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Using classical density functional theory (DFT) we analyze the structure of the density profiles and
solvation pressures of negatively charged colloids confined in slit pores. The considered model,
which was already successfully employed to study a real colloidal (silica) suspension [S. H. L.
Klapp et al., Phys. Rev. Lett. 100, 118303 (2008)], involves only the macroions which interact via
the effective Derjaguin-Landau-Verwey-Overbeek (DLVO) potential supplemented by a hard core
interaction. The solvent enters implicitly via the screening length of the DLVO interaction. The free
energy functional describing the colloidal suspension consists of a hard sphere contribution obtained
from fundamental measure theory and a long range contribution which is treated using two types of
approximations. One of them is the mean field approximation (MFA) and the remaining is based on
Rosenfeld’s perturbative method for constructing the Helmholtz energy functional. These theoreti-
cal calculations are carried out at different bulk densities and wall separations to compare finally to
grand canonical Monte Carlo simulations. We also consider the impact of charged walls. Our results
show that the perturbative DFT method yields generally qualitatively consistent and, for some sys-
tems, also quantitatively reliable results. In MFA, on the other hand, the neglect of charge-induced
correlations leads to a breakdown of this approach in a broad range of densities. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4730923]

I. INTRODUCTION

The study of colloidal suspensions subject to spatial con-
finement is an active field of research with many interesting
technological applications in lubrication, adhesion, and de-
sign of nanomaterials. Moreover, these type of systems are
very interesting from a theoretical point of view, because
their study makes possible to understand the physics that oc-
curs due to finite-size effects, surface forces, and reduced di-
mensionality. The spatial confinement can induce significant
changes of the structure and phase behavior of a fluid as com-
pared to its bulk properties. In the case of a fluid inside of a
slit pore the translational symmetry of the bulk system is bro-
ken in one spatial direction. This causes the colloid particles
to form layers parallel to the walls.

In the present work, we employ density functional
theory (DFT) and grand canonical Monte Carlo (GCMC)
simulations to study a colloidal suspension of (negatively)
charged particles with moderate Coulomb coupling confined
between two plane-parallel charged surfaces. The model, in-
cluding our choice of parameters, is inspired by a real col-
loidal suspension consisting of silica particles.1 We perform
DFT calculations, using fundamental measure theory (FMT)
to treat the hard core interaction. The FMT (Refs. 2 and 3)
is known to give excellent results for pure hard sphere sys-
tems. The long range repulsion is treated considering two
kinds of approximations. One of them is the mean field ap-
proximation (MFA), where the excess free energy functional
can be obtained from a perturbative expansion to lowest order

a)Electronic mail: a.gallardo@iqfr.csic.es.

of the pair potential.4 The other approximation is a perturba-
tive method suggested by Rosenfeld in the spirit of the mean
spherical approximation.5

Most previous DFT studies involving colloidal suspen-
sions are focused on a hard-sphere like interaction be-
tween the colloidal particles, with a special emphasis on the
Asakura-Oosawa model, additive and nonadditive hard sphere
mixtures.6–8 On the other hand, there are previous works
which consider long range interactions but they are focused
on potentials with an attractive tail, as typically represented
by the Lennard-Jones (LJ) potential. Even to date, MFA is the
most popular method used in DFT calculations, because this
approximation is computationally efficient and can describe
some inhomogeneous phenomena.9 Nevertheless, it is known
that its performance is highly system-dependent and can yield
wrong results due to the fact that MFA neglects the fluid struc-
ture completely. There have been earlier efforts to find non-
mean-field approaches, which take into account correlations
between the particles. One of these approaches is the above-
mentioned method proposed by Rosenfeld, which provides an
expression for the long range contribution to free energy func-
tional, taking as reference the uniform system. Earlier works
have used this method together with a first-order mean spher-
ical approximation (FMSA) to study Lennard-Jones fluids10

and Yukawa fluids11 obtaining satisfactory results.
An important aspect we must take into account is that

most intercolloidal interactions considered by theoretical
models are effective models in the sense that some micro-
scopic degrees of freedom are averaged out. These mean or
effective forces are an important key to understand the struc-
ture and stability of the colloidal suspension. In this work,
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we study a charged colloidal suspension involving (nega-
tively charged) macroions. The effective interaction between
these macroions is modeled by Derjaguin-Landau-Verwey-
Overbeek (DLVO) potential that is essentially a repulsive
Yukawa-like potential. The surrounding (monovalent) coun-
terions and salt ions, which constitute the solvent phase, are
implicitly treated.

Our goal is to investigate the density profiles and solva-
tion pressure using DFT methods combined with the afore-
mentioned MFA and FMSA. This allows us to systematically
test the theoretical approximations comparing their predic-
tions to GCMC simulation results.

The remainder of this paper is arranged as follows. In
Sec. II we briefly describe the model, giving a detailed in-
formation about the fluid-fluid and the fluid-wall interaction
potentials. The density functional theory formalism including
information about the free energy functionals expressions are
presented in the Sec. III A. Details of Monte Carlo simula-
tions are described in Sec. III B. Our DFT results for a system
with uncharged walls are presented in Sec. IV A, where we
also compare to MC results. In Sec. IV B, we present our
DFT and GCMC results for systems with charged walls. Fi-
nally, Sec. V is devoted to concluding remarks.

