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SUBCHAPTER 10.1

Driving Simulators
Alfonso Brazález1, Luis Matey1, Borja Núñez1 and Ana Paúl2
1Ceit-IK4, San Sebastián, Spain
2CTAG - Centro Tecnológico de Automoción de Galicia, Porriño, Spain

10.1.1 INTRODUCTION

The continuous improvement of hardware performance is a well-known

fact that is allowing the development of more complex driving simulators.

The immersion in the simulation scene is increased by high fidelity feedback

to the driver. A high quality visual system in terms of, high image refresh

rate, realistic environment, and good 3D modeling increases the immersion

in the simulation session. The behavior given by the mathematical models

affects the scope of the simulation and the fidelity of the simulation itself.

In this framework, the application of new methods and the need to pro-

vide more realism have generated new requirements for simulator perfor-

mances. The immersive character in the simulators is obtained by the

stimulation of the sensorial organs of the driver, so sensations experienced

by the human being are most similar to those that the simulator user feels

driving the actual vehicle. Various senses are stimulated in the simulator: the

visual sense, the hearing sense, the tactile sense and the vestibular system.

The motion system usually consists of a six degrees of freedom (dof) motion

platform that reproduces the sensations of linear accelerations and angular

velocities that the driver feels in the actual vehicle (Liu, 1983). There are

simulators with more complex motion systems, even without motion sys-

tems, or with simpler motion platforms of three degrees of freedom.

Some simulators provide haptic feedback to establish the interactions

between the driver and some controls of the vehicle in driving simulators.

Steering wheel torque feedback, configurable joysticks, and the actuators

in the accelerator, clutch, and brake pedals enhance the degree of realism

in the simulation and they allow the driver to feel realistic forces and tor-

ques on his arms and legs.

Through increasing the immersion in the simulation, driving simulators

will get a bigger transfer rate of results from the virtual environment to real

life in several fields. Automotive simulators are an important research tool in

design, development, and validation stages. Naturalistic driver studies can

achieve certain objectives, but experiments are a more appropriate approach

to test hypotheses (Gelau et al., 2004). Some information such as subjective,

physiological, or other performance data are not collected in naturalistic
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studies. Although the real road and FOTs (Field Operational Tests) give

more realistic surroundings, simulators are necessary in order to reduce

experimental costs and risks. On real roads, experiments suffer extra noise

(Carsten and Brookhuis, 2005), while in a simulator with a fully controlled

scene it is possible to produce the exact desired situation. Thus, getting a

realistic environment is the key requirement of automotive simulators.

Apart from the investigation field, the main application of automotive

simulators is training purposes. They can be used to instruct both novice

and experienced drivers. According to the GADGET project, driving

training is divided into four levels: maneuvers, traffic situations, context

goals, and skills (Peräaho et al., 2003). In practice, however, it was con-

cluded that most simulators only covered the first two levels, whereas the

other two levels typically are omitted from the driver training because of

the limitation of simulators (Lang et al., 2007). Increasing the configur-

ability of the HMI enables new possibilities in training simulators espe-

cially in these two highest levels.

Focusing on the field of research, automotive simulators provide a

wide range of possibilities in different disciplines (Slob, 2008). On the

one hand, it is possible to analyze and investigate human factors (driver

behavior and HMI); on the other hand, it is possible to use them to

design and validate environmental issues, like tunnels, positioning road

signs, or road planning. Finally, simulators are useful tools to develop,

validate, and evaluate technical and technological innovations.

Simulators present two main benefits on R&D performance

(Thomke, 1998). First, their use reduces costs and time, facilitating design

iterations; second, they help to achieve a more effective learning in the

R&D process, because they can increase the depth and the quality of the

experimental analysis. From the point of view of experiments, a simulator

adds other advantages: it is possible to reproduce hazard situations without

any risk for the driver and a simulator enables to keep all the vehicle and

environment parameters under control.

In the automotive area, the approach to technical innovations is very

wide; it covers different tasks, such as the integration of new subsystems

and applications, communication related issues, or ADAS/IVIS develop-

ment and testing. Simulator capabilities have a special importance in all the

cases. The more configurable a simulator is, the faster and easier will be

the creation of new scenarios and their implementation for experiments.

Alongside the technical success, new systems implementations must

reflect the study of human factors to guarantee their safety and usability.

In this field, there is no standard and general methodology to measure the
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validity of a certain simulator (Eskandarian et al., 2008); this concept is

strongly linked to the task to be performed. While the motion platform

and a high resolution of the visuals can help to enhance the realism

(Kaptein et al., 1996), the main conclusion is that the validity must be

evaluated depending on the driving task being studied.

Although a normalized classification does not exist yet, there are different

perspectives to categorize the existing simulator types: depending on whether

they have motion or not; determined by the type of vehicle (car, bus, or

truck); depending on the visual type; or subject to the simulation scope.

10.1.2 ARCHITECTURE OF DRIVING SIMULATORS

There are many configurations and scopes of use of driving simulators,

but usually the main subsystems are: visual system, simulator control sta-

tion, mathematical models, vehicle cabin, audio system and the motion

system if the simulator provides motion feedback. Moreover, when the

simulator is coordinated, it can be used as a host system for real-time

coordination of every subsystem (Fig. 10.1.1).

The Simulator Control Station is the simulator interface. From this

station different exercises can be selected. Usually, it provides an edition

mode for the creation of new exercises; based on the configurability

Figure 10.1.1 Driving simulator global architecture.

398 Intelligent Vehicles



of the simulator modules, it can change vehicle parameters or weather

conditions and set new incidences. In the Control Station, the simulated

sessions can be stored for further evaluation and analysis.

The visual system provides visual feedback to the driver. Nowadays, it

is possible to simulate different lighting conditions, weather conditions,

and moving elements in the scene with a high degree of fidelity. From

the hardware point of view, visualization systems are more efficient with a

high resolution and visualization performance. It is common to have a

360 degrees of field of view. It is important to have a rear view though

the rear mirrors and for front view, it is necessary for at least 180 degrees,

covering the side views. The gaming sector has improved the develop-

ment of dedicated hardware for real-time image rendering, with relatively

low cost systems. Moreover, from the software point of view it is possible

to program directly in the Graphic Processing Unit (GPU) of the image

system. It allows for a better performance for image rendering in real

time reducing the traffic data on the network.

Scene elements are critical for having a better feeling of immersion.

The surrounding traffic provides additional elements for interaction. Many

incidences can be simulated from other vehicles: a vehicle stopped in the

shoulder, a vehicle at low speed, a vehicle passing through a red light, etc.

A realistic microscopic traffic simulation increases the driving simulator

capabilities. Also the pedestrian simulation leads to higher capabilities of

the simulator, because it allows for the interaction with other elements of

the scene. Various incidences related to pedestrians can be simulated, for

example people crossing streets or passengers in a bus simulator.

The mathematical models are a key module for the performance of

the simulator. It affects the simulation scope. Depending on the needs of

the simulator, a high accuracy mathematical model could be required.

Moreover, if the simulator should be used for the validation of new sub-

systems, where some hardware must be integrated as Hardware In the

Loop (HIL), a well-defined interface should be provided as it was simu-

lated. Complete vehicle models should reproduce the effect of the tires

with a detailed mathematical model of the contact between road and tire,

using different approaches of the Pacejka Magic Formula. For the vehicle

dynamics, a multibody simulation must be performed, including the effect

of the suspension with its geometry, parameters, and nonlinearities. The

complete powertrain should be modeled; engine and transmission ele-

ments need to be simulated and any other system, such as e.g., ASR.

Additional subsystems such as ABS or ESP can be simulated for a high

fidelity simulator.
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Not all driving simulators are equipped with a motion system. This

tries to provide some motion feedback to the driver. The strategy of this

system is to translate vehicle linear accelerations and angular velocities

into driver moving sensations. Typically washout filter algorithms inher-

ited from flight simulators were used, but there are some limitations due

to large longitudinal and lateral accelerations in the case of road vehicles.

