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Structure and thermodynamics of fluids made of particles that interact via a central force model
potential are studied by means of Monte Carlo simulations and integral equation theories. The
Hamiltonian has two terms, an intramolecular component represented by a harmonic oscillatorlike
potential and an intermolecular interaction of the Lennard-Jones type. The potential does not fulfill
the steric saturation condition so it leads to a polydisperse system. First, we investigate the
association~clustering! and thermodynamic properties as a function of the potential parameters,
such as the intramolecular potential depth, force constant, and bond length. It is shown that the
atomic hypernetted chain~HNC! integral equation provides a correct description of the model as
compared with simulation results. The calculation of the HNC pseudospinodal curve indicates that
the stability boundaries between the vapor and liquid phases are strongly dependent on the bond
length and suggests that there might be a direct gas–solid transition for certain elongations. On the
other hand, we have assessed the ability of the model to describe the thermodynamics and structure
of diatomic liquids such as N2 and halogens. To this end we have devised a procedure to model the
intramolecular potential depth to reproduce the complete association limit~i.e., an average number
of bonds per particle equal to one!. This constraint is imposed on the Ornstein–Zernike integral
equation in a straightforward numerical way. The structure of the resulting fluid is compared with
results from molecular theories. An excellent agreement between the HNC results for the associating
fluid and the reference interaction site model~RISM!-HNC computations for the atom–atom model
of the same fluid is obtained. There is also a remarkable coincidence between the simulation results
for the molecular and the associating liquids, despite the polydisperse character of the latter. The
stability boundaries in the complete association limit as predicted by the HNC integral equation
have been computed for different bond lengths corresponding to real molecular liquids. These
boundaries appear close to the experimental liquid branch of the vapor–liquid coexistence line of
the molecular systems under consideration. ©1996 American Institute of Physics.
@S0021-9606~96!50646-X#

I. INTRODUCTION

Central force potentials~CFM! are useful models to de-
scribe molecular systems. These Hamiltonians are interesting
because molecules are not defined explicitly. One deals with
a mixture of atoms or ions that eventually can react to give a
mixture of atoms/ions and molecules which in turn may dis-
sociate. Maybe one of the most illustrative examples of this
type of Hamiltonian is the central force model of water de-
vised 20 years ago by Stillinger and co-workers.1 This po-
tential was used in the context of molecular dynamics~MD!
simulations and it has shown to be a good model in the
description of the water properties at ordinary conditions of
temperature and density. The simplicity of the potential and
the fact that chemical association was implicit in the model
induced some authors2–4 to approach the CFM from a theo-

retical standpoint in the context of the atomic Ornstein–
Zernike~OZ! integral equation. One immediate advantage of
this potential model would be to avoid the cumbersome treat-
ment of angular correlations which appear when molecules
are considered explicitly. Thuraisingham and Friedman3

solved for the first time the CFM of water at room tempera-
ture. There, the limitations of the HNC integral equation to
cope with the complex structure of the liquid were exposed.
The main difficulties were related to the inability of the in-
tegral equation to describe correctly the number of intramo-
lecular bonds in the molecule, as well as its poor description
of the hydrogen bond correlations. More recent studies4,5

have tried to solve the same Hamiltonian with improved
theories but a correct theoretical description is still missing.
Besides, it is not yet clear whether the difficulties are inher-
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ent to the peculiarities of the water molecule, i.e., whether
similar problems would arise or not when dealing with mol-
ecules without hydrogen bonds.

Central force models, included that of water, are by con-
struction effective potentials which give rise to association.
Following the pioneering works by Wertheim,6,7 a number of
simple models for the investigation of associating liquids
have been proposed and discussed recently.8–13 The exten-
sion of these studies to charged systems was done using the
sticky electrolyte model.14–16 The association degree is de-
termined by the Boltzmann weighting factor, and at a first
glance there is no reason to believe that this potential would
lead to complete association, i.e., to a system exclusively
composed by molecules. The problem to be solved will then
be that of a chemical reaction between two species, for in-
stance in water H1 and O22 species to give H2O. In the
terminology of Cummings and Stell10 the statistical mechan-
ics models of chemical reactions consider the inhomoge-
neous association reactionA1B
AB as well as its homo-
geneous counterpart 2A
A2 .

11 The Hamiltonians
employed, both in neutral and charged systems, aside from
being of the central force model type, shared a common fea-
ture, as is the possibility of analytically solving the problem
within the OZ integral equation context subject to a certain
closure. Using this analytical approach, the authors investi-
gated the equilibrium constant of the association reaction as
a function of the density and temperature. These studies in-
cluded the case of infinite equilibrium constant, i.e., the case
when diatomic molecules are the only species present in the
system. This fact is possible in a heterogeneous association
reaction if the Hamiltonian enables the steric saturation
feature.10 This particular case represents an alternative to
study molecular systems from a theoretical point of view.

It is apparent that the theoretical solution of the CFM
potentials using the atomic OZ integral equation is a problem
of the same type as considered previously by other authors.
Unfortunately, the complex nature of realistic CFM poten-
tials precludes the analytical solution of the problem as early
noted by Cummings and Stell.10 Therefore, one is forced to
adopt a numerical procedure that guarantees the complete
association limit. In this work we have studied the problem
of a homogeneousassociation reaction,A
A2
•••
An .
The system in equilibrium is then a polydisperse mixture of
species. We are also interested in a particular limit of this
reaction corresponding to the case 2A→A2 . Our system is
made of neutral particles that interact through a potential,
including a Lennard-Jones term, which describes the inter-
molecular interactions, and a harmonic oscillator contribu-
tion, which allows for the chemical association of the par-
ticles. Depending on the depth of the intramolecular potential
the chemical equilibrium is shifted toward different associa-
tion constants. In this way the potential leads to polydisperse
systems. We will investigate by computer simulation the
properties of this type of association reaction. Despite the
intrinsic polydisperse nature of these systems, we will show
that the model is useful in the study of several homonuclear
diatomic molecules—nitrogen, halogens—when the question
is addressed in terms of a state equivalent to the complete

association limit. We do this by requiring that the mean num-
ber of bonds per particle be one. The condition translates into
the calculation of the value of the intramolecular potential
depth leading to the ‘‘complete association limit.’’ Once
such a parameter of the intramolecular potential is obtained,
we make a double comparison. First, we solve the atomic
HNC integral equation of that system and compare it with
the corresponding Monte Carlo results and with the predic-
tions from molecular theories, such as the reference interac-
tion site model~RISM!.17–19 On the other hand, we check
whether the central force model with the complete associa-
tion constraint is able to predict the behavior of real diatomic
liquids.

