplicity, at
the moment of crossing rh is moving in the v-direction with
wv ≃ 1. Then, taking again g ≃ 1, the energy density seen
by this observer when approaching from the outside is
approximately

ρ ≃
1

8πG

�
1

r2h
−
∂rf
rh

�
ð37Þ

Note that the condition for ρ to be positive coincides with
the first condition in (34) (the second condition there is
necessary for tangentially moving observers). The radial
pressure seen by this observer is

pr ≃ −ρ; ð38Þ

and the tangential pressure is

pθ ≃
1

8πGr2h

�
rh∂rf þ r2h

2
∂2
rf

�
: ð39Þ

One may note that this expression is positive if the second
inequality in (35) is satisfied along with the one for ρ > 0.
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From all this we see that, although the energy conditions
can be satisfied, the corresponding matter content is
classically rather strange: it has a pressure which is
generally anisotropic and, in some cases, the sign of its
radial component is opposite to that of its tangential
component.
However, if our question is whether these geometries are

physically reasonable, even locally, this analysis is incom-
plete. Due to the causal structure involved, additional
considerations must be taken into account. On the one
hand, it is well known that the presence of a Cauchy
horizon in a solution of the Einstein equations generally
indicates that this solution is unstable under perturbations
[15]. And even if we ignore the possibility of classical
perturbations, if we define a quantum field on this space-
time, an analysis based on semiclassical gravity reveals an
even greater instability around Cauchy horizons [16]. On
the other hand, in [2] we showed that in most of these
spacetimes there also seem to be large semiclassical
corrections due to the formation of the event horizon itself.
Therefore, a geometry of this type satisfying reasonable
energy conditions may not be a self-consistent solution of
the semiclassical Einstein equations. Conversely, if the
stress energy needed to generate it were not sensible on a
purely classical level, it would not be enough to discard it as
a solution in semiclassical gravity, which is known to have
no regard for classical energy conditions [17]. A complete
analysis of the self-consistency of this type of geometry is,
however, beyond the scope of this work.
As for the geometries in which g tends to a divergence, it

turns out that they generally violate even the weak energy
condition. To see this we can write down

Gμνwμwν ¼
�
1

r2
þ � � �

�
½fðwvÞ2 − 2gwvwr�

þ
�∂rg∂vg

g3
þ � � �

�
r2ðwθÞ2

þ 2f∂vg
rg2

ðwvÞ2 þ 2∂rg
rg

ðwrÞ2: ð40Þ

The first three terms can be made positive for all wμ with a
particular choice of g, but with the last term it is no longer
possible. Particularly, if the last term is negative (which it is
for r > rh), then any attempt to compensate it with the
other terms fails for some choice of vector wμ. From a more
physical perspective, this implies that observers moving
sufficiently fast in the radial direction (which becomes
increasingly difficult as space stretches, i.e., it requires
them to approach the speed of light) may see a negative
energy density content. Thus, it appears these spacetimes
are not ones we may expect to form from the dynamics of
exclusively classical matter.

V. HAWKING TEMPERATURE

If we define a quantum field on top of these spacetimes,
the magnitude of the quantum contribution to the stress-
energy content depends greatly on the presence of Hawking
radiation and the value of its temperature, as discussed in
[2,18]. In this work we have used a slightly more general
family of geometries, so we will present a general method
for calculating the asymptotic effective temperature func-
tion (ETF) of the Hawking radiation generated by these
geometries, which requires only the approximate asymp-
totic solutions for the trajectories of outgoing null geo-
desics in a neighborhood of their event horizons.
The ETF was introduced in [8] and is given by

κoutin ≡ −
d2uin
du2out

=
duin
duout

; ð41Þ

where the “in” and “out” indices refer to the asymptotically
flat regions at past and future null infinities: the coordinates
are proportional to the natural Minkowskian coordinates at
these regions, and the indices of κ refer to the difference
between the two natural Minkowskian vacuum states
(particularly, how the “in” region vacuum state is seen
as a flux of particles when it evolves and reaches the “out”
region). If this function is approximately constant for a long
enough period of time [8], then during this period the
geometry will create particles with a Planckian spectrum
with temperature κoutin =2π in natural units.
This function depends only on the quotient f=g, so the