II. MODEL

The colloidal suspension considered in this work consists
of macroions, counterions, salt ions, and solvent molecules.
The macroions are negatively charged particles, and the
Coulomb interaction between them is screened exponentially
by the surrounding counterions and salt ions. Following ear-
lier works,1, 12–15 we model the bulk colloidal solution on
an effective level via the electrostatic part of the DLVO
potential.4, 16 The latter involves only the macroions and the
rest of components are treated implicitly in the model. There-
fore, the corresponding macroion-macroion interaction takes
the form of a Yukawa repulsion,

uDLV O(r) = W
exp(−κr)

r
, (1)

where r is the distance between the centers of two macroions
and the prefactor W is

W = (Z̃e0)2

4πε0ε
exp(κσ ). (2)

In Eq. (2), ε0 and ε are the permittivity of the vacuum and the
relative permittivity of the solvent, respectively. The param-
eter e0 is the elementary charge, σ is the macroion diameter.
Further, Z̃ = Z/(1 + κσ/2) is an effective valency, where κ

is the inverse Debye screening length, which is defined as

κ =
√

e2
0

ε0εkBT
(Zρb + 2INA), (3)

where ρb is the macroions bulk density, NA is the Avogadro’s
constant, and the ionic strength I is a measure of the salt con-
centration. By means of κ our model takes into account the
dependence of the effective macroion interaction on the tem-
perature T and the macroion density.

In order to model the steric repulsion, we use different
approaches in the GCMC simulations and the DFT calcula-
tions. Specifically, in the simulations we use the repulsive
part of a Lennard-Jones potential, uSS(r) = 4 εSS(σ /r)12 (the
LJ parameter is set to εSS/kBT = 1). In the case of density
functional calculations, we have supplemented the DLVO po-
tential by a hard sphere (HS) interaction. We have chosen a
different potential because the HS interaction is a more con-
venient starting point for approximations within the DFT. In
practice, however, the differences between the two models are
negligible since the diameter of the soft-sphere described with
uSS is practically equal to its corresponding effective Barker-
Henderson diameter17, 18 σ BH � σ (at the LJ parameter con-
sidered in this work). We will briefly come back to the role
of the actual shape of the repulsion at the beginning of the
Sec. IV. The total fluid-fluid (FF) interaction for each sort of
calculation is

uSIMU
FF (r) = uDLV O(r) + uSS(r), (4)

in the MC simulations and

uDFT
FF (r) = uDLV O(r) + uHS(r) =

{∞ r < σ

uDLV O(r) r ≥ σ,
(5)

in the DFT calculations. In Eq. (5), uHS(r) is the HS potential.
The DLVO parameters are chosen according to the colloidal-
probe atomic force microscope (CP-AFM) experiments de-
scribed in Refs. 1 and 15. These experiments involve suspen-
sions of Ludox silica particles with a diameter σ = 26 nm
and charge Z = 35. Furthermore, the suspensions are char-
acterized by the temperature T = 298 K, dielectric constant
ε = 78.5, and ionic strength I = 10 mol/l.

We consider the colloidal solution to be confined between
two plane-parallel walls at positions z = 0 and z = Lz. The
confining potential is given by the integrated soft-wall (SW)
potential4

uSW
FS (z) = 4

45
πεw

(
σ

z

)9

, (6)

where we set εw/kBT = 1. In Eq. (6), z is the distance of the
center of the fluid particle from the wall at position z = 0. In
addition, we have investigated the impact of charged walls.14

The latter are modeled by a modified version of the linearized
Poisson-Boltzmann (PB) theory using linear superposition
approximation (LSA) and Derjaguin approximation.19 The re-
sulting screening parameter depends on the distance of the
macroions from the wall and the wall charge. The correspond-
ing interaction potential between a macroion and a charged
wall reads

uLSA
FS = 64πε0εγF γS

σ

2

(
kBT

e0

)2

exp
[
−κW (z)

(
z − σ

2

)]
,

(7)
where γ F/S = tanh (e0ψF/S/4kBT), and ψF/S is the surface po-
tential of the fluid particles (F) and the solid walls (S). The
present calculations involve silica macroions which are char-
acterized by a surface potential of ψF = −80 mV. The ex-
pression for the screening parameter κW (z) is given by

κW (z) =
√

e2
0

ε0εkBT

(
Zρb + 2INA + |σs |

e0z

)
. (8)
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In Eq. (8), σ s is the surface charge density. The latter is
related to the surface potential via the Grahame equation20

σs = √
8c0ε0εkBT sinh(e0ψS/2kBT ), where c0 is the total ion

concentration of the bulk suspension; more detailed informa-
tion about potential parameters and their values are given in
the Ref. 14 . Finally, the total fluid-solid interaction is given
by

uFS(z) = uw
FS(z) + uw

FS(Lz − z) = uSW
FS (z) + uLSA

FS (z)

+ uSW
FS (Lz − z) + uLSA

FS (Lz − z), (9)

where Lz is the distance between the walls. We have implicitly
assumed that the single-wall potentials from the two charged
walls are additive.