In a first part of this work we describe the Hamiltonian
and the relevant methodology of the simulations performed
and the integral equation calculations. We also give the defi-
nition of the essential quantities used along the work as well
as concepts such as thecomplete associationlimit. Next we
study the stability boundaries of the HNC integral equation
for the Hamiltonian as a function of the bond length. Then
the association reaction for thehomogeneouscase is consid-
ered both from theory and Monte Carlo simulations. We de-
vote the following section to the study of the complete asso-
ciation limit attained by imposing a constraint on themean
number of bonds per particle to the integral equation theory.
Finally, we present structural results obtained from the
atomic OZ integral equation in the complete association limit
for realistic diatomic molecules, and compare these results
with previous computations using molecular theories. This
section is complemented with the theoretical calculation of
the stability boundaries obtained for the complete association
case and its comparison with the experimental liquid branch
of homonuclear diatomic molecules. Main conclusions and
lines of future development close this paper.

II. CENTRAL FORCE MODEL AND CHEMICAL
ASSOCIATION

We consider a system made of particles interacting
through a central force model type Hamiltonian. This poten-
tial consists of two terms, one representing the intramolecu-
lar interactions and another one accounting for the intermo-
lecular forces. The intermolecular part, usually in the study
of rigid diatomic molecules, is modeled by means of a
simple Lennard-Jones potential:

uinter~r !54eF S s

r D
12

2S s

r D
6G , ~1!

wheres and e are the well-known parameters defining the
particle diameter and the potential depth, respectively. These
parameters are used to define the reduced temperature
T*5kBT/e, kB being the Boltzmann constant, and the re-
duced density,r*5Ns3/V, where N represents the total
number of particles filling a volumeV. The intramolecular
part enabling the association of the particles is modeled
through a simple harmonic oscillatorlike function,

uintra~r !5 1
2 k~r2L !21De , ~2!
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where k is the force constant of the bond,L is the bond
length, andDe is the intramolecular potential depth. Using
the values ofs ande defined above we can writeu*5u/e,
k*5ks2/e, L*5L/s, De* 5 De /e, and r *5r /s. In addi-
tion, we define a switching function which has the effect of
interpolating between the intramolecular and the intermo-
lecular potential

l ~r !5
1

2 F11tanhS r2R

w D G . ~3!

The parametersR andw tune the location and the steepness
of the switching function. A small value forw leads to an
abrupt change from the intramolecular to the intermolecular
interaction. Throughout this work we have used the values
R50.75s andw50.015s. Taking into account all the above
functions, the total potential energy has the form

utot~r !5@12 l ~r !#uintra~r !1 l ~r !uinter~r !. ~4!

In Fig. 1 we depict this function for the caseL*50.6 and
k*515 000. As a comparison, in Table I we compile the
values of the bond length,L* , and the force constant,k* , as
well as thee and s parameters suitable to model several
homonuclear diatomic molecules.20,21The choice forDe de-
termines the extent of the association reaction. Different val-
ues will be used depending on whether the complete associa-
tion limit is to be fulfilled or not. For the case of an
association reaction in which diatomic molecules are not the
only species present, the simple valueDe50 has been cho-
sen. It must be pointed out that in the limitk→` the in-
tramolecular potential has zero width, the same as that used

by Cummings and Stell.10,11For k*515 000 the thermal bar-
rier between the intramolecular and the intermolecular poten-
tials is about 150e ~cf. Fig. 1!. Given the magnitude of the
wall we can expect a small difference between the results
obtained in this way and those considering an infinite ther-
mal barrier.

Let us consider the homogeneous association reaction,

A
A2
•••
An . ~5!

Now some criterion must be introduced in order to consider
two particles associated. Here, we have adopted a structural
definition according to which two particles are deemed asso-
ciated if the distance between their centers is less than a
given separationRb . The running coordination number,^N&,
is the average number of atoms up toRb ,

^N&54prE
0

Rb
g~r !r 2 dr, ~6!

whereg(r ) is the pair correlation function. As discussed by
Cummings and Stell10 for a simpler but similar potential, the
homogeneous reaction stops in the formation of dimers only
if the pair potential exhibits the property ofsteric saturation,
i.e., the potential is such that each atom can belong toat most
one diatomic molecule. When the system is a mixture of two
speciesA andB, the steric saturation can be fulfilled just by
considering that there are no intramolecular interactions be-
tween like particles. In addition to this, the bond length must
fulfill L,s/2. This is not the case of the homogeneous asso-
ciation reaction. Even for elongationsL*,1/2 trimers and
tetramers~with the particles placed at the vertices of regular
triangles and tetrahedra! can be formed. ForL*>1/2 there is
an increasing probability of formation of clusters of size
larger than two. Thus, the value^N&51 is an unambiguous
indication of the complete association into diatomic mol-
ecules only under some circumstances. Nevertheless, as^N&
represents the average number of bonds per particle, such
value represents a state somewhat similar to that defined by
the complete association for systems fulfilling the steric con-
dition. Hereafter we will refer to the condition̂N&51 as the
complete association limit. Since the particles can polymer-
ize in clusters of various sizes, it is interesting to know the
cluster population of the system in the full association limit.
At the same time it should be possible to assess the ability of
a theory that relies on such a condition to describe a real
diatomic system. Notice that the cluster population is not a
property easily accessible from theory. On the contrary, the
evaluation of cluster populations is trivial in computer simu-

FIG. 1. Central force model potential forL*50.6,De* 5 0, andk*515 000
@see Eq.~4!#. As throughout this work,R*50.75 andw*50.015.

TABLE I. Potential parameters.

Molecule ~e/kB!/K s/Å L* k*

N2
a 37.3 3.310 0.329 487903

F2
b 52.8 2.825 0.505 51744

Cl2
b 173.5 3.353 0.608 15140

Br2
b 257.2 3.538 0.630 8673

as ande values taken from Ref. 20.
bs ande values taken from Ref. 21.
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lations. If the agreement between thermodynamic and struc-
tural results of theory and simulation were good enough, the
cluster population obtained from simulation could be taken
as representative of the system described by the theory.