It is necessary to develop appropriated algorithms in order to ensure the

driver feels realistic motion feedback (Ares et al., 2001), and some addi-

tional degrees of freedom have been added to typical 6 dof motion plat-

forms. Many driving simulators mount the 6 dof motion platform over a

large excursion translation system in lateral and longitudinal. Additionally

the motion platform can be rotated along his the vertical axis, reaching a

9 dof motion system.

It is important to have a real cabin, or at least real controls, for a better

immersion of the driver in the simulation scene. This could avoid the ini-

tial gap of the driver for trusting in the simulator. A period of adaptation

for the driver with several driving sessions is always needed, prior to

obtaining any valid results of the simulation. A real vehicle, with a com-

plete vehicle control set reduces the training sessions required for the adap-

tation. Once the driver feels he or she is actually driving, the results of the

simulator can be transferred to real situations. In the cabin real vehicle

communications can be installed for the integration of different subsystems.

Usually CAN networks must be used for the connection of different ECUs

or the integration of the instrument cluster or any other interface.

The audio system is not a minor feedback for the driver. If this system

is switched off, the situation is like a deaf person is driving. Many inputs

are received from hearing the engine, and sometimes the perception of

gear changing is performed from the engine sound. Additionally, some

malfunctions are identified from the specific sound that it generates.

10.1.3 APPLICATIONS

The use of driving simulators has evolved from the first applications related

to driver training or analysis of the effect of different substances such as alco-

hol or drugs, to more complex research studies focused on human factors

and driver behavior during primary and secondary driving tasks. Nowadays,

driving simulators are used not only in research studies, but also in the differ-

ent stages of the design, development, and validation of in-vehicle systems,

as well as in the design of infrastructure elements (Paul et al., 2009).
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Regarding human factors, the studies in the driving simulators have

allowed examination of the human�machine interface (HMI), i.e.,

the communication between the user and the vehicle or its technolo-

gies covering the following aspects:

• Workload analysis.

• Usability.

• Distraction due to secondary tasks.

• Reaction times (e.g., to avoid a collision when offering a warning).

• The effects of driver information on driving performance.

• The location of HMI elements on the dashboard.

• Selection of communication channel (acoustic, visual, haptic).

The evaluation of In-Vehicle Systems (IVIS) and Advanced Driver

Assistance Systems (ADAS) have been broadly applied in several research

and development projects, showing that driving simulator studies are,

together with tests on test tracks and tests in real life, valid tools (Engen

et al., 2009). In fact, dynamic driving simulators play an important role in

the initial phases of development, since driver behavior and driving per-

formance (lateral control, longitudinal control, interaction with other

vehicles, etc.) provide early valuable results in a virtual environment.

Several European Projects have introduced experimentation with driv-

ing simulators to analyze new in-vehicle functionalities. For example, in

the AIDE project, funded by the Sixth Framework Programme, the effect

of the combination of warnings coming from different ADAS functions

were tested (Paul et al., 2008). Thus, four ADAS were selected for this

study, Frontal Collision Warning (FCW), Lane Departure Warning

(LDW), Curve Speed Warning (CSW), and Blind Spot Detection (BSD),

in order to analyze user reaction and possible conflicts when simultaneous

ADAS warnings were presented (Fig. 10.1.2).

Figure 10.1.2 Example of warnings provided by different ADAS functionalities.
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In this study the warning conditions were manipulated to create dif-

ferent levels of theoretical mental workload. Two strategies were consid-

ered (independent variable) in a conflict situation: simultaneous activation

of warning signals for the driver and prioritization of warnings. Such

critical situations can only be reproduced in high performance driving

simulators, with the required levels of safety and repeatability.

Another example of the application of driving simulators to the design

of new ADAS is the INTERACTIVE Project (2013), launched under

the Seventh Framework Programme, where information, warning, and

intervention strategies were developed, according to aspects such as: layer

of driving task, level of assistance and automation, situation awareness,

mental workload, sequence of interaction, etc. (Fig. 10.1.3).

Figure 10.1.3 Selection of ADAS validated in driving simulator (INTERACTIVE Project).
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Apart from the evaluation of the HMI and warning strategies con-

ducted in driving simulators, the vehicle HIL simulations have proven an

added value in several phases of the development process of ADAS, such

as sensor verification, rapid control prototyping, model validation,

functional level validation, fine-tuning of control algorithms, production

sign-off tests, and preparation of test drives (Gietelink et al., 2006). This is

possible thanks to the representative environment obtained, where test

scenarios can be varied very easily in accurate and reproducible conditions.

Moreover, in the development of ADAS, different driving simulation

platforms may be used with the combination of HIL and driver-in-the-

loop (DIL), in order to create special testing scenarios that include high

speed traffic flow, low-frictional load, etc., with high controllability and

repeatability (Jianqiang et al., 2010). This allows to speed up the develop-

ment process and to reduce the associated development costs.

Finally, HIL simulation can be used to support the development, test-

ing, and verification of many functions and algorithms related to autono-

mous driving, by extending conventional HIL simulation to vehicle

interaction with other vehicles in traffic and with a simulated surrounding

environment sensed by simulated sensors. (Deng et al., 2008).

In this sense, there is no doubt that driving simulation is an essential and

powerful tool in the design, development, and validation of current and

future in-vehicle technologies, especially in the field of connected and auto-

mated road transport, where new challenges regarding user behavior, vehicle

operation, complex scenarios, and innovative interaction capabilities are rap-

idly arising.
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10.2.1 WHAT IS TRAFFIC SIMULATION
AND WHY IS IT NEEDED

Traffic simulation has been a very active field in Intelligent Transportation

Systems since the 1980s. But what are we talking about when we say traf-

fic simulation? It has two parts, traffic and simulation.

Traffic, in this context is a collective word referring to a collection of

transportation means operating simultaneously in a defined bounded geo-

graphical area. That may be a city, a metropolis, a number of intercon-

nected cities, a region, etc. In that geographical circunscription we have a

number of possible mobility options. In the context of this book, we are

primarily talking about terrestrial transportation means.
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Also, each application may restrict the range of transportation means

or modes. For example it may be considered composed of only cars, or

of all kinds of private vehicles, even man-powered like bicycles, or it can

also be expanded to pedestrians, cablecars, etc. The multimodality level of

a particular traffic simulation heavily depends on the application.

Obviously, the more modes that are included in a particular traffic

simulation, the more complex it may be in terms both of mathematical

model definition and algorithmic implementation.

The other part of it is the word simulation. A simulation is the recrea-

tion of a real-world phenomenon through the instantiation of a previ-

ously defined model of it. In other words, we create a mathematical

model abstracting a natural phenomenon, then we carefully initialize all

the variables involved, and we “run it” with the purpose of getting a rea-

sonably accurate idea of evolution, generally across time, of that phenom-

enon, paying attention to some aspect of it, like maybe occupation,

density, traffic volume, average speed, or many others.

Each simulation tries to answer the question “What would happen if”

in the real world. That is very important and useful for many reasons. For

example, thanks to the power of modern computers, it allows the evalua-

tion of a number of alternatives and their outputs, before risking the

implementation of any of them in the real world. Also, it may permit

not just numerous setups, but also extreme case ones. For example, a

researcher may simulate an emergency response in case of a dramatic

event, that hopefully will never happen in real world.

Having said all of that, before simulations, we need models and that is

the hardest part of it. There has to be a previous model definition,

including all the necessary elements and concepts. That model may have

probably passed through some validation process where it needs to be

evidenciated that it is accurate enough for its planned application.

That famous George Box quote says: “All models are wrong, but

some are useful.” A model is a formal representation of a natural phenom-

enon. In principle, every phenomenon will always be too complex to be

completely accurately represented. In other words, as soon as we create

a representation, we are stepping down from absolute accuracy.