III. METHODS

A. Density functional theory

Classical DFT is now well-established as the most suc-
cessful theory to study the equilibrium structure and thermo-
dynamics of inhomogeneous fluids. The natural ensemble to
study confined systems as those considered in the present
work is the grand canonical ensemble. The corresponding
thermodynamic potential, the grand potential, can be consid-
ered as a functional of the one-body profile ρ(r). Its expres-
sion is

	[ρ(r)] = F [ρ(r)] +
∫

d3r ρ(r)(Vex(r) − μ), (10)

where μ and Vex(r) are the chemical and the external poten-
tial, respectively. The functional of the intrinsic Helmholtz
free energy F[ρ(r)] can be split into ideal, hard sphere, and
DLVO contributions,

F [ρ(r)] = Fid [ρ(r)] + FHS[ρ(r)] + FDLV O[ρ(r)], (11)

where the ideal part Fid is

Fid [ρ(r)] = β−1
∫

d3r ρ(r)
[
ln

(
ρ(r)�3

s

) − 1
]
, (12)

and �s is a particle length scale. We treat the HS contribution
via FMT, yielding

FHS[ρ(r)] = β−1
∫

d3r �WB(nα, nβ ), (13)

where �WB(nα, nβ ) is the “White Bear” version3, 21 for the
expression of the free energy density. This free energy density
is a function of a set of scalar and vectorial weighted density
functions, which are given by

nα(r) =
∫

d3r ′ ρ(r′) ωα(r − r′),

nβ(r) =
∫

d3r ′ ρ(r′) �ωβ(r − r′). (14)

The weighted functions {ωα} and { �ωβ} are defined in terms
of Dirac-delta distributions δ(r) and Heaviside step functions
�(r). Explicit expressions for the weight functions are given
in Refs. 2 and 3.

To obtain the functional expressions associated with the
DLVO interaction, we have used two types of approxima-
tions, MFA (Ref. 4) and a perturbative method proposed by

Rosenfeld.5 The corresponding intrinsic free energy func-
tional for the DLVO interaction with MFA reads

FMF
DLV O[ρ(r)]

= 1

2
β−1

∫
d3r

∫
d3r ′ρ(r) uDLV O(|r − r′|)ρ(r′).

(15)

In Eq. (15), we observe that MFA ignores entirely correla-
tions induced by the DLVO interaction. The second theoreti-
cal approximation is constructed by a perturbation expansion
of the free energy of the inhomogeneous system around the
bulk fluid,

FFMSA
DLV O [ρ(r)]

= FDLV O(ρb) + μDLV O

∫
d3r ′�ρ(r′)

−1

2
β−1

∫
d3r ′

∫
d3r ′′cDLV O(r′ − r′′)�ρ(r′)�ρ(r′′),

(16)

where �ρ(r) = ρ(r) − ρb, ρb is the bulk density and μDLV O

is the DLVO part of the excess chemical potential. The func-
tion cDLV O(r) is the direct correlation function (DCF) of the
bulk fluid, which is a key input into the perturbation approach.
In the present work, we have calculated the DCF via the
FMSA.22 The latter is a modification of the well-known MSA,
which has been widely used to calculate correlation functions
of model fluids whose pair potential consists of a HS inter-
action plus a tail. An attractive feature of the MSA is that it
provides analytical expressions for the DCF for a wide range
of models, including Yukawa-like potentials.23 However, to
actually use these expressions one needs to obtain several pa-
rameters numerically from a set of nonlinear equations. An-
other complication related to the MSA is the appearance of
regions in the parameter space where no solutions exist.22, 24

This problem is overcome within the FMSA suggested by
Tang.10 Indeed, the FMSA provides an entirely analytical ex-
pression for DCF, that is, all the parameters can be obtained
directly. This makes the implementation of FMSA within our
DFT calculations as easy and efficient as those based on the
mean field approach.10

The equilibrium density profiles are determined by the
fundamental variational principle of DFT.25 Applied to classi-
cal systems26 this principle state that the total grand potential
	[ρ] [see Eq. (10)] is minimal with respect to variations of
the density profile,[

δ	[ρ(r)]

δρ(r)

]
ρ(r)=ρ0(r)

= 0, (17)

where ρ0 is the equilibrium density profile.26 Once the equi-
librium density profile has been determined we can calculate
the normal pressure Pzz as a function of the wall separation.
Using the functional relation27 and the symmetry properties
of uFS and ρ(z), Pzz can be expressed as

Pzz = −
∫ ∞

−∞
dz ρ(z)

duw
FS

dz
, (18)
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where uw
FS is the total interaction potential of a single wall,

consist of the soft potential uSW
FS (z) and charged wall poten-

tial uLSA
FS (z). Another useful quantity is the solvation pressure

f(Lz), which is defined as

f (Lz) = Pzz(Lz) − Pb. (19)

Here, Pb is the pressure of the bulk system at the same chem-
ical potential as the inhomogeneous system, and Pzz(Lz) is the
normal pressure for a fixed distance between the walls. An
important feature of the solvation pressure is that it is acces-
sible not only by theory and simulations, but also by (e.g.,
CP-AFM) experiments (see, e.g., Ref. 15). Moreover, by ana-
lyzing the behavior of f(Lz) for large Lz (i.e., in the asymptotic
regime), one can obtain valuable information about the fluid
structure1, 6 (see also Sec. IV B). In the present study, we have
obtained the bulk pressure Pb appearing in Eq. (19) by taking
the limit Lz → ∞ of the function Pzz(Lz), i.e., by searching for
those wall separations where the oscillations in Pzz(Lz) disap-
pear. In practice, this is the case if Lz becomes lager than 10–
15 particle diameters (depending of the bulk density consid-
ered). Additionally, we have performed some test calculations
where we determined the bulk pressure via the contact theo-
rem, i.e., via the density profile at the wall. The results turned
out to be consistent with those from Pzz → ∞.