III. MONTE CARLO AND MOLECULAR DYNAMICS
SIMULATIONS

Monte Carlo simulations have been performed in the ca-
nonical ensemble. Implementation of these simulations is a
trivial exercise~see for instance Ref. 22!. Only some care
must be taken in the high density regime in order to correctly
sample the phase space. Due to the double nature of the
potential, i.e., intramolecular and intermolecular, one is com-
pelled to use a particle displacement large enough to allow
that a particle escapes from the intramolecular well. So we
have chosen to set the maximum displacement todr50.7s.
Of course, a displacement like that has the effect of drasti-
cally diminishing the number of accepted configurations and,
consequently, produces a poor sampling of the phase space
in high density systems. The sampling of the intermolecular
interactions is needed as well. We have introduced an addi-
tional maximum displacement distance,dr50.15s, a value
usually adopted in the simulation of high density fluid sys-
tems. In summary, for each new Monte Carlo~MC! step we
randomly choose the maximum displacement distance to be
either 0.15s or 0.7s. It must be stressed that the use of two
maximum displacements for the movement of the particles
still fulfills the detailed balance equation. The procedure
typically turns out in an acceptance rate close to 10%. Simu-
lations at low densities use half the box length as maximum
displacement, which results in acceptance rates around 50%.
Properties are typically accumulated in 50 subaverages of
approximately 105 particle movements each. These are used
to compute the standard deviation of the properties such as
internal energy, pressure, or intramolecular coordination
number,^N& ~obtained by integration of the intramolecular
peak of the pair correlation function!. The equilibration pe-
riod lasted between 1043Nparticles and 231043Nparticles
movements, beingNparticles5216 in all the cases studied. The
cutoff distance is set to 2.8s.

By means of molecular dynamics~MD! in the microca-
nonical ensemble23 we have simulated a set of particles
which interact via the potential described in Sec. II. This is a
conventional simulation in the sense that no constraints are
included in order to preserve the molecular entity. Usually,
the initial configuration consisted in 108 molecules arranged
in an fcc lattice. During the simulation we did not observe
any dissociation as this event is extremely improbable given
the thermal barrier existing between the intermolecular and
intramolecular potential contributions. Notice that the use of
MD in the case of CFM potentials then has the peculiarity of
giving the properties of a system which is not in its minimum
of free energy, contrary to what happens in our Monte Carlo
simulations. The integration of the equations of motion was
done using the velocities Verlet’s algorithm, with a time step
dt*50.005 in Lennard-Jones parameters units. The cutoff
was set to half the box length.

IV. INTEGRAL EQUATIONS

The theoretical treatment used in this work deals with
the solution of the well-known atomic Ornstein–Zernike
~OZ! equation, which in its general form for multicomponent
systems reads

han~r !5can~r !1(
l
E ca l~r 8!hln~ ur2r 8u!dr 8, ~7!

beinghan5gan21 the total correlation function,gan the pair
correlation function, andcan the direct correlation function.
As usual we define the indirect correlation function
gan5han2can . The OZ integral equation can only be solved
if it’s supplemented with the so-called closure relation

gan5exp~gan2buan1Ban!, ~8!

whereb51/kBT andBan is the bridge function. Approxima-
tions toBan give rise to different integral equation theories,
the simplest being the hypernetted chain~HNC! integral
equation,Ban50. In this work we solve the OZ equation
coupled with this closure relation.

The Ornstein–Zernike equation can be written in a more
compact notation in the Fourier space, namely

H̃~k!5C̃~k!@ I2C̃~k!#21, ~9!

where I is the identity matrix.H̃ is a matrix with elements
H̃an(k)5(rarn)

1/2h̃an(k), and analogously for the direct
correlation function. Besides, the tilde denotes a three-
dimensional Fourier transform. The resulting set of nonlinear
equations has been solved by the method proposed by Labik,
Malijevsky, and Vonka.24 The solution renders the pair cor-
relation function and the thermodynamic properties of the
system for a given temperature and density. From the latter,
and using Eq.~6!, we can monitor the association reaction.
As discussed in Sec. II, the use of that expression as an
estimation of the number of dimers is rigorous only in the
case of steric saturation in the pair potential. Otherwise it
will be an approximation which will become poorer as the
proportion of clusters of size larger than two is favored, i.e.,
as the bond length increases. The condition of complete as-
sociation,̂ N&51 is attained by the system at different values
of pairs density temperature depending, for a given intermo-
lecular interaction, on the width, position~bond length!, and
depth of the intramolecular potential. If one alters the depth
of the intramolecular potential,De , it is possible to attain
complete association,^N&51, for any value of temperature
and density, as long as the theory is solvable in those condi-
tions. Actually, a change inDe has the effect of modifying
the mass action association reaction constant. For a given
density and temperature, the problem to be solved is, there-
fore, to find the effective potential, i.e., the value forDe , that
produceŝ N&51. Unlike the case of Cummings and Stell’s
model,10,11which is analytically tractable, we must resort to
a numerical algorithm.

This has been solved using a Newton–Raphson~NR!
method, which for a thermodynamic state warrants the con-
dition ^N&51. In short, the steps are the following. First,
solve the HNC equation for a given thermodynamic state.
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The calculatedg(r ) is used to obtain̂N& via Eq. ~6!. The
next step consists in searching for theDe value in Eq.~2!
such that̂ N&51. This is done by a standard NR formula,
De,i11 5 De,i 2 ^N& i /^N& i8 , where theDe,i11 is the new ap-
proximation to the desired value. The local derivative^N& i8
can be obtained numerically from the the coordination num-
bers for two values ofDe close enough. The procedure is
finished whend5uDe,i112De,i u is smaller than a given
valued. We have chosend51025 in this application.

V. THE ASSOCIATION REACTION IN THE CASE DE50

A. Stability boundaries

Prior to obtain the results for the association reaction we
have analyzed the possible influence ofk* on the thermody-
namic and association properties of the system. For that pur-
pose we have solved the HNC approximation forL*51/3,
De* 5 0, and two differentk* values, namely, 15 000 and
500 000. Note that the latter value roughly corresponds toN2
~see Table I!. As can be observed in Fig. 2~a!, the excess
internal energy is almost insensitive to the force constant
contrary to the results for pressure which exhibits remarkable
differences at high densities. Larger discrepancies are ob-
served@cf. Fig. 2~b!# for the reduced inverse isothermal com-
pressibility xT

215(rkBTkT)
21, kT being the isothermal

compressibility. This exhibits an interesting behavior. First,
it presents a minimum aroundr*50.3 which is due to the
neighborhood of the critical point. An increase in density is
followed by an increase inxT

21 but this is rapidly compen-
sated, resulting in the appearance of a maximum. This is
more apparent in thek*515 000 case. Such behavior indi-
cates the proximity of an instability region characterized at
high densities by a pseudospinodal. The casek*5500 000
exhibits qualitatively similar trends but the location of the
instability is shifted toward higher densities. The effect of a
larger force constant, or in other words, a narrower intramo-
lecular potential, is clearly shown in Fig. 2~c!, where the
value of ^N& is represented for the two cases mentioned
above. Association at low densities is more favored in the
k*515 000 case. At higher densities both curves rise parallel
with a roughly linear dependence on density. This indicates
that association at high densities is mostly a consequence of
the increased encounter probability. Since we are mainly in-
terested in the high density regime, and given that associa-
tion is not qualitatively affected by the width of the intramo-
lecular potential well, we setk*515 000 as the common
value for the remaining calculations. This choice has the
positive side effect of reducing the large number of grid
points needed in the resolution of the Ornstein–Zernike in-
tegral equation that would otherwise arise as a result of the
smaller grid needed to cope numerically with a narrow in-
tramolecular potential well. Consequently, in the potential of
Eq. ~4! the only reduced variable which discriminates among
different systems is the elongation.