Furthermore, we do not want absolute accuracy. There will always be a

balance between accuracy and performance. Sometimes a model needs to

be primarily fast, because it will be used in real-time applications. Some

other times it may be very slow, even meant to be run only once, as

much as it is very accurate.
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All of that can be quickly extended to traffic. Any vehicular traffic sit-

uation is such a complex and random process, especially because of the

human intervention in most of them. We definitely need to equip our-

selves with models to describe and analyze that process and also to make

future forecasts.

If we look at how traffic modeling and simulation has evolved through

history, in the very first stages it was about creating mathematical models,

generally coming from physics and fluids dynamics, but after a few years,

especially after the exponential growth of computing power, more ambi-

tious and detailed simulation paradigms were explored.

That physics-based approach is the so-called macroscopic traffic

modeling. Traffic was understood as a continuum. That kind of

model was quite efficient for several tasks and applications, but very

soon a wildly different approach was presented, where vehicles were

modeled individually with more or less the same level of detail, and

more importantly, the interaction between them was also modeled.

That discrete way of modeling traffic was called microscopic traffic

modeling.

Even from the 1960s the very first traffic simulators where designed

following one of the two philosophical approaches to traffic modeling. At

some point, some hybrid models where developed incorporating the

strengths and leaving out the weaknesses of both of them. That was when

Mesoscopic models were defined and applied.

Back in 1956, one can find in Wilkinson (1956) one of the first publi-

cations that could be considered to be on traffic simulation modeling,

where trunk traffic was modeled as a random Gaussian process, mainly

described by mean and variance, assuming some level of noise.

We have to wait until the 1960s to see the first works on computer-

aided simulations of traffic, although these were still rudimentary. For

example, we have Stark (1962), where a custom made very simplistic

vehicle simulation of nine blocks was published. It is interesting to note

that at that time the simulation visualization was done by taking pictures

of an oscilloscope screen every quarter of a second.

Another interesting work is Shumate and Dirksen (1965) where a pro-

gramming language is presented (SIMCAR), basically for designing high-

ways and simulating vehicles and even different driving styles, again it is

rudimentary and with very little scalability.

Within microscopic traffic simulation we have the so-called car-fol-

lowing models. In May and Harmut (1967) some car-following models
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are evaluated and compared. Car following models could be referred to as

the ancestors of modern microsimulation, where the front to bumper dis-

tance is modeled, showing quite realistic effects like stop and go waves.

Later, in the 1970s, we got the first simulation frameworks like

FREFLO (Payne, 1979; Mikhalkin, 1972) where freeway traffic is modeled

mathematically in terms of variables like density, space-mean-speed, and

flow rate. Another example of macroscopic simulation was SATURN-a

(Hall and Willumsen, 1980), which has a relative that is still around.

Also in the 1970s, the first microscopic simulation frameworks such

as TEXAS (Rioux and Lee, 1977) showed up. Traffic simulation was

prevented from simulated bit zones because of the cost of the comput-

ing power they had. They are very slow in comparison to microscopic

simulators.

It was in the 1980s and especially in the 1990s when there was a real

revolution regarding traffic simulators, mainly because of the exponential

reduction of computing hardware costs, making powerful computers

more and more affordable. Also parallel computing advances and IBM’s

PC standardization helped a lot to a make computing more and more

available for increasingly more complex traffic simulation frameworks.

Talking about the present, there are a few live challenges for traffic

simulation these days. The first one is multimodality. Every traffic simula-

tion framework needs to support multimodality, which is incorporating a

wide palette of transportation means models, including pedestrians,

bicycles, electric vehicles, and more. That is very important because

mobility is gradually tending to become more and more diverse regarding

transportation means, at least these days when some paradigm shift revo-

lutions are in place, like transportation electrification or driverless auto-

mation. Depending on the application, every different transportation

means may need to be modeled. An electric car has a quite different

dynamic behavior than a gas powered one.

Another important challenge is about real-time managing of traffic.

A usual demand from traffic managers is real-time monitoring of the cur-

rent state of traffic. To do so, we need simulators to be computationally

efficient and scalable and a part of the scientific community is devoted to

that goal.

Optimization is a very important topic. With traffic being so complex,

it can be hardly managed with analytical tools. Instead, it usually needs

nondeterministic optimization techniques, i.e., Genetic Algorithms

(Sanchez-Medina, 2008; Sanchez-Medina, 2010).

407Simulation Tools



Finally, it is worthy mentioning two of the most exciting things that

have happened regarding traffic simulation and modeling in recent years.

The first one is the influence Open Data is having on the development of

this area. In the last years more and more local governments in the World

have decided to put their data in open access. This is extremely interest-

ing, because it allows researchers all around the globe to access and use

even real-time traffic data feeds for their research, scaling the number of

publications and discoveries.

The second very exciting event is the open simulation shift that has

been led by SUMO (Krajzewicz, 2002). In Section 10.2.4 we will talk

longer about it, but it is worth advancing that this is truly game-changing

in a so far quite closed traffic simulation framework business. The SUMO

developers’ community is a marvelous example of what are the benefits

of free software: constant updates, collaboratively developed plugins, and

open developers and practitioners fora.

10.2.2 CLASSIC TRAFFIC SIMULATION PARADIGMS

10.2.2.1 Macroscopic Simulation
Macroscopic simulation is the branch of traffic simulation that relies on

the so-called macroscopic models. The “Macro” part in it tries to express

that this kind of model views traffic from a distance, considering it as a

continuum or fluid. Therefore, the objective of this kind of simulation is

the spatiotemporal representation of mainly three real variables: volume

q(x,t), speed u(x,t), and density k(x,t). Volume is regarding the number of

vehicles passing through a specific point in space. Speed has to do with

the space traversed by a particular vehicle in a fixed period of time.

Finally, density has to do with the number of vehicles occupying a fixed

area (a lane, a multiple lane street, etc.). Formally speaking, the basic for-

mula in macroscopic modeling announced by Gerlough and Matthew

(1975) is the conservation or continuity equation:

@q

@x
1

@k

@t
5 0 (10.2.1)

This kind of formulation is inherited from hydrodynamics. It basically

means that, if there are no inputs or outputs, the number of vehicles must

remain the same across the pipe (highway, street, etc.).

That very simple equation is considering an equilibrium situation

without effects like congestion formation, stop and go waves, etc.
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Therefore, it was modified by Payne (1979) in the early 1970s, resulting

in the following:
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In a summarized fashion, u represents the speed�density relationship

that can be as announced by May and Harmut (1967) as follows:

u5 ut 12
k

kjam

� �α� �β
(10.2.3)

In Eq. (10.2.2) it is intended to reflex two very important elements on

the nonequilibrium traffic flow effect, namely acceleration and inertia. The

right side of Eq. (10.2.2) has two parts. The first one reflects the action of

the driver adjusting speed aiming at the equilibrium speed. In that part, T

is the so-called relaxation time, and ν means the anticipation parameter.

The second half of the right-hand side of Eq. (10.2.2) reflects how

drivers’ reactions affect downstream traffic conditions.

According to Barceló (2010), Payne’s model seems to present accuracy

problems particularly in dense traffic in on-ramps or lane drops.

Microscopic models and microsimulators were the first in the field and

consequently, some of the more venerable traffic simulation frameworks are

based on macroscopic models, at least in origin. For example, FREFLO

(Payne, 1979; Mikhalkin, 1972) and SATURN-a (Hall and Willumsen,

1980) were some of the first microsimulators back in the 1970s, mainly for

highway traffic simulation. SATURN is still around these days.

Some other macroscopic traffic simulation frameworks are TRANSYT-7F

(Wallace, 1998) or METANET (Spiliopoulou, 2015).

Nowadays, macroscopic simulation is itself is becoming less and less

common for a simple reason: microscopic simulation is more accurate

and even when in general it is much heavier in terms of computing

power, it is also true that computing power is becoming more and more

available at reasonable costs.