B. Computer simulations

The confined colloidal suspension is in contact with a
reservoir at fixed chemical potential μ and temperature T.
Therefore, we have first carried out canonical (N, V, T) bulk
simulations in combination with the Widom particle insertion
method28 to obtain the chemical potential μ. Afterwards, the
calculated values of μ are then used as an input for the GCMC
simulations.29 Each GCMC simulation is carried out at fixed
temperature T, chemical potential μ, wall separation Lz, and
area parallel to the walls A. For bulk simulations we employ a
cubic simulation cell with periodic boundary conditions in all
three spatial directions. In the case of GCMC simulations, the
simulation box is a cuboid, where Lz generally differs from
lengths in the plane parallel to the walls. Periodic conditions
are only applied in the directions x and y. The simulations
were carried out with about N = 500 particles, but the parti-

cle number was occasionally extended to up to 2000 particles
to reduce the system size effects particularly for the strongly
confined systems. On average, we performed on the order of
(15 − 25) × 103 steps of equilibration per particle followed
by a production period of about the same length. Further tech-
nical details about simulations can be found in Ref. 13. The
aim of the GCMC simulations is to obtain the density profiles
and the effective forces induced by the particles on the walls.
This effective force per unit area is the normal pressure Pzz,
which can be determined from the virial expression30

Pzz = kBT

〈
N

LzA

〉
−

〈
1

A

∂UT

∂Lz

〉
. (20)

The first term is the ideal pressure contribution and the last
term is a derivative of the total potential energy UT with re-
spect to the distance between the walls. This potential UT

is the interaction energy involving both fluid-fluid and fluid-
wall contributions. In the present work, the normal pres-
sures, solvation pressure, and densities are presented in the re-
duced form P ∗

zz = Pzzσ
3/kBT , f* = fσ 3/kBT, and ρ* = ρσ 3,

respectively.

IV. RESULTS

A. System with uncharged walls

In the following, we present results of our DFT calcu-
lations and compare these to the GCMC simulation results.
We consider first the simplest model for the fluid-wall inter-
action, that is, the case of uncharged walls [see Eq. (6)]. Since
the most direct output of the DFT are the density profiles, we
start by considering these quantities.

However, before going into the actual comparison be-
tween DFT and GCMC, we briefly recall that the short-range
repulsive part of the pair potential is different in the two meth-
ods [see Eqs. (4) and (5)]. To better evaluate the importance of
this point, we have performed several GCMC simulations in-
volving hard-spheres plus DLVO interactions (as in the DFT),
on one hand, and soft-sphere plus DLVO interactions, on the
other hand. With both models, we have obtained density pro-
files for strongly confined systems (L∗

z = Lz/σ = 2.9) char-
acterized by two different bulk densities. Results are shown in
Fig. 1. Inspecting the data in Fig. 1 we conclude that there are

FIG. 1. GCMC density profiles for a system with walls separation L∗
z = 2.9 and uncharged walls. Their corresponding bulk densities are (a) ρ∗

b = 0.063, and
(b) ρ∗

b = 0.440.
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FIG. 2. Density profiles for a slit pore with a separation L∗
z = 2.9 and

uncharged walls; (a) ρ∗
b = 0.063, (b) ρ∗

b = 0.200, (c) ρ∗
b = 0.440, and (d)

ρ∗
b = 0.500.

no appreciable difference; i.e., hard- and soft-sphere repulsion
yield essentially the same profiles at parameters considered.

Keeping this in mind, we now focus on the DFT results.
In the Fig. 2, we show exemplary density profiles obtained
from the two DFT versions (FMSA and MFA) and GCMC
simulations. The results pertain to a fixed wall separation of
L∗

z = 2.9 and different bulk densities ρ∗
b . At the lowest den-

sity ρ∗
b = 0.063 [see Fig. 2(a)], the FMSA predicts correctly

the existence of two layers, but underestimates the heights of
the peaks as compared to the GCMC data. The MFA, on the
other hand, is entirely wrong in the sense that predicts only
one layer. As we consider higher bulk densities the agree-
ment between DFT and simulation results improves. In fact,
as shown in Fig. 2(b), already at ρ∗

b = 0.200 the FMSA yields
good results and the MFA becomes at least qualitatively right.
Finally, in Figs. 2(c) and 2(d), we observe that the agree-
ment between FMSA and simulation is very good. At these
higher bulk densities, the MFA also provides satisfactory re-
sults for the height of the peaks, but it exaggerates the den-
sity of particles between the two layers. Before carrying on
with the discussion of the results, it is worth remembering
that the value of the screening parameter κ depends on ρ∗

b [see
Eq. (3)]. Therefore, each density pertains to a different fluid-
fluid interaction, with the range of this interaction (determined
by the inverse of κ) decreasing with increasing ρ∗

b . For that
reason, a comparison of results with different densities can-
not be done directly. This issue becomes particularly impor-
tant when we aim to compare the performance of different
DFT approximations.