calculation is the same for the two types of geometries we
have considered. We will assume k1 and k̃1 are nonzero,
because the case in which either one is zero can be obtained
as a limit from the final result. We will also assume that
δðvÞ and dhðvÞ both decrease as exponentials since it is the
slowest allowed approach to zero for light-ray trapping to
occur in this case and also because the case of a faster
approach can again be obtained from the same result.
To calculate the ETF, we need to obtain the trajectories

of outgoing null geodesics in a small region around the
spatial minimum of F. For this we can make use of the
solution (20) for r < Rh and its analogue with k1 → −k̃1
for r > Rh. We will take the small region ðrh − ϵ; rh þ ϵ̃Þ,
with ϵ and ϵ̃ arbitrarily small positive constants (with the
condition that time has advanced enough for Rh to be
inside this radial interval). We call vϵ the time at which a
particular ray crosses rh − ϵ, vh the time when it crosses
Rh, and vϵ̃ the instant it crosses rh þ ϵ̃. For our purposes,
the labels vϵ and vϵ̃ represent the uin and uout ones,
respectively.
From the solutions (20), a straightforward calculation

leads to the asymptotic (in v) result

dvϵ
dvh

∼ βrhe−ðβ−k1Þvh þ e−ðα−k1Þvh ; ð42Þ

ASYMPTOTIC HORIZON FORMATION, SPACETIME … PHYS. REV. D 102, 045001 (2020)

045001-9



where we have omitted a proportionality constant. From
here on we must decide which of these two exponentials
dominates at large time, i.e., which one decays slower. If
α < β, then the first one dominates, and we also obtain
from the exterior solutions the asymptotic relation

dvh
dvϵ̃

∼
k̃1

αþ k̃1
: ð43Þ

On the other hand, if β < α, then the second exponential
in (42) dominates and the result is the same as (43), only
substituting α for β. Defining γ ¼ minðα; βÞ, we can
proceed with integrating (43) in generic terms. Doing so
and substituting into (42), we obtain the asymptotic relation
between the labels

dvϵ
dvϵ̃

∼ e
−k̃1

γ−k1
γþk̃1

vϵ̃ : ð44Þ

The ETF is simply minus the coefficient multiplying vϵ̃ in
the exponential,

κoutin ∼ k̃1
γ − k1
γ þ k̃1

: ð45Þ

If either δðvÞ or dhðvÞ decays quicker than an exponential,
then the limit α → ∞ or β → ∞ can be taken, respectively.
Equation (45) still applies if both α and β are taken to ∞,
i.e., if γ → ∞, giving simply k̃1 for the ETF. If the slope
on either side of the minimum of F is zero, then the
corresponding limits k1 → 0 and k̃1 → 0 can also be taken,
the latter resulting in a zero ETF.
One thing which is interesting to note is that the surface

gravity of these objects at rh is given by

κ ¼ 1

2

∂rf
g

; ð46Þ

meaning that when g diverges, the surface gravity always
tends to zero. More generally, when g≄const, there is no
longer a direct relation between the surface gravity and the
temperature of Hawking radiation corresponding to the
horizon. The latter is instead associated with the slope
∂rðf=gÞ, i.e., the coefficient k1 of the series (3).

VI. CONCLUSIONS

The starting point of this paper is a family of geometries
which, through their particular asymptotic evolution in
time, can behave like black holes and even have event
horizons without ever having formed any trapped surface.
Even sharing this characteristic, the family contains various
and distinct causal structures and different behaviors in
terms of energy conditions and production of Hawking
radiation. The family of geometries is divided into two
categories.

The first one is characterized by its similarity with a
spacetime in which a standard black hole is formed, but in
our case the formation of its first trapped surface is pushed
forward to the future asymptotic region. In other words, the
strict formation of a trapped surface is replaced by an
appropriately quick tendency to its formation, quick
enough that although outgoing radial light rays always
have a positive expansion, some move out slowly enough to
be trapped inside a finite spatial region until the advanced
time v reaches infinity.
Analyzing the causal structure of this first category of