However, for some applications, or in combination with other micro-

scopic models (mesoscopic simulation), they are still in use and one can

find relevant and interesting literature on them. For example, a new gen-

eration of macroscopic simulators are based on a new paradigm. They are

the gas-kinetic (GKT) traffic flow models, for example, the one used by

Delis (2015) for modeling traffic flow with adaptive cruise control.
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10.2.2.2 Microscopic Simulation
Microscopic simulation models (multiagents) simulate the movement of

individual vehicles based on vehicle traceability and on theories of change

of lane. Typically, vehicles enter the transport network using a distribution

probabilistic of arrivals (a stochastic process) and are followed during their

passage through the network in small time intervals (e.g., one second or a

fraction of a second). After entering each vehicle, each is normally

assigned a destination, a type of vehicle, and a type of driver. These mod-

els are effective in evaluating traffic congestion, complex geometric con-

figurations, or the impact of transport improvements that are beyond the

limitations of other types of tools. However, these models have a high

cost in time, money, and can be difficult to calibrate.

The definition and implementation of such simulators, involves

knowledge of different scientific and engineering fields:

• Microscopic Modeling of Traffic itself. This approach constitutes the basis

for traffic flow theory (e.g., Herman and Potts, 1900). As we will see

later, there exist many advanced available software, both open and

commercial, that are able to manage accurate and fast simulations of

large geographical areas.

• Computational Physics. Experience of the adoption of simple and very

fast models of physical processes, with lower simulation computing

requirements. While physics models manage particles, here we manage

people with a similar order of elements (e.g., regional and municipal-

ity microscopic simulation). To establish a compromise between model

interaction detail, simulation/interaction speed, and computational

requirements is mandatory.

• Microscopic Behavioral Modeling of Demand/Agent-Based Modeling. We

can find as many definitions of “agent” as researchers, some of them

are “a discrete entity with its own goals and behaviors, with capability

to adapt and modify its behavior” (Macal and North, 2005) or “any-

thing that can be viewed as perceiving its environment through sen-

sors and acting upon that environment through actuators” (Russell

and Norvig 2002). As we will discuss later, these models combine ele-

ments from game theory, complex systems, emergence, computational

sociology, multi-agent systems, and evolutionary programming.

Agent-based modeling uses simple rules that can result in different

sorts of complex behavior. The key point is the autonomously, emer-

gence, and complexity. Samples of these models are cellular automata
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models (Nagel and Schreckenberg, 1992) or the gravity model

(Wilson, 1971).

• Complex Adaptive Systems/Coevolutionary Algorithms. Traveling and

moving by means of any transport mode, from public transport, car,

or walking, involves fundamentally game-theoretic reasoning: indi-

vidual decisions are evaluated in specific interaction scenarios (e.g.,

congestion, innovative shared transport, activity grouping) resulting

from decision made by the collective rather than in isolation.

Different gaming strategies as Nash-equilibrium approaches, where

individual decision maximizes the gain of the other, and other such

as dominant strategies or mixed strategies have been deployed in

transport analysis have been developed in transport assignment from

the mid of the last century. As we mentioned before, metaheuristics

methods combined with equilibrium logic implements schedule

coevolutionary search schemes.

Some of the most well-known microsimulators are HUTSIM (Kosonen,

1999, 1996), VISSIM (Park et al., 2003), CORSIM (Owen, 2000), SESIM

(Flood, 2008), AIMSUN (AIMSUN, 2017), Transims (Rilett and Kyu-Ok,

2001), and Cube Dynasim (Citilabs, 2017). The MATSIM (Balmer, 2009)

are developed under the multiagent paradigm, which is of great relevance if

the emergence of traffic behavior under certain traffic demands is the subject

of research. SUMO (Krajzewicz, 2002, 2006) is an open source traffic simu-

lator which is based on the Gipps-model extension (Krauß, 1998) and,

more recently, also on the IDM model.

10.2.2.3 Mesoscopic Simulation
These models combine the properties of macroscopic and microscopic

models. As in microscopic models, the traffic unit is the individual vehi-

cle. Its movement, however, follows the simplification performed by the

macroscopic models, and is determined by the average speed of the route.

Dynamic speeds or volume ratios are not considered. Therefore, meso-

scopic models provide less fidelity than microscopic models, but are

superior to typical analysis techniques.

Some of the relevant meso-simulators are DYNAMIT-P-X (Ben-

Akiva, 2002), DYNASMART-P-X (Mahmassani and Jayakrishnan, 1991),

and MesoTS (Meng, 2012). In any case, most of the previously men-

tioned microscopic simulators provide hybrid (micro�meso) integrated

solutions.
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10.2.3 SOME (TRADITIONAL) SIMULATION FRAMEWORKS

10.2.3.1 CORSIM
Corridor Simulator (CORSIM) (Halati, 1997) is a microscopic simulation

framework developed by the Federal Highway Administration (FHWA)

in the United States. Therefore, it is a sort of standard simulation frame-

work for many research groups, especially in that country when they

have to deal with the administration. Historically CORSIM is the evolu-

tion of two older models: FRESIM (FREeway SIMulation) and

NETSIM (NETwork SIMulation). FRESIM (Halati, 1990) is a micro-

scopic simulator for highways traffic. NETSIM (Rathi and Santiago,

1990) does the same but for urban traffic.

FRESIM’s antecesor is INtegrated TRAffic Simulation (INTRAS)

(Wicks and Andrews, 1980), a microscopic traffic simulator from the

early 1980s.

They main characteristic of CORSIM is that it is fundamentally based

on Car-Following models, also known as time-continuous models.

Car-Following models are defined through differential equations to

describe the position and speed of every vehicle. The aim of this kind of

model is to approximate the bump to bump distance (sα) between two

consecutive cars like in Eq. 10.2.4:

sα 5 xα212 xα2 lalpha21 (10.2.4)

xα21 is the position of the vehicle in front (leader), xα the position of

the current vehicle, and lalpha21 the length of the leader vehicle.

CORSIM comes along with Traffic Software Integrated System

(TSIS), a MS Windows-based application that takes care of the visualiza-

tion layer of CORSIM. That is a very important addition because as both

a scientist and a manager, it is extremely useful to get a visual of what is

happening in a simulation to truly understand the possible effects of every

setup on real-world traffic. TSIS includes a rich set of useful tools from

the traffic network design and simulation to its analysis.

There are hundreds of works based on CORSIM in literature for

both freeway and urban traffic. A key element with CORSIM is its cal-

ibration. The CORSIM framework requires the calibration of a big

number of variables, before its exploitation at a particular case. There

are parameters regarding the drivers, the vehicles, the roads, etc.

Therefore, there are literarily hundreds of works on CORSIM calibra-

tion methods, using Artificial Intelligence techniques like in Cobos
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(2016), Statistical Techniques (Paz, 2015), Bayesian methods (Bayarri,

2004), and more.

Currently, CORSIM is being maintained by the University of

Florida’s McTrans Center. Here are some of the listed capabilities of

CORSIM in McTrans website:

• Public presentation and demonstration.

• Freeway and surface street interchanges.

• Signal timing and signal coordination.

• Diverging diamond interchanges (DDI).

• Land use traffic impact studies and access management studies.

• Emergency vehicles and signal preemption.

• Freeway weaving sections, lane adds, and lane drops.

• Bus stations, bus routes, carpools, and taxis.

• Ramp metering and High Occupancy Vehicles (HOV) lanes.

• High occupancy toll (HOT) lanes.

• Unsignalized intersections and signal warrants.

• Two-lane highways with passing and no-passing zones.

• Incident detection and management.

• Queuing studies involving turn pockets and queue blockage.

• Toll plazas and truck weigh stations.

• Origin-destination traffic flow patterns.

• Traffic assignment for surface streets.

• Statistical output postprocessing.

• Adaptive cruise control.

• Importing and exporting to TRANSYT-7FTM (Wallace, 1998)

(TRAffic Network StudY Tool, version 7 F), the descendant of

TRANSYT, developed by the Transport Research Laboratory in the

U.K. in 1969.