We next consider density profiles for different wall sepa-
rations L∗

z at a fixed, relatively high value of the bulk density.
Some examples (for the case ρ∗

b = 0.440) are shown in Fig. 3.
Inspecting these results, it becomes clear that the performance
of our DFT approaches depends not only on the bulk density
(as it is suggested by Fig. 2), but also on the actual value of the
wall separation. More specifically, as shown in Figs. 3(a) and
3(b), the FMSA yields satisfactory results at L∗

z = 4.2, but not

FIG. 3. Density profiles for systems with a bulk density ρ∗
b = 0.440 and

uncharged walls; (a) L∗
z = 4.2, (b) L∗

z = 4.8, (c) L∗
z = 5.1, and (d) L∗

z = 5.5.

at L∗
z = 4.8. In the latter case, the GCMC predicts the forma-

tion of four layers of particles, where the the FMSA predicts
only three. At Lz

* = 5.1, the FMSA profile describes (cor-
rectly) four layers, but the amplitude and position of the oscil-
lations still deviates from the corresponding GCMC result. Fi-
nally, at L∗

z = 5.5 [see Fig. 3(d)] we observe very good agree-
ment with the simulation data, similar to the case L∗

z = 4.2.
Taken altogether, the FMSA is characterized by a “delay” (as
compared to the GCMC) in predicting a new layer upon an
increase of the wall separation (at fixed ρ∗

b ). In the case of the
MFA, this delay is even much larger; therefore this latter ap-
proximation provides consistently unsatisfactory results (that
is, wrong number of layers) at the high density considered in
Fig. 3. Clearly, in both the case of the FMSA and the FMA,
any failures must be due to our treatment of the electrostatic
correction to the excess free energy functional. We will come
back to this point below.

Besides the density profiles themselves, additional infor-
mation about the interplay of bulk density and wall separation
in the context of our DFT approximations is given by the nor-
mal pressure Pzz as function of the wall separation. We have
calculated this quantity at different bulk densities ρ∗

b . Results
are given in Figs. 4 and 5.

An important piece of information is the corresponding
value of the bulk pressure P ∗

b (for the calculation of this

FIG. 4. Reduced normal pressure P ∗
zz as function of wall separation L∗

z . The
corresponding bulk densities are (a) ρ∗

b = 0.063 and (b) ρ∗
b = 0.200.
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FIG. 5. Reduced normal pressure P ∗
zz as function of wall separation L∗

z .
Their corresponding bulk densities are (a) ρ∗

b = 0.440 and (b) ρ∗
b = 0.581.

quantity, see Eq. (19) below). This pressure is the asymp-
totic value of the function P ∗

zz(L
∗
z ) when the wall separa-

tion L∗
z tends to infinity. In Fig. 4(a) we show the normal

pressure for a bulk density ρ∗
b = 0.063. At this density, both

MFA and FMSA provide quite accurate (only slightly over-
estimated) values of the bulk pressure. This is seen from the
fact that the two theoretical curves for large L∗

z a constant
value, which is only slightly higher than the corresponding
GCMC value. At finite values of L∗

z , the DFT results tend
to exaggerate the oscillations, especially in the first mini-
mum and maximum of P ∗

zz(L
∗
z ). Nevertheless, both approx-

imations can be considered satisfactory. Figure 4(b) repre-
sents results for a system with a bulk density ρ∗

b = 0.200.
In this case, both DFT approaches predict lower values of
P ∗

b . Moreover, the MFA yields a very slow decay of oscilla-
tions, and only the values close to the maxima of the function
P ∗

zz(L
∗
z ) are in the vicinity of the GCMC results. The FMSA,

on the other hand, reproduces satisfactorily the oscillations,
with a slightly overestimation particularly at short wall
distances.

Upon increasing the bulk density the DFT predictions
for the bulk pressure worsen. These difficulties in describ-
ing more concentrated systems also concern the full func-
tion P ∗

zz(L
∗
z ), which displays pronounced oscillations accord-

ing to GCMC results. This is illustrated in Figs. 5(a) and
5(b) where we find that the DFT predicts generally too weak
(and shifted) oscillations. Still, the FMSA provides bulk pres-
sure values nearer to simulation data as well as predicts
at least a decay trend similar to the GCMC results. More-
over, the GCMC and FMSA data coincide exactly in some
points located near the relative minima of P ∗

z at small L∗
z .

These coincidences correspond obviously to cases in which
the FMSA yields particularly accurate density profiles. This
is exactly what we observed in Figs. 2(c), 2(d), and 3(a):
The density profiles shown there pertain to a wall separation
L∗

z = 2.9. The latter value is localized near the second rela-
tive minimum of the oscillatory pressure curve [see Figs. 5(a)
and 5(b)].

