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Abstract
Decompositions of networks are useful not only for structural exploration. They also have
implications and use in analysis and computational solution of processes (such as the Ising model,
percolation, SIR model) running on a given network. Tree and branch decompositions considered
here directly represent network structure as trees for recursive computation of network properties.
Unlike coarse-graining approximations in terms of community structure or metapopulations, tree
decompositions of sufficiently small width allow for exact results on equilibrium processes. Here
we use simulated annealing to find tree decompositions of narrow width for a set of medium-size
empirical networks. Rather than optimizing tree decompositions directly, we employ a search space
constituted by so-called elimination orders being permutations on the network’s node set. For each
in a database of empirical networks with up to 1000 edges, we find a tree decomposition of low
width.

1. Introduction

The analysis and modelling of complex systems involves complex computational tasks. In comparing empirical
network structures with network models, for instance, one asks if they share common macroscopic behaviour
under a percolation process or spin kinetics.

While theory of networks in complex systems has been enriched to include adaptive [1], temporally evolv-
ing [2, 3], and multi-layer [4, 5] structures, open questions remain also for processes on simple static structures.
The Ising model in the macrocanonical ensemble, for instance, is fully captured by its density of states. Com-
puting the exact density of states is not feasible in general. A subproblem of this task is to decide if there is a
state at or above a given energy ε. Even this modest subproblem is equivalent to the NP-complete maximum
cut problem on the given network [6, 7].

Computational problems on networks are made more feasible when effective size is reduced by coarse-
graining, e.g. [8]. Several nodes with similar neighborhoods forming a community [9] or block [10] are
lumped together into one representative node. Similar coarse-graining is applied in metapopulation models
for epidemic spreading [11, 12] and opinion formation [13] where the nodes of the network are geographic
locations rather than individuals. Coarse-graining amounts to lossy compression [14], however, so precision
of results decreases with the amount of coarse-graining.

Here we advocate the study and development of exact methods [15, 16] rather than approximations and
heuristics. In parallel to the development of exact methods, their applicability is to be explored by finding the
networks and classes of networks that allow for efficient computation.

Tree networks allow for particularly simple recursive methods [17] where the network itself is used as the
recursion tree. For non-tree networks, the same recursion equations are applied as a tree-like heuristic [18–21].
Recent research generalizes message passing to account for cycles to a certain extent. Radicchi and Castellano
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[22] introduce corrections due to triangles only. Cantwell and Newman [23] consider expansion in cycle length
leading to equations that can be solved exactly for some applications.

Rather different generalizations of the tree property, termed tree decompositions and branch decompo-
sitions are known in the areas of combinatorial optimization and graph algorithms [24–27]. A network has
tree-width k if it can be split into smaller subnetworks with overlaps of at most k nodes, where this property
holds again for the subnetworks; the tree representation of this split recursion is then called a tree decompo-
sition of width k. See section 2 for the strict definition. Now consider a computation requiring time O(2n)
in terms of problem size n with a naive algorithm, e.g. exhaustively enumerating the 2n spates of an n-
spin Ising model. The computation drastically reduces to running time O(n2k) when exploiting tree-width
k � n. This makes exact computation feasible as long as there is a tree decomposition of sufficiently low
width k.

This suggests a two-step process as a general modus operandi for solving a computational problem on a
given network. (i) Find a tree decomposition of possibly low width. (ii) Solve the original problem with a
method efficiently exploiting the low tree-width. Step (i) may fail, either because the given network does not
have a tree decomposition of sufficiently low width or because we are unable to find it. Finding tree decom-
positions of optimally low width is in itself an NP-hard problem [24]. Thus we resort to a heuristic such as a
greedy algorithm or stochastic optimization in step (i) [26, 28].

Here we demonstrate this two-step process for a collection of small and medium-size networks frequently
employed as test structures. In step (i), we find tree decompositions of low width by simulated annealing [29].
Demonstrating step (ii), we use the tree decomposition and find the exact values of the networks’ maximum
Ising energy.

2. Mathematical background, methods, and data

2.1. Tree decompositions
Let G = (V, E) be a graph with node set V and edge set E. Let B a family of non-empty subsets of V. Each
such B ∈ B is called a bag, being B ⊆ V. Furthermore, let T be a set of edges (unordered tuples) on B, so that
(B, T) is a tree. Now this tree with node set B and edge set T is called a tree decomposition of G if additionally
the following two conditions hold.

(a) For each edge {v,w} ∈ E, there is a bag B ∈ B so that v ∈ B and w ∈ B.

(b) The set of bags containing v induces a connected subgraph of (B, T).

In the literature (e.g. [26]), an additional requirement is that each node v ∈ V is contained in at least one
bag. This makes a difference only when there are isolated nodes; a non-isolated node must anyway appear in
a bag due to condition (a). We stress also that a tree decomposition of the graph G is never a spanning tree of
G. The graph and its tree decomposition have different node sets, V and B.