10.2.3.2 MATSIM
The conventional and widely extended trip-based model of travel demand

forecasting has been the reference model in urban mobility planning for

the last decades. Nevertheless, this model was conceived for evaluating

the impact of infrastructure investment options at the strategic planning

stage. In fact, this model is not able to deal with real day-to-day issues

such as time-dependent and spatial neighbourhood effects or collective

decisions.
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On the other hand, from a social and behavioral explanation of mobil-

ity, we have the following principles:

• The travel demand is conducted by the specific needs and wish of the

individual.

• Social relationships influence on displacements and mobility habits and

patterns.

• There exists some relevant constraints around travel: spatial, temporal,

collective, facilities, and transportation accessibility barriers, among

many others.

• While other models do not imply any kind of sequence or depen-

dence on travel, it is needed to reflect the sequencing of activities in

time and space.

The activity-based model (Rasouli, 2016; Castiglione, 2015) gives

response to these questions and adds to the classic four stages model ques-

tions (mode, route, location, and timing), the following decisions:

• Activity type choice: Which activity should I do?

• Activity chain choice: In which order should I do my activities?

• Activity starting time choice: When should I start the activity?

• Activity duration choice: How long should I do the activity?

• Group composition choice: Who should I take along in the activity?

Summarizing, this approach or model is aimed at identifying and pre-

dicting for how long and with whom an activity is conducted, addition-

ally to the classic parameters.

The “Multiagent transport simulation toolkit” (MATSim) simulation

(Horni, 2016), is based on the agent concept and adopts the just men-

tioned activity-based approach. Each traveler, here the concept of driver

is extended to any person traveling by any transport mode, of the target

population is modeled as an individual agent able to take independent

decisions.

The simulation consists of two sides mutually coupled:

• On the demand side, agents predefine a preliminary and independent

plan that specifies its intentions during the time period under analysis.

This plan is the output of an activity-based model that comprises

route choice among other stages as seen, depending on expected net-

work, public transport, or road, conditions.

• On the supply side, a mobility (including traffic flow) simulation or

real operation takes place, executing all the plans of the predefined

agents.
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A learning mechanism for the agents is implemented by the iterative

coupling of demand, defined as the agent generation and supply, obtained

by traffic flow simulation. Basically, it takes the candidate agent’s plan, evalu-

ates their performance and adopts the best options (including metaheuristics

methods, to evolve the set of solutions, avoiding local optimums).

The control flow or process of MATSim is composed by the following

iterative activities:

• Initial Demand. MATSim requires a synthetic population of agents,

each with individual transport-related attributes and daily activity

plans, being representative of the population. These parameters are

managed for each activity instance.

• Simulation. The traffic flow simulation runs the expected plans, emu-

lating the interactions between agents and transport system according

to its characteristics and constraints.

• Scoring. MATSim uses a simple utility-based approach to calculate a

plan score, with positive values for time dedicated to perform “pro-

ductive” activities and negative for traveling and delays on displace-

ment activity locations.

• Replanning. Sequence of configurable algorithms that iterate on the

population plans, Usually, adopting population-based heuristics, the

algorithm considers sets of individuals (population) where each one

represents a solution to the problem and evolves the set leading to

improvements for average plan scores and travel times.

MATSim requires complete data containers or inputs to perform any

transit simulation:

• A simulation configuration (e.g., parameters, modules to use for each

step, iterations);

• A multimodal network and transit schedules (e.g., public transport

agencies, lines, services, and vehicle/rolling stock characteristics and in

the other side, the navigable road network);

• Time-dependent network attributes (manages parameters per segment,

such as free speed, lanes, and capacity, that can change during the day,

due to incidences or dynamic traffic adaptive solutions);

• Mobility plans (defines subpopulations, person attributes, their mobil-

ity plans, and transport demand of the analysis population);

• Some facilities that specify where the agents realizes the different

activities; and

• Counts, taken from real operation that allows to compare and calibrate

the simulation and specific scenarios.
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MATSIM adopts a modular concept, in a broad sense of the word,

referring to components at different levels, from functions, components

or third party extension tools and frameworks. In any case, we can substi-

tute a module by a specific functionality. Some relevant extensions cur-

rently available cover: freight management, car sharing, joint trips,

parking, electric vehicles, pricing, emission calculation, travel time calcu-

lation, advanced analysis, multimodal transport, traffic signaling, among

many other.

MATSim is written in the Java programming language and distributed

under the GNU Public License (GPL), being available for download, use,

and extension. Extensive documentation is accessible for developers,

including specification of key-aspects of MATSim, configuration and

underlying theory, guidelines, details for most of the extension packages,

and data/samples for testing.

10.2.3.3 AIMSUM2
Urban congestion has a high impact on pollutant and energy consump-

tion KPIs. Cities and their citizens have a fundamental role to play, since

they concentrate the largest number of vehicles and the greatest problems

of congestion, generating in these urban centers much of the total emis-

sions of the planet. There is ample room for improvement, through a

more intelligent use of means of transport and the integration of advanced

technology as support for the improvement of mobility services.

By Active Transportation and Demand Management (ATDM) (US

DoT, 2017), we integrated different strategies to provide solutions for

congestion by combining public policy and private sector innovation to

encourage people to change their transport habits, increase the share of

sustainable mobility, prevent breakdown conditions, improve safety, and

maximize transport efficiency and performance in general.

By definition ATDM implementation strategies fall under three major

categories:

• Active Demand Management (ADM), by using information and technol-

ogy to dynamically manage demand, including redistributing travel, or

reducing vehicle trips by influencing mode choice, adoption of more

sustainable transport modes;

• Active Traffic Management (ATM), that tries to dynamically manage

recurrent and nonrecurrent congestion based on current and predicted

traffic ; and finally
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• Active Parking Management (APM), parking facilities management to

optimize performance and utilization of those facilities while influenc-

ing travel behavior.

All these strategies are based on estimations of traveler behavior; exter-

nal factors, effects, and effectiveness of the actions themselves are subject

to a high uncertainty.

AIMSUN (AIMSUN, 2017) is a widely used commercial transport

modeling software, developed and marketed by Transport Simulation

Systems (TSS). It integrates microscopic and mesoscopic components

allowing dynamic simulations. AIMSUN provides the tools to carry out

traffic assessment, in terms of environmental impact, capacity, or safety

analysis, of some of the main actions to implement the previously men-

tioned categories:

• Feasibility studies for High Occupancy Vehicle (HOV) and High

Occupancy Toll (HOT) lanes (ADM).

• Impact analysis of infrastructure design such as highway corridors

(ADM) (Silva, 2015).

• Toll and road pricing (ADM).

• Evaluation of Variable Speed policies and other Intelligent

Transportation Systems (ITS) (ADM).

• Bus Rapid Transit (BRT) schemes (ADM).

• Workzone management (ATM).

• Signal control plan optimization and adaptive control evaluation

(ATM).

• Assessment and optimization of Transit Signal Priority (TSP) (ATM).

• Proactive Traffic Management, evaluating in real time the effect of

decisions.

The simulator is highly configurable and extensible with new features

and capabilities. By default, it can manage different traffic networks,

demand modeling as flows at sections or O/D matrices, etc. but also can

be extended by programming, enabling the modification of the behavioral

models and the addition of new functionalities to the application.

A detailed description of such parameters and extension capabilities can

be found in the tool’s manual (AIMSUN, 2014).

The commercial references of its application to urban and interurban

transport planning are large. Specifically, for C-ITS deployment studies

(Aramrattana and Maytheewat, 2016), the execution in combination with

network simulators is mandatory (e.g., OMNeT11 simulator), and we

can find an exhaustive list of such experiences in Segata (2014).
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More recently, AIMSUN is being used to evaluate deployments of

new mobility solutions, such as electromobility or autonomous driving

vehicles. In the case of EVs, an extension of AIMSUN was implemented

in the context of FP7 EMERALD project (Boero, 2017) to evaluate and

optimize the impact of recharging infrastructure design in urban and

interurban traffic management. This project supported the development

of new transport models and algorithms (specifically oriented to FEVs),

evaluation of intelligent transport systems and cooperative systems

(V2I/I2V), and control plan optimization. Other additions were the third

dimension in the maps and several types of behavior driven and consump-

tion equations for each FEV type. In the context of autonomous vehicles,

the project FLOURISH managed by the UK government have adopted

AIMSUN to support the assessment of different scenarios from motorway

to urban use; in this case the focus is on the user, their demands, expecta-

tions, and challenges for specific collectives, such as elderly people.