In view of the behavior exhibited by the inverse isother-
mal compressibility, we have mapped out the pseudospin-
odal curve obtained from the HNC integral equation as a
function of the bond length. We recall that, as pointed out by

Belloni,25 the HNC does not exhibit a true spinodal line,
although the appearance of this pseudospinodal can be taken
as a signature of instability, in most cases related to a coex-
istence boundary. This is particularly significant at the high
density side of the pseudospinodal where the deviations from
a true spinodal line are minimal. We have adopted as a pseu-
dospinodal curve the locus of pairs ofr* andT* for which
I2C̃~0!}xT

215(rkBTkT)
21→0. The key question is then

which is the influence of the association on the stability
boundaries of the system. In Fig. 3 we present the pseudos-
pinodal lines as predicted by the HNC integral equation for
L*51/3 andL*51/2. As a reference we also include the
results for the LJ potential. In the figure there appear two
branches, one at low and the other at high densities. The low
density curve corresponds to the nonsolution line of the HNC
which, as usual, precludes the determination of the spinodal.
In this region the association degree is small, so little differ-
ences are expected between the corresponding low density

FIG. 2. Excess internal energy, pressure, reduced inverse isothermal com-
pressibility, and mean running coordination number as a function of density
at T*52. The intramolecular parameters areDe* 5 0, k*5500 000~solid
lines! andk*515 000~dashed lines!.
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pseudospinodal lines of the LJ and that of the associating
potential considered here. Notice in Fig. 3 that all of the
nonsolution curves~irrespective of the bond length of the
system! merge as the density becomes lower, with appre-
ciable differences arising at larger densities where the asso-
ciation is favored. But, as stated above, we are more inter-
ested on the high density region for which the HNC
pseudospinodal closely resembles a true spinodal line. We
analyze this issue in what follows.

From Fig. 3 it is clear that the association works in the
sense that the liquid phase is shifted to higher densities. Be-
sides, our results suggest that the liquid may become com-
pletely unstable for short bond lengths, the phase diagram
being thenprobably reduced to a fluid–solid equilibrium. It
should be noted that this equilibrium may be altered by both
the bond length and the well width~see Fig. 2!. By compar-
ing the reduced inverse isothermal compressibilityxT

21 ob-
tained from the widths used for Fig. 2~b!, one could argue
that the origin of the liquid instability is due to a wider
potential width which favors association. This cannot be con-
sidered the main factor acting here since, at the same density
and temperature, an elongationL*51/2 gives a higher level
of association with the system remaining in a liquid phase. It
is thus the competition between association and elongation
which translates into the disappearance of the liquid region.
In other words, the effect seems to be linked to the limited
number of clusters that may appear at short bond lengths

~recall that forL*51/3, the tetramer is the largest cluster that
can be formed!. In Fig. 3 we have also included the pseudos-
pinodal curve obtained when the steric saturation case is en-
forced. In such a case the liquid phase would be stable. This
fact also gives support to a possible relation between the
topology of the species and the peculiar behavior observed
for the shorter elongation analyzed in this work. For larger
elongations the steric saturation works in the same direction,
i.e., the liquid is stable in a larger range of temperatures and
densities. What is apparent from these results is that associa-
tion plays a central role in determining the phase behavior of
simple systems and could help to explain some of the pecu-
liarities observed for instance in dipolar and ionic systems.

B. Structure

In order to investigate the accuracy of the HNC integral
equation in the description of the associating system, we
have carried out several Monte Carlo~MC! simulations us-
ing the set of parameters mentioned above for the description
of the intramolecular contribution to the potential energy
~k*515 000 andDe* 5 0!. We consider two isotherms,T*52
and T*54. Both correspond to supercritical systems, al-
though the former temperature is in the vicinity of the pseu-
dospinodal line for systems with elongationL*51/3 when
the density is closer*51.0. Figure 4 depicts the internal
energy and pressure obtained from HNC and MC calcula-

FIG. 3. Pseudospinodal lines for bond lengthsL*51/3 andL*51/2 as pre-
dicted by the HNC integral equation. Solid lines refer to the CFM potential
defined in Eq.~4! with De* 5 0 and dashed lines are for the same potential
but fulfilling the steric saturation condition~see the text for details!. The
curves for the simple LJ potential are included for comparison.

FIG. 4. Reduced internal energy and pressure for isotherms~a! T*52 and
~b! T*54 of the system withDe* 5 0. Lines correspond to HNC integral
equation results forL*51/3 ~solid! andL*51/2 ~dashed!. Symbols repre-
sent MC simulations forL*51/3 ~circles! andL*51/2 ~squares!.
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tions. The results from theory and simulation are in excellent
agreement, even at the highest densities considered. This co-
incidence is curious given the poor performance of the HNC
for LJ potentials. In some sense this resembles the behavior
of the HNC in ionic fluids. Notice that the simulation pres-
sures forT*52 andL*51/3 show a change in the slope in
agreement with the theoretical predictions. Therefore, the re-
gion of instability depicted in Fig. 3 is not a mere artifact of
the HNC and one can be confident that the liquid phase
becomes unstable at short elongations. Preliminary computa-
tions of the phase coexistence for such a Hamiltonian by
means of the Gibbs ensemble Monte Carlo technique con-
firm this result.

Figure 5 represents the values of^N& obtained from the
HNC and Monte Carlo simulations for the isothermsT*52
andT*54 and the bond lengthsL*51/3, 1/2, and 3/5. Nu-
merical results are collected in Table II. We have used
Rb50.75s as the upper integration limit in the computation
of the running coordination number. At this distance the pair
correlation functiong(r ) is zero for all the elongations con-
sidered~see Fig. 6!. For a given temperature,^N& increases
with density, which is related with the increasing encounter
probability of two particles as the system volume decreases.
As could be expected,̂N& increases with elongation for a
given temperature. It is a manifestation of the simple fact
that particles can establish links with more neighbors as the
steric hindrance decreases. This behavior is present in both

the simulation and the HNC results. The latter always over-
estimates the MC value for^N&, as seen in Fig. 5 and Table
II.

In Fig. 6 we present the pair correlation functions at
r*51.0 and T*52 and the three elongations mentioned
above. This large density is interesting because the system
presents a high degree of association—^N& is larger than 0.7

FIG. 5. Running coordination number,^N&, for isotherms~a! T*52 and~b!
T*54 and bond lengthsL*51/3, L*51/2, andL*53/5 ~system withDe*
5 0!. Lines and symbols have the same meaning than those in Fig. 4 with
the addition of triangles and dash–dotted lines forL*53/5.