Each graph G = (V, E) trivially has a tree decomposition: simply take B = {V}, a single bag containing all
nodes, and T = ∅. Tree decompositions of use for recursive computation, however, need to achieve small bag
size. The width w∞ of a tree decomposition (B, T) is the size of a largest bag, reduced by 1,

w∞(B, T) = max{|B| : B ∈ B} − 1 . (1)

The tree-width of a graph G is the minimum of width over all tree decompositions of G. If G itself is a tree, G
has a tree decomposition with a bag B = {v,w} for each edge {v,w} ∈ E. Thus a tree has tree-width 1.

2.2. Elimination order
Finding a tree decomposition of low width for a given graph is a hard problem in itself. Stochastic search
methods like annealing and genetic algorithms are useful for this task. The application of these methods is
made easier by encoding the search space [31] rather than operating on the tree decompositions themselves.
Elimination order is one such encoding of tree decomposition, with the theory well explored [26]. For the
purpose of optimization, the encoding by eliminiation orders has the benefit of restricting the search space. For
a graph of n nodes, there are infinitely many tree decompositions but only n! elimination orderings including
the optimal ones.

Let us define the operation of elimination Λ. For graph G = (V, E) and node v ∈ V, elimination of v
from G generates a graph Λ(G, v) by (i) adding all missing edges between neighbours of v, thus turning the
neighbourhood of v into a clique and (ii) removing v and all its incident edges.

Now let π = π1,π2, . . . ,πn be an ordering (permutation) of the nodes of the graph G = (V, E) with n =

|V| nodes. For each v ∈ V, there is exactly one index i ∈ n� with πi = v. The graph sequence of G under
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Figure 1. (a) Karate club network [30] to illustrate (b) elimination order and the tree decomposition generated, and (c) Initial
steps of merging and removal in the computation of maximum cut size. In (b), nodes are eliminated in the order (17, 5, 6, 7, 11, 1)
considering only the subgraph spanned by these six nodes [upper right part of panel (a)]. Thick node outline and thick edges
indicate part of the network removed in each step. Note that elimination of node 5 generates and extra edge {7, 11} due to clique
completion.

elimination order π is G(0), G(1), G(2), . . . , G(n) generated from initial element G(0) = G by recursion G(i) =

Λ(G(i−1),πi) for i ∈ {1, 2, . . . , n}. G(n) is the empty graph.
An elimination orderπ for a graph G = (V, E) gives rise to a tree decomposition (B, T) of G in the following

way: the set of bags is B = {Bi : i ∈ {1, . . . , n}}. Now for each i, bag Bi contains πi and its neighbours in G(i).
Note that πi may have neighbours in G(i) it does not have in G itself. For indices i < j, the tree has an edge
{i, j} ∈ T if and only if j = min{k > i : πk ∈ Bi}. This means that, for each i �= n, bag Bi is connected to exactly
one bag with higher index, being the bag of the earliest (w.r.t. π) neighbour. Figure 1(b) illustrates elimination
and generation of a tree decomposition from elimination order for a subgraph of the Karate club network
(figure 1(a)).

Some model networks grow incrementally by attaching a new node to an existing clique of given size m
[32–34]. In this case considering the nodes in reverse order of addition yields a perfect elimination order whose
application does not involve edge addition. In each elimination step, the neighbourhood of the eliminated ver-
tex is a clique already by construction. Graphs with a perfect elimination order are chordal, exhibiting further
useful features [35].

2.3. Simulated annealing
We use a standard setting for simulated annealing [29] as a Metropolis Markov chain [36] with a slow decrease
of temperature. We initialize the elimination orderπ with a permutation drawn from the uniform distribution
of permutations on the node set. In order to generate a proposal π′ from π, select an index i ∈ {1, . . . , n − 1}
uniformly at random and swap elements at positions i and i + 1:

π′
j =

⎧⎪⎪⎨
⎪⎪⎩

πi+1 if j = i

πi if j = i + 1

πj otherwise

(2)

The proposal is accepted with probability

min {exp[β(t)(r(π) − r(π′))], 1} (3)
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where the cost function r assigns each elimination order a real number, see section.
The inverse temperature β depends on time t as β(t) = ct with cooling speed c as parameter. Time is

measured in sweeps, so the clock advances by Δt = 1/(n − 1) in every step of proposal and acceptance.

2.4. Cost functions
A large part of work on tree decompositions focuses on minimization of tree width [26], which translates to
stochastic optimization with a cost function w∞(π) on elimination order π. We know of the following two
problems that motivate the use of cost functions different from w∞(π).

(a) As a maximum over all bags, w∞(π) only varies at moves that involve the largest bags of the tree decompo-
sition. This renders the cost of a solution equal to that of most of its neighbouring solutions, thus lacking
local gradient information in the search space.