10.2.4 OPEN TRAFFIC SIMULATION: SUMO

“Simulation of Urban Mobility” (SUMO) (Krajzewicz, 2012) is a micro-

scopic, multimodal, space-continuous, and time-discrete road traffic simu-

lator. It is open source software licensed under the GNU GPL (General

Public License) that is mainly developed by the German Aerospace Center

(DLR). The development of this simulation tool started in 2000 having in

mind portability and extensibility as main design criteria. Moreover, the

need for handling large road networks required the taking into account of

the execution speed and memory footprint as further guidelines.

The simulation scenario for SUMO has to be defined through a road

network and a traffic demand. The road network can be defined either

manually by generating XML files describing the network or by import-

ing the network from other formats such as: OpenStreetMap (OSM),

PTV VISUM and VISSIM, OpenDRIVE, MATsim, ArcView, etc.

Besides that, SUMO is able to generate random networks under some

rules (random-networks, spider-networks, and grid-networks).

The traffic demand can be defined in some different ways depending

in the available input data: trip definitions, flow definitions, randomization,

OD-matrices (VISUM/VISION/VISSIM formats), etc. Also for traffic

demand XML files are used. SUMO supports different vehicle types such

as motorcycles, trucks, buses, bicycles, or railways. Pedestrians are also sup-

ported. Moreover, some useful tools are provided for traffic demand

418 Intelligent Vehicles



modeling. For example, ActivityGen allows generating traffic demand

from a description of the population data in the net through some para-

meters such as population’s age brackets, school locations, bus lines, or

work hours. Within the simulation, the vehicle movements are based on

the longitudinal and lateral models. Both models can be chosen for each

vehicle type among some that are already implemented in SUMO.

The outputs that SUMO can generate in each simulation include a

number of different data: vehicle-based information over time (vehicle

positions, pollutant emission values based on HBEFA database), lane/

edge-based network performance information (vehicular noise emission

based on HARMONOISE model), simulated detectors, and traffic lights

information, among others. A useful graphical user interface (GUI) is also

included in SUMO package. Besides making easier the basic use of the

simulator, this GUI is very useful for monitoring the evolution of the

simulation through a 2D representation as well as diverse aspects of the

simulation (e.g., lane and vehicle coloring based on current occupancy

or, CO2/CO/NOx/PMx/HC emissions, noise emission, average speed,

etc.) at runtime (Fig. 10.2.1).

Due to its flexibility, SUMO is currently one of the most used simula-

tion frameworks in the research, academic, and industry sectors. Among

its applications, it is worth mentioning traffic forecasting, traffic manage-

ment evaluation, route choice and re-routing evaluation, logistics, and

traffic surveillance methods.

The possibility of adding extensions makes SUMO extend to new

applications. One of the main extensions is “Traffic Control Interface”

(TraCI). This interface enables the online interaction between SUMO

Figure 10.2.1 (A) SUMO-GUI; (B) NetEdit tool.
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and external applications. It allows to manipulate the behavior of simulated

objects and to retrieve values at runtime. TraCI is available in different

programming languages: C11, Java, Python, and Matlab. This interface

is commonly used for providing the simulation platform with new

functionalities such as external 3D visualization, traffic lights control

simulation, or couplings with communication networks simulators (ns3,

JiST/SWANS, or OMNeT11). For example, TraCI was extensively used

in iTETRIS project (iTETRIS, 2017) whose goal is to couple SUMO

with a communication network simulator using a middleware (iCS) for

V2X applications. This work has been extended within the COLOMBO

project (COLOMBO, 2017). In addition, SUMO has been used in further

European projects: AMITRAN (AMITRAN, 2017), DRIVE C2X

(DRIVE, 2017), among others; which shows the continuously growing

use of this simulation framework for different mobility-related purposes.

Besides TraCI, SUMO package includes a great number of tools for dif-

ferent purposes: traffic assignment, dealing with real life induction loop

data, traffic analysis, importing data, traffic light systems, trip generation,

graphical evaluation of SUMO-outputs, working with sumo output files,

etc. Most of them are Python scripts that help to perform different tasks.

Some remarkable tools are: osmWebWizard (for quickly creating simulation

scenario from a web browser by selecting a geographic region on a OSM

map and specifying random traffic demand), sumolib (it is a set of modules

for working with SUMO networks), tools for making easier parsing and

visualizing simulation results, and conversion tools for data analysis.

The extensive use of this simulator makes it well maintained and con-

stantly developing, fixing bugs and adding new features in each new

update. In the last versions some new remarkable features have been

added. Some examples are the availability of the NetEdit tool (since ver-

sion 0.25.0) for graphical network creation and edition, and the inclusion

of a mesoscopic model (available since version 0.26.0).

10.2.5 FUTURE TRENDS AND HOPES

The purpose of this section is not to divine the future development of

traffic modeling and simulation, but to comment on some of the trends

that seem to be present in the years to come regarding this topic.

First, we must say that simulation will likely be more and more online

in the next decades. The ongoing revolution in the fields of Big Data and

Data Stream Mining will possibility deeply affect traffic simulation, in
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particular when applied to the traffic managing, decision making, emer-

gency managing, and advanced travelers information systems (ATIS).

The Internet of Things, sensor networks, and pervasive computing,

including personal smart devices, are all expanding areas; they are likely

to be useful sources of information on the current traffic situation for

every transport network. That amazing torrent of information needs to

be exploited. It is very urgent that data stream mining, which is the brand

in Data Mining and Big Data thought to cope with live data, serves

updated models and predictions on traffic states.

With the same purpose, simulation frameworks will need to be con-

figured to feed from online information and to run in real time. Some

simulation platforms, like SUMO, will need to improve its performance

to guarantee the real-time restrictions, maybe through parallelization and/

or rewriting its libraries in faster programming languages (Romero-

Santana, 2017).

Also, another hot topic where traffic simulation is playing a mayor

role is on the Connected Vehicle move. It seems quite clear that driverless

mobility is transiting from the autonomous car paradigm, where the intel-

ligent vehicle is equipped with enough sensors and computation to accu-

rately perceive its environment, calculate trajectories, predict surrounding

vehicles’ intentions, etc., to a connected car paradigm, where perception,

3D reconstructions, etc. can be shared with the infrastructure and all the

other connected vehicles, exponentially extending the “safety bubble” of

each one of them. In this new connected setup, at some point future

forecasts will be required to predict traffic state, to dynamically propose

alternative routes, to warn of possible future hazards, etc. Fast online traf-

fic simulation will definitely play an important role there.

Multimodality is also a greatly challenging topic for traffic modeling

and simulation. New kinds of vehicles, with new dynamic behavior, such

as GPL, electric, or hybrid powered platforms, will need to be considered

in order to accurately simulate their behavior. Also, driverless driving is

challenging since it has been proven that driverless cars will behave quite

differently (usually more conservatively) than human drivers (Kaber and

Endsley, 2004). Finally, many cities in the world are working hard to fos-

ter greener transportation modes into the system, with the very interest-

ing benefits for both traffic management and quality of life of citizens it

may bring along (Rietveld, 2000).