To better understand these findings we note that in both,
GCMC and DFT approaches, a minimum in the normal pres-
sure announces the formation of a new layer in the density
profiles. This can be seen, for instance, by comparing the den-
sity profiles in Fig. 3 (where ρ∗

b = 0.440) with correspond-
ing curve Pzz(Lz) in Fig. 5. Focusing on the FMSA results
we see that, at L∗

z = 4.2 [see Fig. 3(a)], the system consists
of three layers, while the corresponding normal pressure is

located between the second relative maximum and the third
relative minimum of the function Pzz(Lz). At L∗

z = 4.8, where
the (FMSA) pressure is in a minimum, the central peak has
become much wider and softer. Upon further increase of the
separations, the normal pressure increases again, and the den-
sity profile now reflects four layers of particles [see Figs. 3(c)
and 3(d)]. The same trends are seen in the quasi-exact GCMC
results, with the appearance of the new layer happening at
somewhat lower wall separation. As a consequence of the rel-
ative “delay” of the FMSA, all the minima are shifted towards
somewhat larger values of L∗

z (compared to the GCMC). For
example, at ρ∗

b = 0.440 [see Fig. 5(a)] the second relative
minimum of P ∗

zz is located at L∗
z = 3.2 within GCMC, while

the FMSA and MFA second relative minima are located at
L∗

z = 3.4 and L∗
z = 4.0, respectively.

Another interesting point apparent from Fig. 5 is that,
at high bulk densities, the shifts of the FMSA normal pres-
sure relative to the GCMC curve are most pronounced for
large values of the wall separation. In other words, at small
wall separations, where the system is dominated by the fluid-
wall interactions the pressure oscillations are better described
within the FMSA than at large wall separations, where the
system becomes more and more bulk-like. In fact, as it is
known from other studies,6, 31 the asymptotic decay of the
pressure oscillations [see also Eq. (21)], particularly their
wavelength and decay length, is governed by the bulk pair
correlation function. In the present system, the interactions
involve both a hard-core part (treated within the quasi-exact
FMT) and an electrostatic part, which we treat in a pertur-
bative fashion, i.e., by using some ansatz for the direct cor-
relation function of the homogeneous system [see Eq. (16)].
Having this in mind, the deviations at larger wall separations
can be understood as a hint to a corresponding failure of the
FMSA approximation in predicting the correct bulk structure
at high densities. A further hint is this direction is the fact,
that also the pressure at large wall separations, that is, the bulk
pressure predicted by FMSA, differs from the corresponding
GCMC result. Of course, this is even more the case for the
simpler MFA. Moreover, within the MFA, there is a large shift
(relative to the GCMC data) of the curve P ∗

zz(Lz) in the entire
range of wall separations.

Finally, apart from the shifts in the location of the min-
ima and maxima, we note from Fig. 5, that the FMSA (and
even more the MFA) is not capable of obtaining normal pres-
sure values as high as the GCMC results. This is, to some
extent, also reflected by the density profiles. As an illustration
we present in Fig. 6 results for density profiles at wall sep-
arations close to the first or second maximum of the normal
pressure. The first maximum [see Figs. 6(a) and 6(c)] corre-
sponds to two-layer systems in both, DFT and MC calcula-
tions. However, we see that the DFT significantly underesti-
mates the height of the peaks. Further, at wall separations re-
lated to the next maximum [see Figs. 6(b) and 6(d)], it is the
central peak in the middle of the pore which is much too small
within the DFT predictions. We conclude that the FMSA gen-
erally has difficulties in describing “sharp” density profiles
corresponding to pressure maxima, but performs better when
the profiles are softer (as it is typical at separations related to
pressure minima).
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FIG. 6. Density profiles of systems whose normal pressure is located in the
two first relative maxima. (a) ρ∗

b = 0.440 and L∗
z = 2.5; (b) ρ∗

b = 0.440 and
L∗

z = 3.7; (c) ρ∗
b = 0.581 and L∗

z = 2.4; (d) ρ∗
b = 0.581 and L∗

z = 3.4.

Summarizing this section, we have seen that both DFT
approximations give quite satisfactory results for low bulk
densities. At higher densities, the MFA yields largely unsat-
isfactory results, presumably due to the fact that the corre-
sponding free energy functional entirely neglects correlational
effects beyond those of the HS interaction. The FMSA is gen-
erally more accurate in that it predicts in most cases correctly
the number of layers and the general trend of the oscillatory
pressure curves. Still, it has to be used with some caution.
One feature seems to be a “delay” in the formation of new
layers upon increase of L∗

z . The resulting errors seem to be
the more pronounced, at the larger wall separations. More-
over, as shown by our calculations, the FMSA is not capable
of providing sharp density profiles, which are characteristic
of systems with normal pressures related to maxima in the
function Pzz(Lz).