TABLE II. Running coordination numbers for the central force model with
De* 5 0 from Monte Carlo and HNC integral equation.

L* r*

T*52 T*54

MC HNC MC HNC

0.10 0.005660.0004 0.0057 0.007460.0005 0.0075
0.25 0.02460.007 0.026 0.02860.002 0.031

1/3 0.50 0.11560.017 0.144 0.12560.008 0.149
0.75 0.37560.023 0.397 0.36760.013 0.384
1.00 0.70660.027 0.711 0.67860.024 0.677

0.10 0.01160.001 0.011 0.01560.001 0.015
0.25 0.03960.004 0.041 0.05160.002 0.053

1/2 0.50 0.14060.009 0.168 0.17460.008 0.193
0.75 0.38860.018 0.432 0.42060.015 0.450
1.00 0.75660.021 0.783 0.75760.021 0.780

0.10 0.01560.001 0.015 0.02160.001 0.021
0.25 ••• 0.052 ••• 0.070

3/5 0.50 0.16260.009 0.195 0.21260.008 0.236
0.75 ••• 0.513 ••• 0.547
1.00 0.92160.025 0.961 0.93060.023 0.966

FIG. 6. Pair distribution functions for the system withDe* 5 0 at r*51.0
andT*52 for bond lengthsL*51/3, 1/2, and 3/5. The latter functions are
shifted along they axis. Solid lines represent HNC results and dashed lines
MC simulations.
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in all cases—and, in some sense, it can give a hint on how
well the molecular system will be described. The structure
predicted by the theory is in very good agreement with the
Monte Carlo simulations, in accordance with what we found
for the thermodynamic quantities. The structure of the liquid
is quite sensitive to the bond length in the same way as in
real systems composed of homonuclear diatomic molecules
of similar elongations. The molecular nature of the system is
structurally denoted by the existence of secondary peaks
~humps! at distancesr'L1s. Despite the great similarity
between these pair correlation functions and those of true
molecular models, it should be pointed out that the peaks
observed aroundL1s are—for elongations 1/2 and 3/5—
due in part to the formation ofn-mers~n.2! which are not
allowed in true molecular systems. This question will be ad-
dressed in more detail in what follows.

The averaged quantitŷN& incorporates various contri-
butions, from dimers to larger clusters. Simulation provides
an easy route to obtain the cluster population. One only
needs to define theclustering distance, Rb50.75s in our
case, and simply count the number of clusters of different
sizes in a given configuration generated in the simulation.
The analysis, extended over a large number of configura-
tions, allows us to get the average value for the cluster popu-
lation of the system. The method is the same we employed in
a previous work dealing with ionic systems.26 The cluster
population, calculated from averages over 500 configura-
tions, is reported in Table III. ForT*52, the shorter bond
length almost exclusively renders dimers as the largest clus-
ter, even at the highest density. Increasing the elongation
leads to the appearance of larger clusters. These also contrib-
ute very little to the overall population forL*51/2, but for
L*53/5 their contribution is by no means negligible. Thus,
for the shorter elongation~L*51/3!, if the density and tem-
perature are such that^N& is close to unity, one can approxi-
mately speak of a molecular fluid with small deviations due
to the formation of high order clusters. At larger bond

lengths~L*51/2,3/5! the situation would rather be similar to
a polydisperse polymeric system. On the other hand, tem-
perature has the effect of flattening the distribution curve,
i.e., it decreases the population of the more abundant species
and increases the number of other cluster types.

Once the clusters have been obtained for every MC con-
figuration, it is easy to obtain the pair connectedness func-
tion, p(r ). This function has shown to be useful in describ-
ing association phenomena in liquid systems~see for
instance its application to ionic association in electrolyte
solutions26!. In essence,p(r ) is similar to the pair correlation
functiong(r ) but it takes into account only particles within a
cluster, i.e., particles that are directly or indirectly linked to
the reference one. Therefore,p(r ) depends on the clustering
distance,Rb . Since all the particles lying at a distance
shorter thanRb are directly linked to the central one, it fol-
lows that the pair connectedness and the pair correlation
functions are identical forr,Rb . In Fig. 7 we representp(r )
for elongationsL*51/2 andL*53/5 atT*52 andr*51.0.
Let us discuss theL*51/3 case before commenting on the
results of Fig. 7. Because of the potential and clustering defi-
nitions, for L*51/3 the maximum size of the higher order
clusters is 4, with every particle separated from each other at
a distanceL* in a tetrahedral arrangement. Therefore,p(r )
is identically zero outside the intramolecular region. This
tells us that the shoulder observed in the pair correlation
function ~cf. Fig. 6! is of intermolecular origin.

The pair connectedness functions depicted in Fig. 7
present a sharp peak at a distancer *'1. The peak is due to
the formation of trimers, which are essentially linear for
L*51/2 and angular forL*53/5. In the latter case, given the
longer separation between particles within the cluster, these
may arrange themselves such that particles at the extremes
lie at distancesr *'21/6 ~at the minimum of the intermolecu-
lar LJ potential contribution!. For both elongations, the pair
connectedness presents a second maximum at separations
close toL1s. This reflects an indirect link between two

TABLE III. Monte Carlo cluster population expressed as the probability that a given particle belongs to a cluster of sizen ~De* 5 0 unless otherwise indicated!.

L* r*

T*52 T*54

n51 n52 n53 12(n51
3 n51 n52 n53 12(n51

3

1/3

0.10 0.994 0.006 ••• ••• 0.993 0.007 0.000 •••
0.50 0.885 0.114 0.001 ••• 0.875 0.124 0.001 •••
1.00 0.349 0.596 0.055 ••• 0.373 0.575 0.052 0.000
1.00a ••• ••• ••• ••• 0.245 0.504 0.228 0.023

1/2

0.10 0.990 0.010 0.000 ••• 0.984 0.016 ••• •••
0.50 0.863 0.134 0.003 0.000 0.828 0.166 0.006 0.000
1.00 0.317 0.546 0.115 0.022 0.336 0.482 0.144 0.038
0.50a ••• ••• ••• ••• 0.329 0.347 0.238 0.086
1.00a 0.218 0.505 0.240 0.037 0.232 0.446 0.238 0.084

0.10 0.986 0.014 0.000 ••• 0.977 0.022 0.000 •••
0.50 0.845 0.138 0.015 0.002 0.797 0.175 0.024 0.004

3/5 1.00 0.290 0.303 0.178 0.229 0.294 0.293 0.173 0.240
0.50a ••• ••• ••• ••• 0.337 0.249 0.160 0.254
1.00a 0.274 0.284 0.185 0.257 0.276 0.278 0.176 0.270

aFull association limit.
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particles mediated by a chain of at least two bonded particles
~i.e., the cluster is made up of, at least, four particles!. It is
also to be noticed that in the case of the larger elongation
p(r ) has a small but non-negligible value for separations
longer than 2.5s, which is a somewhat unexpected result in
view of the small number of high order clusters~see Table
III !. Thus, p(r ) supports the idea that the topology of the
clusters in systems with medium to large elongations is
likely linear, with some deviations evidenced by the varia-
tions in width and position of the pair connectedness peaks.
The peak aroundL1s is, in part, due to intracluster correla-
tions but this contribution tog(r ) is smaller than that due to
particles which belong to different molecules.