geometries, we find that aside from an event horizon
(described by the first trapped outgoing light ray) in almost
all cases there is also a Cauchy horizon, beyond which the
trapped geodesics are extendable, giving the same causal
structure in the future as an extremal charged black hole
(though in our case it can be singularity-free). However, we
find that there are two exceptions to this scenario in which
geodesics are not extendable and there is no Cauchy
horizon: the first is a very unique case in which the redshift
function f has no variation in the radial direction in sections
of constant v, while the second (a generalization of the first)
just requires that all derivatives in the inward radial
direction from the minimum of f be zero. This latter case
involves geometries in which f is not constant in r but is
nonanalytical. We thus point out the interesting fact that the
presence of a Cauchy horizon is deduced from the shape of
the geometry in an arbitrarily small region about the
minimum of f, but has consequences on the global causal
structure.
The second category of geometries in which outgoing

light rays are trapped has a very different physical picture
behind it. Instead of a decreasing redshift function f, what
results in the slow-down of the radial escape of the light
rays is an actual stretching of space in the radial direction.
The proper length becomes vastly greater that the radial
length, tending to a divergence in their relation. One can
think of it as an attempt at opening a wormhole with an
infinitely long neck. To simulate the asymptotic formation
of a trapped surface, this divergence only needs to be
reached asymptotically as well. Meanwhile, because the
stretching increases in the v-direction, ingoing geodesics
can enter the trapped region after traversing a long but finite
tubelike structure. The difference with the first category of
spacetimes is most clearly manifest in the causal structure:
outgoing geodesics which are trapped below some finite
radius are now not extendable beyond the v → ∞ border,
i.e., their affine parameter also reaches infinity.
This separation into two categories can be seen as due to

the fact that requiring for outgoing null trajectories to be
trapped defines only what we call the generalized redshift
function Fðv; rÞ, which amounts to just one of the two
degrees of freedom of spherically symmetric geometries.
However, the geodesic equations, from which we deduce
the causal structure, see both of these degrees of freedom.
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Thus, different ways of imposing the same behavior
in F result in different behaviors of the geodesic affine
parameter.
Having studied the causal structure of these spacetimes,

we then looked at the matter content which they require as a
source in order to be considered solutions of the Einstein
equations. The geometries of the first category can be
sustained by a matter content which satisfies any of the
energy positivity conditions, that is, at least locally around
the point of asymptotic horizon formation where the
geometry is specified. On the other hand, the cases of
the second category appear to violate even the weak energy
condition. They would thus lose their physical significance
in a purely classical theory, but we remind the reader that
the grounds for this study are originally the analysis of
semiclassical effects in geometries with appropriate null
geodesic peeling for nonlocal quantum effects to manifest.
The quantum contributions to the stress-energy content are
known to violate all energy conditions as well, which calls
for a broadening of our physical criteria.
Finally, we briefly delved into the quantum effects

induced by these geometries. We restricted ourselves to
the study of the Hawking radiation they produce, as its
relation to the quantum stress-energy tensor was discussed
in our previous work [2]. Within our family of geometries
there are interesting examples in which the surface gravity
at the horizon is absolutely distinct from the temperature of
Hawking radiation at infinity. This happens, in general,
whenever the function g is not constant at the event horizon.
The set of geometries analyzed in which g diverges at the
horizon provides a clear example of the possibility of
having Hawking-like radiation even with zero surface
gravity. The peeling of geodesics required for having
Hawking radiation is provided in this case by the stretching
of space itself.
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APPENDIX: GEODESICS APPROACHING THE
POINT OF DIVERGENT g

If gðv; rÞ diverges at point ðv0; rhÞ, close to this point we
can quite generally assume it has the form

g ¼ 1

aðv0 − vÞn þ k̃mðr − rhÞm
; ðA1Þ

for which we have also assumed that we are approaching
from a smaller v and a larger r, with a and k̃m being positive
constants. What we want to find out is, depending on the
values of n and m, whether there are geodesics which
approach this divergent point, and if there are, whether they
take a finite or infinite proper time to reach it.
The easiest way to obtain an answer is to assume we

already have it and then check if it is true. In other words,
let us first assume that there are timelike geodesics which
reach this point at a finite affine parameter σ0 as

v − v0 ¼ −βðσ0 − σÞq þ � � � ; ðA2Þ

r − rh ¼ αðσ0 − σÞp þ � � � ; ðA3Þ

with β, α, p, and q positive constants. The geodesic
equations these trajectories must satisfy are