B. System with charged walls

We now consider systems confined between charged
surfaces. As described in Sec. II, we model this situation
with a fluid-wall potential stemming from linearized PB the-
ory, but with a space-dependent screening parameter [see
Eqs. (7) and (8)]. This ansatz takes into account the fact that
the charged walls release additional (wall) counterions which
accumulate in a thin layer at the surfaces. In analogy to
the colloidal-probe experiments and previous simulations de-
scribed in Ref. 14, we set the surface potential of the (nega-
tively charged) colloidal particles to ψF = −80 mV, whereas
the surface potential of the (likewise negatively charged) walls
varies between −160 mV < ψS < 0 mV. This range seems
realistic in view of the actual surface materials used in the ex-
periments, that silica surfaces (ψS ≈ −80 mV), and mica sur-
faces (ψS ≈ −160 mV). From an experimental point of view,
a particularly interesting question related to modifications of
the surfaces is the impact of such modifications on the oscilla-
tions of the solvation pressure, f(Lz) = Pzz − Pb [see Eq. (19)].

As seen from Figs. 4 and 5 such oscillations (of the normal
pressure and thus, the solvation pressure) occur already for
the case of uncharged walls. In the asymptotic regime (that
is, for large values of Lz), the oscillations are typically fitted
according to the expression

f (Lz) −→ Af exp(−Lz/ξf ) cos

(
2π

λf

Lz − θf

)
, Lz −→ ∞,

(21)
where ξ f is the decay correlation length, and λf is the wave-
length of oscillations. Further, Af is the amplitude and θ f is the
phase of the oscillatory decay. Earlier DFT studies of hard-
sphere systems6, 31 have shown that the quantities ξ f and λf

are determined solely by the pair structure in the bulk system.
That is true also for the real colloidal (silica) system at hand,
which was demonstrated in Ref. 1. Another issue is the ampli-
tude Af and the phase θ f of the oscillations, which is expected
to depend on the nature of fluid-wall interaction.6, 31 Indeed, in
Ref. 14 it was shown by GCMC simulations that variation of
the surface potential of the walls strongly influences both, Af

and (θ f). Here, we discuss our corresponding DFT results. We
focus on the FMSA since we have seen in Sec. IV A that this
approximation generally provides more satisfactory results as
compared to MFA.

A comparison of FMSA and GCMC data for the sol-
vation pressures in presence of differently charged surfaces
and two bulk densities is given in Figs. 7 (ρ∗

b = 0.200) and 8
(ρ∗

b = 0.440). To facilitate the comparison, the curves are
shifted along the y axis. We can see that upon changing
the surface potential (of the walls) from ψS = 0 (uncharged
walls) to ψS = −40 mV, the FMSA solvation pressure first
decreases in the amplitude Af, as does the curve predicted
by GCMC. On the other hand, when ψS is further changed
from −40 mV to −160 mV, the amplitude of the oscillations
increases again, consistent with what is seen in the experi-
ments and in the corresponding GCMC simulations.14 From
a theoretical point of view, the non-monotonic behavior of
Af reflects an underlying non-monotonicity of the fluid-wall
potential, as it is discussed in detail in Ref. 14. We also ob-
serve from Figs. 7 and 8 that the phase shift of the solvation
pressures decreases as ψS become more negative, reflecting
that the fluid-wall potential effectively broadens. The narrow

FIG. 7. Reduced solvation pressure f* as a function of the wall separation
L∗

z at different surface potential ψS = 0, −40,−80,−120,−160 mV . The
corresponding bulk density is ρ∗

b = 0.200. For clarity the curves are shifted
along the y axis.



014702-8 Gallardo et al. J. Chem. Phys. 137, 014702 (2012)

FIG. 8. The same as Fig. 6, but for ρ∗
b = 0.440.

potential at −40 mV hinders the entrance of colloidal parti-
cles into the slit pore particularly at small L∗

z . So far we have
seen that FMSA is capable of predicting one main, experi-
mentally detectable effect of surface modifications, that is, the
increase of the amplitude Af of the pressure oscillations upon
increasing the absolute value of the surface charge. We now
examine the behavior of the wavelength, λf, which is typically
interpreted as a measure of the distance between the layers
formed parallel to the confining surfaces. According to analyt-
ical predictions from DFT,6, 31 this wavelength is determined
by the asymptotics of the bulk pair correlation function. Thus,
it should be unaffected when one changes the surface charge,
and thus, the fluid-wall potential.

To check this prediction in the context of the present DFT
approach, we have fitted our results for the solvation pres-
sure [see Figs. 7 and 8] according to the expression given
by Eq. (21). Recalling that this expression holds only in the
asymptotic limit, the fit has been started only from the first
peak of the curve f ∗(L∗

z ). Our results for the wavelength
λf are summarized in Table I, where we have included data
from GCMC as well as from corresponding DFT-MFA cal-
culations. It is seen that both the FMSA and the MFA wave-
lengths remain essentially constant when ψS is changed, as
one would expect based on earlier theoretical and simulation
studies.6, 31 On a quantitative level, the DFT results overes-
timate the wavelength. Comparing the two approximations
with the GCMC results, however, we find that the FMSA
performs again much better than the MFA. For example, at
the bulk density ρ∗

b = 0.200 (see left column in Table I), the
FMSA value for λf has a relative error of about 6% as com-
pared to the corresponding GCMC value. In MFA, on the

TABLE I. Comparison of the wavelength obtained from fits for the cases
with a bulk density ρb = 0.200 and ρb = 0.440.