VI. THE COMPLETE ASSOCIATION LIMIT

A. Calculation of De and general properties

Now we will focus on a particular case of the association
reaction, namely, the complete association limit. As men-
tioned above, it is possible to tune the equilibrium reaction
by varying the intramolecular potential width and/or the lo-
cation of the minimum of the intramolecular potential. Like-
wise, for a given width and elongation, the equilibrium can
be altered by modifying the depth of the intramolecular po-
tential well. As discussed in previous sections,^N&51 is a
necessary but not sufficient condition to define a system ex-
clusively made up of dimers. In order to establish such a
limit, the Hamiltonian that defines the system should have
the property of steric saturation. We have seen in the cluster
analysis reported in the previous section that for short elon-
gations,L*51/3 andL*51/2, the population of aggregates

composed of more than two particles is quite small. It is for
the larger elongation where there appear to be a significant
number of large clusters~cf. Table III!.

By solving the OZ integral equation coupled with the
HNC closure, we have obtained the set ofDe* values that
fulfills the condition ^N&51 as a function of density and
temperature. In Fig. 8 these values are depicted for the tem-
peraturesT*54 and T*52. De* takes both negative and
positive values. The negative values point out that at the
density and temperature under consideration the value of
^N&, before adjustment ofDe* , is lower than one. Similarly
the positive values correspond to systems that exhibit a value
of ^N& larger than one. All these lines end at the nonsolution
curve of the HNC equation. In the case of steric saturation,
De* must have negative values. We have simulated the cen-
tral force model potential using the set ofDe* values fur-
nished by the integral equation as seen above. From our pre-
vious results, one cannot expect to get a simulated value of
^N& identical to one but we can be confident that its value
will be quite close to the desired one. In Table IV we report
the values obtained in the simulations for^N& as well as the
De* value for several selected thermodynamic conditions.
Also reported are the simulated internal energy and pressure.
The average running coordination numbers lie mostly below
unity in accordance with the overestimation of^N& by the
integral equation. Hence, a more negative value forDe*
would be needed in order to fulfill the complete association
condition. Nevertheless, it is to be expected that these small

FIG. 7. Monte Carlo pair connectedness function for the systems and states
of Fig. 6. Solid lines correspond toL*53/5 and dashed toL*51/2.

FIG. 8. Values of intramolecular potential depth,De* leading to complete
association~^N&51! within the HNC integral equation framework at tem-
peratures~a! T*54 and~b! T*52. Solid lines,L*51/3; dashed,L*51/2;
dash–dottedL*53/5.
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differences have a negligible influence on the properties of
the system.

It is interesting to examine the ability of the integral
equation to describe the thermodynamics of the system. In
Fig. 9 we plot the thermodynamic properties for the states
considered in Fig. 8~numerical results are compiled in Table
IV !. The internal energy is predicted reasonably well by the
HNC integral equation irrespective of the bond length. For
pressure there are some discrepancies, although the HNC
correctly predicts the trends observed in simulation. Notice
in particular that the theory correctly describes the depen-
dence on density for systems with different bond length. At
the same density and temperature, the internal energy be-
comes more negative with increasing elongation. This may
be a trivial consequence of the value ofDe* used for the

different systems. Pressure increases as the bond length is
augmented. As can be expected, the association diminishes
the system pressure and the same applies to a shortening of
the bond length.

We have performed the cluster analysis of the systems
referred in Table IV in order to know which are the species
that result from enforcing the constraint of full association,
^N&51. The results are also compiled in Table III. As the
running coordination numbers of the systems not fulfilling
the condition are always less than unity~see Table II!, the
increase in the number of trimers and higher order clusters
when the condition is imposed is a trivial result. Neverthe-
less, the simultaneous decrease in the number of dimers is
significant. Thus, the complete association limit leads to a
cluster population which does not resemble a system of di-
atomic molecules despite that, in both cases,^N&51. The
effect of density is also to be noticed. Systems at constantT*
andL* have approximately the same number of trimers and
higher order clusters. On the contrary, the number of mono-
mers and dimers can be rather different. A careful analysis
indicates that the full association limit is reached in systems
at low densities through the maximum saturation of the
bonds within the complex clusters. At higher densities the
increase in the probability of encounters between monomers
leads to an increase in the population of dimers. In these
conditions, the saturation of the bonds within higher order
clusters is not needed. In other words, trimers and higher
order clusters are preferably cyclic at low densities, whereas
in dense systems these clusters are~topologically! more lin-
ear.

As to the pair correlation functions of the systems con-
sidered above, in Fig. 10 we compare the results obtained in
the MC simulations with the HNC integral equation calcula-
tions for the bond lengthsL*51/3, 1/2, and 3/5 atT*54 and
r*51.0. The theoretical predictions show an excellent agree-
ment with the simulation results. In addition we have in-
cluded the correlation functions obtained in a molecular dy-
namics run. The simulation was initiated from a
configuration of diatomics arranged in a fcc lattice. In these
conditions molecules do not dissociate due to the large ther-
mal barrier between intramolecular and intermolecular po-
tentials. We recall that the structure of the system obtained
from this simulation is essentially the same as that obtained
from a rigid model. From the cluster analysis of configura-

TABLE IV. Thermodynamic properties and running coordination numbers in the full association limit~^N&51!.