(b) While the time needed for a computational task on a network has an upper bound in terms of tree width,
the time actually depends on all bag sizes s1, s2, . . . sn of the tree decomposition, typically as

∑n
i=1 2si for

spin systems.

Clautiaux et al [37] propose a solution to problem 1 above in terms of a modified cost function

m(π) = w∞(π) + n−2
n∑

i=1

s2
i . (4)

The additional sum accounts for the sizes of all bags while the dominating term remains w∞.
We introduce the cost function

wη(π) = logη[n−1
n∑

i=1

ηsi−1] . (5)

with a parameter η > 1. This is motivated by both items 1 and 2 above. For spin systems with computation
time proportional to 2si for bag i, the parameter value η = 2 is to be chosen. Note that wη has the tree-width
w∞ as a limit η →∞ if there is a unique maximum bag size.

2.5. Solving maximum cut using an elimination order
Given a network G = (V, E), the maximum cut problem asks to find the largest bipartite subgraph of G. In other
words, we are looking for a partition of the node set V into disjoint subsets V1 and V2 to maximize the number
of edges running between V1 and V2. Assigning set membership in V1 or V2 is equivalent to choosing a spin
valueσv ∈ {−1/2,+1/2} for each node v ∈ V. Then a solution of the max-cut problem is a spin configuration
(σv)v ∈ V that maximizes the number of edges between nodes with unequal spins,

H(σ) =
∑

{v,w} ∈ E

|σv − σw| . (6)

This amounts to finding the ground state of the spin glass with Hamiltonian H where each edge is an antiferro-
magnetic bond of unit weight. Equivalently we look for a maximum energy state of the Ising (all ferromagnetic)
model on the same network. The maximum cut problem is NP-hard [7]. Therefore we do not know a general
solver working in time polynomial in the size of the network.

For computing an exact solution, we first decompose the problem on the whole network into those on
small feasible subproblems, namely one subproblem for each edge. For illustration, the leftmost boxes in
figure 1(c) show the solutions on the subproblems for edge {6, 17} and for edge {7, 17} in the Karate club
network. Solutions depend on spin values σ. A single edge {v,w} contributes one unit (m = 1) to the max-
imum cut if σv �= σw, otherwise it does not contribute (m = 0). The solution on the whole network is con-
structed by merging solutions of subproblems. In figure 1(c), the result of one merge step is the solution of the
subnetwork formed by edges {6, 17} and {7, 17}. It is now the only subproblem containing node 17, so sub-
sequent merge operations will not depend on this node. By maximizing m over σ17 =↑ and σ17 =↓, the
dependence on node 17 can be removed. This reduces the size of the partial solution from 8 to 4 rows, see
figure 1(c). In general, merging subproblems and removal of node dependence according to an elimination
order of width w∞ ensures that partial solution sizes stay bounded by 2w∞ .

Let us now describe the method more formally, using an elimination order π. During each phase of the
computation, F contains a set of functions storing partial results on cut sizes. Each function f ∈ F is based
on a subset Vf of the node set. The domain of the function is the set {−1/2,+1/2}Vf of all spin configurations
on Vf. Each such spin configuration is assigned the maximum cut size possible.

Initially, F contains one function f for each edge {v,w} ∈ E of the network. There are 2 × 2 = 4 spin
configurations on the nodes v and w. If σv �= σw, then f(σv ,σw) = 1; otherwise f(σv ,σw) = 0. Now the
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Table 1. Networks considered and results obtained. Next to network name and reference, columns w2

and w∞ give the lowest values found by simulated annealing. For each network, minima of w2 and w∞
are taken from 106 sweeps of 80 independent runs, 10 runs for each of cooling speed value
c ∈ {10−5, 3 × 10−4, 10−4, . . . , 3 × 10−2}. The rightmost column is the exact number b of edges in a
maximum cut (edge-maximal bipartite subgraph) on the network. Networks have |V| nodes and |E|
edges.

Network Reference w2 w∞ |V| |E| b

Karate club [30] 3.0572 5 34 78 61
Social 3 [38] 5.3208 7 32 80 61
Protein 2 [38] 3.7212 6 53 123 92
Social 1 [38] 6.2729 10 67 142 111
Dolphins [39] 6.4244 10 62 159 122
S 208 [40] 3.6738 6 122 189 168
E. Coli, transc. [41] 4.3316 7 97 212 163
Protein 1 [38] 3.5963 5 95 213 160
Les Miserables [42] 5.6124 9 77 254 169
College football [43] 30.5677 34 115 316
S 420 [40] 4.6018 9 252 399 354
Political books [44] 9.4579 13 105 441 309
David Copperfield [45] 23.8955 28 112 425 330
S 838 [40] 5.2136 9 512 819 724
Network science [45] 3.3472 8 379 914 636

computation proceeds in a loop, running loop index i from 1 to n = |V| and using the given elimination
order π = (π1,π2, . . . ,πn). In each round of the loop

(a) Find all functions f ∈ F with πi ∈ Vf and replace them by the merged function f ′. See below for details
of merging.