ρ∗
b = 0.200 ρ∗

b = 0.440

ψs/mV MC FMSA MFA MC FMSA MFA

0 1.60 1.74 1.93 1.24 1.32 1.63
−40 1.65 1.71 1.90 1.24 1.34 1.60
−80 1.63 1.71 2.00 1.22 1.35 1.63
−120 1.60 1.73 1.83 1.22 1.33 1.63
−160 1.60 1.73 1.83 1.22 1.34 1.63

other hand, the relative deviation is 17%. At the higher den-
sity ρ∗

b = 0.440 (see right column in Table I), these deviations
increase to 9% and 32% in the case of FMSA and MFA, re-
spectively.

Nevertheless, both DFT approaches predict, in agreement
with earlier studies,1, 14 that λf decreases upon increase of ρ∗

b .
In the context of the MFA, which is a “structureless” approx-
imation neglecting correlation effects, this variation of the
wavelength seems somehow unexpected. We recall, however,
that there is still the HS contribution to the free energy, which
is treated in a highly sophisticated manner (i.e., by FMT) in
both of our DFT approaches. We thus conclude, that the ob-
served density dependence of the MFA-wavelength is essen-
tially due to the HS interaction effects.

V. CONCLUSIONS

In this paper, we have used DFT and simulation methods
to study charged colloidal suspensions confined in slit pores
with uncharged and charged walls. The model employed here
considers the interactions between macroions on an effec-
tive level, while the solvent particles are treated implicitly.
Moreover, this model was previously used to study real sil-
ica colloidal systems, by means of simulations and integral
equations methods.1, 12–15 Our present density functional ap-
proach involves the FMT functional to treat the short-ranged
(hard core) contribution of the colloidal interactions, com-
bined with the MFA and FMSA for the DLVO part. To evalu-
ate the performance of these methods we have compared local
density profiles and normal pressures to corresponding data
from GCMC simulations. Exploring a broad range of densi-
ties and wall separations, it turns out that the FMSA yields
overall more accurate results as compared to the MFA.

Specifically, considering first uncharged walls, we have
found that the FMSA provides quite accurate density profiles
for bulk densities in the range ρ∗

b � 0.200. A similar con-
clusion was reached in a recent DFT study of Louis et al.,11

who used the same FMSA approach to study Yukawa fluids
(with repulsive or attractive Yukawa tail) at somewhat smaller
interaction strength. Fixing the bulk density to ρ∗

b = 0.191,
they also found satisfactory agreement between their DFT
and simulation results. An important difference between the
model used here and that in Ref. 11 is that their screening
parameter does not depend on the density. Nevertheless, the
conclusions are very similar.

At higher density, our DFT results based on the FMSA
show that this theory still yields a good description of the local
structure at some specific wall separations. These wall separa-
tions correspond to relative minima of the normal pressure (as
a function of Lz) in the range of small wall separations, where
the pressure oscillations become pronounced. However, com-
paring the entire curves Pzz(Lz) in FMSA with the simula-
tion results, we find a shift towards somewhat larger wall
separations. This shift is related to the fact that the FMSA
is characterized by a delay in predicting formation of a new
layer when the wall separation is increased from low values
(at fixed ρ∗

b ). Interestingly, the shift is more pronounced at
large wall separations, where the structure in the confined
system should be dominated by fluid-fluid interactions. This
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suggests a general difficulty of the FMSA to predict correctly
the bulk pair correlation function at high densities. A further
hint for inaccuracies of the FMSA in dense systems is the
fact that the bulk pressure suggested from the FMSA curve
Pzz(Lz) at large Lz differs significantly from the correspond-
ing GCMC result. Nevertheless, the FMSA still provides a
valuable description on a qualitative level at the most of the
wall separations in the sense that the number of layers in the
system are described correctly. The MFA, on the other hand,
yields reasonable results only at very low densities. At larger
bulk densities and large wall separations, MFA is not even
able to predict the structure qualitatively.

In the last part of the paper, we have studied our model
fluid in presence of charged walls, using the fluid-wall po-
tential developed in Ref. 14. Our goal was to investigate the
influence of charged surfaces (with varying surface charges)
on the oscillatory decay of the solvation pressure. Our present
DFT-FMSA results confirm the observation previously made
in the GCMC simulations and in experiments,14 that the am-
plitude Af and the phase shift depend on the fluid-wall inter-
action (i.e., the surface charge). On the other hand, our results
also confirm that the wavelength does not depend on the ex-
ternal potentials, which is consistent with previous theoretical
studies31, 32 as well as with simulations/experiments.14 More-
over, the FMSA predictions for the wavelength are quite ac-
curate from a quantitative point of view.

Taken altogether, the results of the present DFT study
show that combining the FMT approach with a sophisticated
perturbative treatment of the long-range, screened Coulomb
(here: DLVO) interactions yields a valuable tool to describe
inhomogeneous charged colloidal suspensions at not too high
densities and coupling strength. These general findings are
consistent with those in Ref. 11 where both repulsive and at-
tractive Yukawa fluids were considered. Moreover, the break-
down of the simpler MFA suggests that it is very important to
use approximations which do not neglect the pair correlations
of the fluid. Based on these insights, it is now tempting to use
the DFT-FMSA approach also for more complicated systems
of confined charged colloids where, e.g., disorder plays a role.
Work in this direction is in progress.
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