One final piece to be incorporated in a near future in simulation fra-

meworks are Unmanned Aerial Vehicles (UAV). There are already studies
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and proof of interest coming from both academia and industry on incor-

porating UAVs for surveillance, fast delivery, and other applications

(Shim, 2005; Coifman, 2004).
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SUBCHAPTER 10.3

Data for Training Models, Domain Adaptation
Antonio M. López, David Vázquez and Gabriel Villalonga
CVC-UAB, Barcelona, Spain

10.3.1 TRAINING DATA AND GROUND TRUTH

Nowadays it is rather clear that sensor-based perception and action must

be based on data-driven algorithms. In other words, we must use machine

learning techniques for developing the algorithms that automatically per-

form the required tasks, from perception to action. Obviously, resorting

to machine learning implies relying on data. For the sake of simplicity, in

the following we assume we are discussing visual data, i.e., images, but

the considerations we are going to introduce can be also extrapolated for

other types of data, such as LIDAR, RADAR, etc. However, working

with images is specially challenging, not surprisingly, since the sense of

sight and how to understand the world through it is incredible difficult

for machines.

Applying machine learning for developing a visual task, i.e., to learn a

visual model, implies having three different datasets of images: (1) train-

ing; (2) validation; (3) testing. Equivalently, we can consider that a single

dataset can be randomly split into those three to have several combina-

tions. The training images are used to learn the desired visual model, i.e.,

its parameters. Such models usually have hyper-parameters that are set by

trial and error (a very primitive and costly form of learning). Given a trial

of hyperparameters the model parameters are learned and tested on the

validation dataset. Then, it is selected the trial of hyperparameters that

shows the best results on this dataset. Finally, by applying the learned

model to the testing dataset, we obtain a proxy of its expected accuracy

in real-world conditions.

In terms of relative sizes, usually the training set is much larger than

the others. The validation set used is the smallest one. A typical split of all

available data can be 60% for training, 10% for validation, and 30% for

testing. The reason is that the machine learning algorithms in general

produce better models when more data is available provided it has been

collected randomly, i.e., without any undesirable bias (obviously less

data but better selected may produce better models than lots of redun-

dant data). Thus, it is desired to use most of the data for training. Note
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that training, validation, and testing datasets cannot overlap for ensuring

that the measured accuracy of the learned model makes sense in terms

of generalization, i.e., in terms of how the model will behave under

previously unseen data. Altogether, this implies that most of the data

should be used for training. Moreover, when the absolute amount of

data is low, then, as mentioned before, the train�validation�test split-

ting is performed several times to come up with different models, which

brings a more realistic assessment of both the machine learning method

in use and the usefulness of the learned models in terms of their accu-

racy. In the following, we will use the term “training” to refer to both

“training” and “validation” as defined here, because these stages are part

of the process of developing a model, while testing is used for assessing

its performance. In this way we simplify the terminology without losing

generality.

Once we have introduced the critical need for training data we have

to add what, in fact, is the most challenging point. It is not only that we

need images for training, but also the ground truth associated to them.

Fig. 10.3.1 draws the idea for two specific vision-based tasks: object

detection and semantic segmentation. In the former case, the ground

truth consists of the bounding boxes (BBs) framing the objects (cars in

the example). In the latter case, the ground truth consists of the silhou-

ettes of all the semantic classes in consideration (road surface, sky, vegeta-

tion, building, vehicles, pedestrians, etc.); in other words, a class must be

assigned to each pixel of each image used for training. What is the prob-

lem? These ground truths are provided manually, which is a tiresome pro-

cedure prone to errors. Obviously, both for validation and testing ground

truth is also required, but the most time-consuming part is due to training

since, as we have mentioned, this is the stage that requires most of the

data. It is worth mentioning that in the machine learning literature there

are proposals that try to train models without the use of ground truth;

however, the models that are really accurate do need such ground truth.

These are the so-called supervised machine learning methods, in contrast

to the unsupervised ones (no ground truth used). Well-known examples

of supervised machine learning methods are support vector machines

(SVM), logistic regression, Adaptive Boosting (AdaBoost), Random

Forest, and Convolutional Neural Networks (CNN).

In the fields of advanced driver assistance systems (ADAS) and autono-

mous driving (AD), we can find several examples of datasets with ground

truth publicly available. In the ADAS community a popular pioneering
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example was the Daimler Pedestrian dataset of Enzweiler and Gavrila

(2009), which includes 3915 BB-annotated pedestrians and 6744

pedestrian-free images (i.e., image-level annotations) for training, and

21,790 images with 56,492 BB-annotated pedestrians for testing. Another

pioneering example corresponds to the pixel-wise class ground truth pro-

vided in Brostow et al. (2009) for urban scenarios; giving rise to the pop-

ular CamVid dataset which takes into account 32 semantic classes

(although only 11 are usually considered) and includes 701 annotated

images, 300 normally used for training and 401 for testing. A few years

after, the KITTI Vision Benchmark Suite of Geiger et al. (2016) was an

enormous contribution for the research focused on ADAS/AD given the

high variability of the provided synchronized data (stereo images, LIDAR,

GPS) and ground truth (object bounding boxes, tracks, pixel-wise class,

odometry). More recently, Daimler has led the release of the so-called

Figure 10.3.1 Manual annotation (labeling) of: (top) bounding boxes (BBs) that frame
objects (cars in this case); (bottom) silhouettes of all the semantic classes, i.e., pixel-
wise assignment of semantic classes (road surface, vehicles, etc.).
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Cityscapes dataset of Cordts et al. (2016), which tries to go beyond

KITTI in several aspects. For instance, it includes 5000 pixel-wise anno-

tated (stereo) images covering 30 classes and per-instance distinction, with

GPS, odometry, and ambient temperature as metadata. In addition, it

includes 20,000 more images but where the annotations are coarser

regarding the delineation of the instance/class contours. This kind of

dataset is difficult to collect since driving through 50 cities covering sev-

eral months and weather conditions was required. In order to appreciate

how difficult it is to provide such ground truth, we can mention the fact

that annotating one of those images pixel-wise may take from 30 to 90

minutes of human labor depending on the image content. Thus, assuming

an average of 60 minutes, annotating the 5000 images mentioned before,

requires 5000 working hours for a person. Fig. 10.3.2 shows examples of

Cityscapes images: each color represents a different urban semantic class

(e.g., light pink means sidewalk, dark pink road, red pedestrian, etc.). In

the top there is an example of a finely annotated image, in the bottom

we see a coarsely annotated one. Note how the silhouettes of the classes

are not accurately traced in the coarse case.

In order to shorten the annotation time and be more robust to erro-

neous annotations, we can think about crowdsourcing this task. For

instance, this was the approach followed in the computer vision commu-

nity where tools such as Amazon’s Mechanical Turk (AMT) and LabelMe

of Russell et al. (2008) were used to annotate popular publicly available

datasets such as ImageNet (see Deng et al., 2009), and PASCAL VOC

(see Everingham et al., 2010). However, crowdsourcing usually seeks low

cost and, therefore, is not based on professional annotators. As a conse-

quence, methods to automatically assess the quality of the ground truth

are still required. In fact, since ADAS and AD face mobility safety, com-

panies must rely on a more professional pipeline with many qualified

annotators involved in the annotation of the data. In addition, not all

kinds of ground truth can be provided by relying on manual annotations.

For instance, we may need to develop a dense (pixel-wise) depth estima-

tion algorithm or an optical flow one. A person cannot manually provide

the pixel-wise ground truth desired to train and/or test such algorithms.

The reader may appreciate already how difficult is ground truth col-

lection. However, we can see that the situation is even worse by intro-

ducing a very relevant point not yet mentioned here. As we introduced

in Section 9.1.4, deep learning and, in particular, CNN architectures are

the core of the state-of-the-art of many computer vision tasks, including
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those related to ADAS/AD, such as object detection and semantic seg-

mentation. The starting point of this breakthrough was the task of image

classification (i.e., assigning a single label to a full image), for which the

AlexNet of Krizhevsky et al. (2012) just smashed the previous state-of-

the-art. This work already pointed out one of the reasons for the success

of deep CNNs in general, namely the massive availability of data with

ground truth. In particular, AlexNet was trained on the ILSVRC dataset,

with about 1000 images of 1000 categories; overall, about 1.2 million

images for training, 50,000 for validation, and 150,000 for testing, all of

them with image-level class annotation.