L* r* T*

U* P* ^N&

2De*MC HNC MC HNC MC HNC

1/3 1.0 4 28.0360.15 27.90 5.660.6 4.9 1.0360.04 1.00 6.18

0.5 4 27.5460.24 27.60 3.260.3 1.3 0.9960.05 1.00 11.86
1/2 1.0 4 26.1560.08 26.17 11.060.6 7.8 0.9860.03 1.00 4.19

1.0 2 26.8360.06 26.86 2.460.5 1.6 0.9860.03 1.00 2.51

0.5 4 26.3060.18 26.40 3.460.2 1.3 0.9860.04 1.00 9.35
3/5 1.0 4 24.2460.07 24.20 11.560.6 10.1 0.9860.03 1.00 0.53

1.0 2 25.7260.05 25.69 3.360.6 3.1 0.9760.04 1.00 0.38

FIG. 9. Pressure and internal energy of systems in the complete association
limit ~i.e., using forDe* the values of the previous figure! along the isotherm
T*54. Symbols are used for simulation results and lines for HNC calcula-
tions.L*51/3: solid, circles;L*51/2: dashed, squares; andL*53/5: dash–
dotted, triangles.
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tions obtained from the MC simulations we have concluded
that, although dimers are dominant in the system, some per-
turbation with respect to the molecular fluid should be ex-
pected due to the presence of other species. The curves that
result from the imposition of thêN&51 condition present
some features typical of the molecular system as the shoulder
aroundL1s. This was also observed inDe50 case. The
coincidence of the curves for the molecular system and the
CFM for the shorter elongationL*51/3 is good, although
the main peak is wider, indicating the presence of some more
neighbors at shorter distances in the CFM than those ob-
served in the molecular system. An increase in the bond
length enhances the differences. Departures in position and
magnitude of the peaks can be ascribed again to the contri-
bution of higher order clusters denoted by the pair connect-
edness functions, also shown in Fig. 10.

Figure 11 presents the same functions as those in Fig. 10
but for a lower densityr*50.5. The HNC nonsolution line
precludes the computation of this thermodynamic state for
L*51/3 so we report results just for elongations 1/2 and 3/5.
The CFM results forL*51/2 are in good agreement with
those for the molecular system, whereas forL*53/5 the
CFM exhibits a large peak around 21/6s absent in the mo-
lecular case. The pair connectedness reveals again that part
of this contribution is due to the existence of clusters of size
larger than two~trimers! which, as seen in Table III, are
present in a significant quantity. Figure 11~a! shows that for
L*53/5 the pair connectedness peaks at 21/6s and L1s
overlap. This stresses the variety of conformations exhibited
by the large clusters formed in these conditions.

B. Comparison with molecular systems

Next we check the ability of the central force model to
account for the properties of molecular models intended to
describe real molecular fluids. We have focused on the struc-
ture of several homonuclear diatomic fluids that have been
the subject of a recent work.27 Again, the CFM are atomic
systems, including an intermolecular contribution and an in-
tramolecular component. The former is the same as the
atom–atom potentials in the molecular diatomic models~see
Table I! while the latter incorporates a value forDe , enforc-
ing the condition̂ N&51. The procedure for obtaining theDe

values for each system is the same as described above. The
thermodynamic states lie in the neighborhood of the liquid
branch of the gas–liquid equilibrium curves of N2 and Cl2.
They are collected in Table V, together with the values for
De . Notice that most of the states correspond to densities
and temperatures respectively higher and lower than those
considered in the previous sections.

Figures 12 and 13 show the atom–atom distribution
functions of N2 ~at 66.4 and 77 K! and Cl2 ~at 200 and 290
K!, respectively. We compare our results with computations
for the diatomic model using the RISM-HNC integral equa-

FIG. 10. Pair correlation functions for systems in the complete association
limit at T*54 andr*51.0. Dashed lines, MC computations; solid, HNC
predictions; dashed–dotted, molecular dynamics simulations for the same
potential but with a starting configuration of particles clustered in dimers.

FIG. 11. As Fig. 10 but forr*50.5. The system withL*51/3 lies within the
nonsolution region of the HNC theory and, thus, is not plotted.

TABLE V. Thermodynamic states of real systems considered in this work.

Molecule T/K T* r/~gr/cm3! r* De*

N2 66.4 1.780 0.8541 1.3319 2.30
N2 77.0 2.064 0.8080 1.2600 0.72
Cl2 200.0 1.153 1.6600 1.0631 0.64
Cl2 290.0 1.671 1.4188 0.9086 21.46
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tion and MC simulation.27 The structure obtained from the
atomic HNC equation using the CFM potential is, for both
liquids, almost indistinguishable from that predicted by the
RISM-HNC for the molecular models. In some sense, it
seems that the latter theory can be considered as a limiting
case of a CFM when intramolecular potential is infinitely
narrow, i.e., it is a Dirac’s delta function. The comparison of
theory with MC simulation results for the CFM potential at
the same conditions of temperature, density, bond length,
andDe* indicates that the HNC has some deficiencies in the
prediction of the structure at low elongations~Fig. 12! but it
is very reliable for larger bond lengths~Fig. 13!.

The CFM-HNC results differ in several structural fea-
tures from those of the molecular systems. Although the first
peak is well predicted in both position and height, the mag-
nitude of first minimum is not accurately described. Figures
12 and 13 demonstrate that the deficiencies are not due to the
theoretical approximation but to the some inadequacy of the
potential model in accounting for the molecular nature of the
systems. This is clear when one observes the differences be-
tween the MC simulations of the CFM and the true diatomic
fluid. In Table VI we report the cluster population for the
states referenced in Table V. In N2 at 66.4 K, dimers are

clearly prevalent and the proportion of other species does not
reach a 25%. Accordingly, there are little differences in this
case between the molecular and the CFM systems@Fig.
12~a!#. The increase in temperature from 66.4 to 77 K trans-
lates in the formation of a small fraction of tetramers, also
increasing the number of monomers and trimers at the cost
of a subsequent reduction of dimers. As a result, the depar-
tures between the true molecular and the associated systems
are slightly enhanced@Fig. 12~b!#. For more elongated di-
atomic molecules, the cluster population of the CFM differs
very much from the strict dimerization. However, the devia-
tions of the atom–atom distribution functions for the mo-
lecular system, with respect to the pair correlation functions
of the associated one, do not correspond with their differ-
ences in the cluster population. In fact, Fig. 13 stresses the
remarkable ability of the CFM system to ‘‘emulate’’ the mo-
lecular one.

FIG. 12. Pair correlation functions for liquid N2 in the vicinity of the
liquid–vapor coexistence line.~a! T566.4 K, r50.8541 g/cm3; and ~b!
T570 K, r50.8080 g/cm3. Solid lines~HNC! and circles~MC simulation!
represent results for the central force model proposed in this work~see
Table I for the potential parameters!. Filled squares and dashed lines repre-
sent MC and RISM-HNC calculations respectively for a true molecular
~atom–atom! potential~taken from Ref. 27!. The results of the RISM-HNC
theory are also depicted though they are indistinguishable form the CFM-
HNC theory.

FIG. 13. Same as Fig. 12 but for Cl2 at ~a! T*5200 K, r51.6600 g/cm3;
and ~b! T*5290 K, r51.4188 g/cm3.

TABLE VI. Monte Carlo cluster population for the real systems considered
in this work.