v̈ ¼ −
∂vg
g

_v2; ̈r ¼ −
∂rg
g

_r2 þ f
g
v̈; ðA4Þ

where we have assumed f is constant. Plugging the
expressions (A2) and (A3) into these equations, we get
the following results for the leading order:

q ¼ 2

1 − nþ n=m
; ðA5Þ

p ¼ n
m
q ¼ 2

1 −mþm=n
; ðA6Þ

αm

βn
¼ a

k̃m

mn −mþ n
mnþm − n

: ðA7Þ

There is a single degree of freedom left in the proportion-
ality coefficients, meaning we have found a whole uni-
parametric family of solutions. An important point is that
these solutions are valid representations of geodesics which
reach the point of divergent g only if q and p are positive,
which implies the restriction

n − 1 <
1

m − 1
ðA8Þ

for the geometry. The smaller the exponents n and m, the
quicker the divergence is approached, so this inequality can
be interpreted as the fact that geodesics only take a finite
time to reach the point if the divergence is generated
suddenly enough.
On the other hand, if we assume the geodesics take an

infinite time to reach the point, say as
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v − v0 ¼ −
β

σq
þ � � � ; ðA9Þ

r − rh ¼
α

σp
þ � � � ; ðA10Þ

then the opposite inequality,

n − 1 >
1

m − 1
; ðA11Þ

must be satisfied, i.e., the divergence of g must be reached
slowly enough. Equations (A5) and (A6) now hold with a
change of sign of the rhs, and Eq. (A7) holds as such.
We may then ask whether such geodesics exist for a

geometry which precisely satisfies

n − 1 ¼ 1

m − 1
: ðA12Þ

They do, and they take the form

v − v0 ¼ −βe−qσ þ � � � ; ðA13Þ

r − rh ¼ αe−pσ þ � � � ; ðA14Þ

i.e., they also take infinite proper time to reach the point,
but they have a different approach. In this case the
restrictions on the coefficients imposed by the geodesic
equations are

p
q
¼ n − 1;

αm

βn
¼ a

k̃m
ðn − 1Þ: ðA15Þ

So far we have only considered timelike geodesics which
fall into ðv0; rhÞ from larger radii. If we also consider ones
which may approach this point from the inside, we obtain
some additional solutions. Assuming the point is reached
in finite proper time, i.e., taking Eqs. (A2) and (A3), the
latter with a change of sign for the approach from the
inside, we get, on the one hand, solutions which again
satisfy Eqs. (A5), (A6), and (A7) (with k̃m → km, as we are
now on the inside), and on the other we obtain some
independent additional solutions which satisfy

p ¼ 1þ n
1 − n

; q ¼ 1

1 − n
; ðA16Þ

α

βn−1
¼ f

2

a
1þ n

: ðA17Þ

The restriction on the geometry for these solutions to exist
is simply

n < 1: ðA18Þ

This kind of additional solution also exists if we assume
an approach in infinite proper time using Eqs. (A9)
and (A10), the latter again with a change of sign. They
satisfy Eqs. (A16) with a change of sign on the rhs, and
Eq. (A17) changing the power of β from n − 1 to nþ 1.
The geometries on which these solutions exist only need to
satisfy

n > 1: ðA19Þ

The conclusion is that if the geometry is given by (A1)
and satisfies

n − 1 ≥
1

m − 1
; ðA20Þ

then all geodesics which approach ðv0; rhÞ have their affine
parameter tending to infinity. If the opposite relation is
satisfied, but n > 1, then depending on their approach some
geodesics will reach this point in finite affine parameter,
and some others in infinite. We also remind the reader that
throughout the main text we assumed m ≥ 1, which is
required for light-ray trapping if the approach toward the
divergence in g occurs in infinite advanced time v. If we
want to relax this restriction in the finite-time diverging
case, then the solutions obtained at the beginning of this
Appendix for an approach in finite proper time (A2)
and (A3) only exist if the additional restriction m > 1 −
1=ðnþ 1Þ is satisfied. Also, the ingoing null geodesic
which reaches this point does so in finite affine parameter if
m < 1, whereas it always did so in infinite time (just as in
the static case) when m ≥ 1.
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