(b) Remove node πi from the function f ′ generated at step 1. See below for details of node removal.

Note that merging in step 1 and removal in step 2 do not commute. Before removing a node r, all functions
containing r need to be merged into a single one.

2.5.1. Merging functions
Two functions f , g ∈ F are merged into function h having the joint node set Vh = Vf ∪ Vg. For each spin
configuration σ = (σv)v ∈ Vh

,
h(σ) = f (σ) + g(σ) . (7)

This describes the merging of two functions. For merging more than two functions, as happens in general at
step 1 above, merging is applied several times. The operation is commutative, i.e. the result does not depend
on the order of merging.

2.5.2. Removing nodes from functions
For a function f ∈ F and node r ∈ Vf, the removal of r from f generates a function f↓r with Vf ↓r = Vf \{r}.
For each spin configuration σ = (σv)v ∈ V

f ↓r
, we have

f ↓r(σ) = max{f (σ,σr = −1/2), f (σ,σr = +1/2)} . (8)

Independence from the variable σr is thus obtained by taking the maximum of the edge count with respect to
the two spin orientations at node r.

2.6. Network data
We use the set of networks compiled by Radicchi and Castellano [22] restricting it to those 15 with less than
1000 edges. See table 1. These networks are frequently employed as examples and test cases in complex systems
research.

3. Results

As a first step in exploring elimination orders by simulated annealing, we compare the effects of the choice
of cost function, see also section 2.4. Figure 2 is a scatter plot of minimal w2 values obtained in simulated
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Figure 2. Results of simulated annealing on networks college football in panel (a), and network science in panel
(b). Each plotted data point is the lowest value of the weighted width w2 encountered during a run of t = 106 sweeps. For each
choice of cooling speed c, there are 10 independent runs under cost function w2(π) (symbol + ) and another 10 runs using cost
function m (symbol −) in the acceptance step. For both cost functions, the cooling speed takes values c ∈ {10−5, 3 × 10−4, 10−4,
. . . , 3 × 10−2}. Symbols − are shifted to the right for better visibility. Horizontal dashed lines indicate the minimum of w2 over all
runs, being 30.5677 for college football and 3.3472 for network science. Cost functions are defined in section 2.4.

annealing runs. Better performance is obtained with optimization under cost function w2 as compared to cost
function m. The following optimization runs on all networks in the data set are thus performed with cost
function w2 only.

Table 1 is the overview of results for all 15 networks considered. We find tree decompositions with w2 < 10
and w∞ � 13, except for the networks College football with w2 ≈ 30.6 and David Copperfield (w2 ≈ 23.9).

The tree decompositions obtained by optimization enable us to calculate the exact maximum cut size
for all but one of the networks. For the network College football with the tree decomposition of
width 34, the computation runs out of memory on the machine currently used. The fraction of edges b/|E|
contained in a maximum cut is between 0.75 and 0.80 for most of the networks. Exceptions are the elec-
tronic circuits S 208, S 420, and S 838 with b/|E| ≈ 0.888, confirming these networks to be close to bipartite
[40].

4. Discussion

Originating in computer science and discrete mathematics, the concept of tree decompositions helps to
exploit sparseness and tree-like structure in the analysis of network systems. The purpose of this contribu-
tion is an exposition of tree decompositions from the perspective of complex systems in physics. There are
three results. (i) A simple method for finding tree decompositions by simulated annealing, tested on real
networks; (ii) The resulting tree decompositions, encoded as node elimination orders, see the supplement
(https://stacks.iop.org/JPCOMPLEX/03/035003/mmedia) [46]; and (iii) an example of an exact computation
(maximum cut) made feasible by the use of tree decompositions.

Resulting from simulated annealing, the best tree decompositions we found are not necessarily optimal
ones yet. In fact, the annealing method may be improved to become more suitable for the particular search
space, e.g. with an adaptive cooling schedule [47]. Sometimes pictured as simulated annealing with ongoing
restart, parallel tempering [48] may lead to better tree decompositions. Another ingredient for the method
is to also compute a lower bound on tree-width [27]. Then the search for a good tree decomposition can be
stopped once we are sufficiently close to the lower bound.

Tree decompositions enable us to efficiently analyze results for networks with respect to processes running
on them. The method for the maximum-cut size and maximum Ising energy presented here is the basis for
obtaining the exact partition function and complete density of states for Ising and Potts models [49]. For
models of epidemic spreading and percolation [50], tree decompositions support the computation of cluster
size distributions and epidemic thresholds as well [51, 52].
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