Molecule T/K n51 n52 n53 12(n51
3

N2 66.4 0.113 0.779 0.108 •••
N2 77.0 0.154 0.679 0.159 0.008
Cl2 200.0 0.282 0.279 0.163 0.276
Cl2 290.0 0.295 0.268 0.158 0.279
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C. Stability boundaries in the complete association
limit

In this section we discuss the pseudospinodal curves ob-
tained from the HNC integral equation solved in the full
association limit, i.e., after imposing the^N&51 condition.
The results are presented in Fig. 14. There we have also
included the pseudospinodal lines obtained when the integral
equation is solved without constraints for^N&. The changes
in the value ofDe* have dramatic consequences on the sta-
bility region of the system. In general, the effect of a de-
crease inDe* is to shift the stability region of the liquid to
larger densities and lower temperatures. The stability region
of the liquid at intermediate densities and the gas phase are
not accessible through the HNC approximation. This fact
somehow resembles what happens with the HNC integral
equation in the study of the restricted primitive model of
electrolytes. In Fig. 14 we also plot the experimental liquid
branch of the gas–liquid coexistence curve of diatomic mo-
lecular fluids. Even though the pseudospinodal lines lie in-
side the experimental liquid branch, as it should be if that
would be the real spinodal line, one should not draw a defi-
nite conclusion in view of these curves. However, the coin-
cidence in the slope of the curves is highly significant. It
seems that our system composed of monomers, dimers, and
larger clusters~polymeric species! actually presents a stabil-
ity region which is closely related with that of a molecular
system.

As has been commented along this work, the use of a

potential which fulfills the steric saturation condition would
warrant, for short enough elongations,L*51/3 for instance,
that the only species present in the system would be dimers.
A Hamiltonian that fulfills this requisite is easily built by
considering the system as composed of two different types of
atoms and by defining the intramolecular interactions a way
such that association between like atoms is not possible. We
have calculated the pseudospinodal curve resulting from the
HNC integral equation for such a Hamiltonian. The pseudos-
pinodal lines are virtually identical to those of the homoge-
neous reaction and for that reason are not shown here.

VII. SUMMARY AND DISCUSSION

In this work we have studied ahomogeneousassociation
reaction. The particles interact through a central force model
potential, composed of an intermolecular component de-
scribed by a Lennard-Jones interaction and an intramolecu-
lar potential defined by a harmonic oscillator. The atomic
Ornstein–Zernike~OZ! integral equation coupled with the
HNC closure turns out to be rather accurate for describing
the thermodynamic properties, structure, and association as
compared with Monte Carlo simulations of the same poten-
tial model. The study of the stability of the liquid and gas
phases through the computation of the HNC pseudospinodal
curve reveals that the stability region of this system is highly
dependent on the bond length and the intramolecular poten-
tial depth. For a short elongation, such asL*51/3, the liquid
phase is probably not stable and one can presume a direct
gas–solid transition. These features can be related to the fact
that, when particles associate, the available volume per par-
ticle increases. Aside from association effects, a short elon-
gation imposes a limit on the topology and size of the clus-
ters, and this also plays an important role on the stability of
the system. In fact, we have observed that the liquid phase is
recovered when a Hamiltonian ensuring the steric saturation
condition is used. On the other hand, an increase in the bond
length, at least up to the values considered in this work, also
makes stable the liquid phase. It seems that further study of
the stability boundaries of this model can throw some light
on the conditions for the existence of the the vapor–liquid
transition, a question that has recently received some atten-
tion, especially in the context of fluids made of associating
particles as colloids or ionic liquids. Calculations for our
model using the Gibbs ensemble will be reported in a forth-
coming publication.

The central force potential considered here is also used
to model molecular systems. We have assessed its ability to
describe the structure and thermodynamics of homonuclear
diatomic molecular fluids, such as N2 and the halogens. In a
true diatomic molecular system the number of bonds per
particle is exactly one. One can enforce this condition on the
integral equation but only on average because the CFM does
not guarantee steric saturation. Despite this limitation we
have studied the effect of imposing the condition^N&51
~referred to as the complete association limit! on the theory.
In order to solve the integral equation we have devised a
simple Newton–Raphson procedure which adjusts the num-

FIG. 14. Pseudospinodal lines of the HNC integral equation for the system
in the complete association limit~solid lines! compared with the liquid
branch of the liquid–vapor coexistence curves of several homonuclear di-
atomic molecules~full circles!. Dashed lines are the HNC results for the
corresponding associating systems withDe* 5 0. The parameters given in
Table I were used.
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ber of bonds per particle~the intramolecular coordination
number! to the desired value. The adjustment of the average
number of bonds per particle is feasible by making the in-
tramolecular potential more or less attractive. Comparison
with Monte Carlo simulation shows that the HNC theory
works very well in predicting the structure of the system as
well as the internal energy. As usual, the pressure is the
quantity which presents the larger discrepancies. We have
also solved the HNC integral equation in combination with
the full association condition,̂N&51, for thermodynamic
states typical of the liquid state. Comparison with molecular
theories shows than an atomic theory like this predicts a
structure which is virtually the same as that obtained from a
molecular theory such as the RISM-HNC.

Once the theory is checked satisfactorily against simula-
tion, the next issue addressed in this work is to which extent
the associating potential model is able to account for the
properties of real molecular liquids, despite that systems ful-
filling the complete association condition are noticeably
polydisperse. The pair distribution functions of CFM models
for N2 and Cl2 are quite similar those reported previously for
atom–atom models. The features denoting a molecular struc-
ture are correctly predicted. However, there are small depar-
tures in the height of secondary peaks and the phase of the
curves at large distances. Flory–Huggins, and also several
recent studies,28–31 has shown the insensitivity of the equa-
tion of state to polydispersity as long as the average chain
length is the same. This argument can help to understand the
coincidence between the HNC pseudospinodal curve of the
CFM potential and the liquid branch of the experimental
vapor–liquid coexistence line of N2 and halogens.

One of the aims of this paper has been to analyze a
possible route to solve molecular systems at the level of
atomic theories by using central force model potentials. It’s
possible application to water is tempting being this the para-
digm of associating fluid. From Monte Carlo simulations of
the Stillinger’s CFM of water, we know that it furnishes the
correct number of intramolecular bonds at room temperature.
This feature is not predicted by the atomic Ornstein–Zernike
integral equation coupled with the HNC closure. The failure
is due to the neglect of the bridge functions which play a
main role in determining the correct number of bonds in the
molecule. Recently, Vossen and Forstman5 adjusted the in-
tramolecular bonds by using empirical bridge functions in
addition to the hard sphere ones. Thus, a possible theoretical
route to the structure of water consists in the usual atomic
HNC theory supplemented with the addition of an effective
potential that ensures the fulfillment of the average number
of intramolecular bonds. Under these circumstances one can
expect to get reasonable results for the structure as it happens
in a RISM-like treatment.32 In our opinion, future work
should be centered on the search of methods that render such

effective potentials in a systematic~i.e., nonempirical! man-
ner. An approach as that presented in this work may provide
a sensible alternative along that way.
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