The publicly available datasets of reference in ADAS/AD, i.e., KITTI

and Cityscapes, are orders of magnitude away from ILSVRC. Moreover,

image-level ground truth is too poor for ADAS/AD tasks where object-

Figure 10.3.2 Ground truth examples from Cityscapes dataset.
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wise (BBs) ground truth is a minimum, but most of the times pixel-wise

ground truth (Fig. 10.3.2) is required. Nowadays, even for ADAS/AD

tasks, the fine-tuning approach is followed; i.e., taking a deep CNN such

as AlexNet and somehow reusing it by exposition to the more scarce

annotated data acquired for the new (ADAS/AD) tasks.

10.3.2 VIRTUAL WORLDS AND DOMAIN ADAPTATION

Due to all these considerations, a totally different way of addressing the

ground truth acquisition problem has been assessed. It started timidly in

2010 but nowadays there is an explosion of works in this line, with even

workshops devoted to it. We refer to the use of virtual worlds for gener-

ating realistic images (and potentially data from other simulated sensors)

with automatically generated ground truth. Fig. 10.3.3 illustrates the idea

with the pioneering work of Marin et al. (2010). In this case, a modifica-

tion of the videogame Half-Life 2 was used for automatically generating

pixel-wise ground truth for the pedestrians contained in virtual-world

RGB images. These images are acquired on board a virtual car that drives

along an urban scenario of the virtual city. In Marin et al. (2010) it was

demonstrated that using the state-of-the-art pedestrian detector at that

time (i.e., pyramid sliding window, HOG/Linear-SVM classifier, non-

maximum suppression), the accuracy of the classifier trained on the virtual

environment and the accuracy of an analogous classifier trained on real-

world images (having access to the same number of samples) was statisti-

cally the same.

Further extensions of Marin et al. (2010) demonstrate that the results

were not always directly as good as expected (see Vazquez et al., 2014). In

particular, the accuracy obtained by different object detectors was lower

when training with virtual-world data and testing in a given real-world

dataset, than when training with the data of such real-world dataset.

However, it was demonstrated by Vazquez et al. (2014) that the accuracy

gap was not really specifically due to virtual-to-real differences. Virtual-

to-real was shown to be a special case of a more generic problem, namely

sensor-to-sensor differences. In other words, training an object detector

with images of a given camera model and testing with images of another

camera model, also ends up in worse results than if training and testing

images come from the same camera. Note how important this problem is;

if we annotate a large dataset of images for ADAS/AD and later we

change the camera, we may need to annotate again another large dataset
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to achieve the same accuracy. In fact, the problem is even more generic

than sensor-to-sensor differences, the discrepancies in the statistics of the

image content cause accuracy drops as well. As a matter of fact, the com-

puter vision community started to realize this problem, which was just

ignored for a long time (see Saenko et al., 2010, 2011). In particular, the

so-called domain adaptation (DA) and transfer learning (TL) techniques

started to gather relevance among the computer vision community since

they pursued reusing previous knowledge (in the form of model or anno-

tated data) for performing accurately in new domains and tasks, but using

either many data without annotations (unsupervised DA/TL) or few data

Figure 10.3.3 Example of pedestrian detector where the pedestrian classifier is
trained in a virtual world, and then plugged into a detection pipeline to process real-
world images.
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with annotations (supervised DA/TL). For instance, in Vazquez et al.

(2014) supervised DA based on active learning was used to adapt virtual

and real domains and, therefore, recovering the above mentioned accu-

racy gap of the pedestrian detector developed in the virtual world. In Xu

et al. (2014) a more sophisticated technique was used to adapt deformable

part-based models (DPM) from virtual to real domains, in this case and

contrarily to Vazquez et al. (2014), without revisiting the source (virtual-

world) data. Fig. 10.3.4 illustrates the idea: an initial DPM is learned by

using virtual-world data with automatic ground truth for pedestrians.

The model is applied to real images. Some pedestrians are not detected

and background regions are classified as pedestrians due to the domain

gap (virtual-to-real). To solve this gap the initial DPM is refined by either

actively collecting errors with a human oracle in the loop, or a procedure

is able to automatically collect annotations without human intervention.

The DPM refinement can be done progressively by iterating this proce-

dure. As guiding information, in Vazquez et al. (2014) and Xu et al.

(2014) the proposed DA techniques saved 90% of the annotation effort

that would be needed to obtain the same accuracy in the real-world (tar-

get) domain.

Overall, these experiments showed that appearance models trained in

virtual worlds act as strong priors with the potential of saving a large

amount of human annotation effort. Interestingly, the winner of the first

pedestrian detection challenge in the KITTI dataset was based on a

Figure 10.3.4 Domain adaptation when the source domain is a virtual world and the
target domain is the real world.
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virtual-to-real-world domain-adapted classifier (Xu et al. (2016)). Note

also that automatically collected ground truth is more precise than that

collected by humans. It is also worth mentioning that even deep CNNs

require DA/TL (see Tommasi et al., 2015).

Driven by the success of the use of virtual-world data and domain

adaptation for training the appearance pedestrian models, in the last two

years new works have been presented going far beyond pedestrian detec-

tion. For instance, in Ros et al. (2016) a very large city was created,

named SYNTHIA, which allowed generating hundreds of thousands of

RGB images (random and arranged as sequences) with all kinds of inter-

esting ground truth automatically generated: pixel-wise class ID, instance

ID, and depth; vehicle odometry; and 360 degrees views. In order to

force variability, the city includes many pedestrian models, vehicles, city

styles, highways, vegetation, lighting conditions, and four seasons.

Fig. 10.3.5 shows different snapshots of the city content and ground

truth. Using data from SYNTHIA and basic domain adaptation techni-

ques, Ros et al. (2016) show that it is possible to boost the accuracy of

deep CNNs designed for semantic segmentation. Season- and lighting-

dependent images together with vehicle odometry can be used to train

place recognition methods that may be part of vehicle localization in

maps (a key component nowadays of prototypes of self-driving cars).

Analogously, Gaidon et al. (2016) presented a virtual environment that

mimics KITTI, termed as Virtual KITTI, showing its usefulness for

Figure 10.3.5 SYNTHIA: RGB image, ground truth for Class ID and depth; images
acquired from the same camera location at different seasons.
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designing object trackers (e.g., for tracking cars). Following the same line

of work, Richter et al. (2016) show semantic segmentation results with

deep CNNs using the GTA-V videogame world. Interestingly, other

lower level visual tasks such as depth estimation and optical flow estima-

tion are being currently addressed by the use of deep CNNs trained on

virtual data, see Mayer et al. (2016). Note that ground truth for such tasks

cannot be collected by humans.

In this setting one of the arising questions is how the degree of photo-

realism of the virtual images affects training visual models. By comparing

SYNTHIA images and GTA-V ones (Fig. 10.3.6), in Lopez et al. (2017)

Figure 10.3.6 Comparing photorealism. GTA-V (top) is more photorealistic than
SYNTHIA (bottom).
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it is shown that even for the most realistic video-games, the virtual-to-

real domain gap is still an issue. This is not surprising, since we have men-

tioned before that there may be sensor-to-sensor domain gaps even for

real-world sensors.

We would like to highlight that virtual environments are gaining

attention not only for understanding the sensor raw data, but also for

learning to act (see Dosovitskiy and Koltun, 2016); in other words, given

an image, a deep learning architecture directly outputs the control com-

mands for self-driving (e.g., steering angle, brake/accelerate, etc.), with-

out explicitly creating an intermediate 3D understanding of the driving

scenario.

Finally, we would like to note that virtual worlds are not only useful

for training models, in fact, they can be a very convenient tool for

exhaustive simulations that allow the setting of hyperparameters, debug-

ging the behavior of algorithms, experimenting on corner cases, etc.; in

other words, the more traditional functionalities assigned to simulators of

any kind. Obviously this is a more standard use of virtual environments,

and the revolution has been to see that they can be also used for training

models, especially visual deep models.
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