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Thermodynamic perturbation theory for molecular liquid 
mixtures 

Johann Fischer and Santiago Lagoa) 

Institut fur Thermo-und Fluiddynamik. Ruhr-Universitiit. D 4630 Bochum. Germany 
(Received 17 November 1982; accepted 29 December 1982) 

A Weeks-Chandler-Andersen type perturbation theory for the Helmholtz energy of mixtures consisting of 
molecules with nonspherical cores is given. The correlation functions are obtained from a reference mixture of 
softly repulsive spherical particles. For that mixture the Percus-Yevick equation is solved with Baxter's 
formalism. By a blip expansion a hard convex body system is determined for which the free energy is obtained 
from Boublik's equation. For one-center Lennard-Jones liquids, the excess properties for mixtures agree with 
simulation results as good as those of the Baker-Henderson and the variational theory, while the pure 
substance properties are obtained better now. For mixtures of one-center and two-center Lennard-Jones 
liquids, the excess volumes and the excess enthalpies are given for argon/nitrogen and argon/oxygen after 
fitting the unlike pair interaction to the experimental value of the excess Gibbs energy. The results resemble 
those obtained from simpler theories, but discrepancies with respect to the reported experimental data remain. 

I. INTRODUCTION 

Reviews on mixtures of spherical molecules were 
given by Henderson and Leonard1 and by McDonald. 2 

Important contributions to the subject are the simula
tions of Singer and Singer3 and McDonald, 4 the varia
tional approach of Mansoori and Leland, 5 a revised 
Barker-Henderson (BH) perturbation theory, 6 and ex
tensions of the Weeks-Chandler-Andersen1 (WCA) per
turbation theory by Lee and Levesque8 and by Boubl[k. 9 

We learn that variational5 and BH theory6 yield excess 
properties which are in very good agreement with the 
simulation results. The WCA theoriesB,9 give better 
total properties. The excess properties, however, are 
somewhat scattered. The reason for that may be caused 
by extrapolation procedures for the background correla
tion functions. It is interesting to note that van der Waals 
one-fluid theory yields very good results as long as the 
sizes and the interaction energies of the molecules are 
not too differenL 2 The problem in predicting real sub
stance properties, however, is with the combination 
rule for the unlike pair interactions, Using the 
Lorentz-Berthelot rule can yield excess properties with 
even the wrong sign. 2 To overcome that difficulty, other 
combination rules have been suggested. 10,11 Application 
of Kohler's rule to liquid mixtures shows considerable 
improvement over the Lorentz-Berthelot results. 12 

For mixtures of nonspherical molecules, which are 
of greater practical importance, only a few statistical 
mechanical approaches not based on lattice theories 
have been published so far. For molecules with multi
polar interactions the Pade approximant method13 has 
been applied by Smith14 and by Gubbins and co-workers,15 
Although the method is based on heuristic arguments it 
yields good thermodynamic results. Presently, how
ever, it is limited by the fact that only molecules with 
spherical cores can be treated. The only approach to 
molecules with nonspherical cores seems to be that of 

a)Present address: Departamento Quimica Fisica and Instituto 
Rocasolano CSIC, Flicultad Quimicas, Universidad Complu
tense, Madrid 3, Spain. 

Enciso and Lombardero, 16 who treat an interaction site 
model with Lennard-Jones interactions. They essen
tially apply Barker-Henderson perturbation theory cal
culating the site-site correlation functions from the 
RISM equation. 17 It is, however, somewhat disappoint
ing that the excess enthalpies are in bad agreement 
with experiment even if the combination rule has been 
fitted to the experimental value of the excess Gibbs en
ergy. It may be that these effects are due to inaccu
racies in the RISM solutions close to the contact val
ues. 18 Recent simulation results seem to confirm this 
pOint. is 

In this paper we give an extension to liquid mixtures 
of a previous perturbation theory20,21 for pure molecular 
liquids in the formulation of Fischer's version. 20 It is 
our intention to treat pure liquids and mixtures of spher
ical and nonspherical molecules within the same approx
imation scheme with good accuracy. 

In Sec. II we give a detailed description of the theory 
for a mixture of one-center Lennard-Jones (lCLJ) and 
homonuclear two-center Lennard-Jones (2CLJ) mole
cules. Essentially, we start by dividing the potential in 
the sense of WCA. The correlation functions for the 
reference system of softly repulSive nonspherical par
ticles are obtained by going back to softly repulsive 
spherical particles, which are introduced by angle aver
aging over the Boltzmann factors of the reference sys
tem. For that mixture of spherical particles we solve 
the Percus-Yevick equation22 in the framework of Bax
ter's formalism. 23 Details of the numerical procedure 
are given in Appendix A. Having thus constructed the 
correlation functions we look for a corresponding mix
ture of hard spheres and hard dumbbells by a blip ex
pansion. For the latter mixture the Helmholtz energy 
can be obtained from Boublfk's equation. 24 Details con
cerning the calculation of the blip integrals are described 
in Appendix B. 

The application of the theory to some other mixtures 
consisting of symmetric site-site molecules is straight
forward, e. g., to a mixture of lCLJ molecules or to a 
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mixture of homonuclear 2CLJ molecules. We think that 
the basic ideas of the theory can be successfully used 
for a much larger class of interactions. Then, however, 
additional approximations are necessary. 

In Sec. ill we present results: (a) For a pure 1CLl 
liquid we compare zero pressure densities and Helm
holtz energies with simulation results and those obtained 
from the Verlet-Weiss-Grundke-Henderson (VWGH) 
version25 of the WCA approach. (b) For 1CLl mixtures 
we compare excess properties with simulation and other 
theoretical results. (c) Mixtures of 1CLl and 2CLl 
molecules corresponding to argon/nitrogen and argon/ 
oxygen are conSidered using the Lorentz-Berthelot and 
an adjusted combining rule. Moreover, correlation 
functions are also shown for that case. 

II. THEORY 

The binary mixture is considered at temperature T, 
particle density p, and mole fractions xA and x B • Com
ponent A consists of 1CLJ molecules, component B of 
homonuclear 2CLl molecules. The total interaction en
ergy between any two molecules shall be uAA , UAB' and 
UBB ' respectively. The energy uAA is Simply a 12/6 
Lennard-Jones (LJ) interaction with parameters E:AA and 
au' The energy UsB is composed of four equal Ll in
teractions with parameters E:BB and aBB between any two 
interaction sites on two different B molecules, the inter
action sites on each molecule being a distance l apart. 
Finally, the energy UAB consists of two equal Ll inter
actions with parameters E:AB and aAB between the center 
of an A mOlecule and each site on a B molecule. The 
interaction sites on the B molecules shall be the same 
for the A-B interaction as for the B-B interaction. As 
the potentials Uall for 0', (3 = A, B depend on the distance 
r between the centers and eventually on the orientations 
w1 and W2 of the molecules, we write ua/l(r, wi> W2)' 
Moreover, it is useful to relate the interaction param
eters by 

E:AB = HE:AA E:BB )1/2 , 

aAB = 1) (au +aBB)/2 . 

(1) 

(2) 

The case ~ = 1) = 1 shall be termed as Lorentz-Berthelot 
combination rule. 

As the first step in perturbation theory we introduce 
a reference system of "softly repulsive, " nonspherical 
molecules. For that purpose we consider each pair po
tential uall(r, wi> W2), (0', (3 = A, B) for a fixed mutual 
orientation (wi> w2) of the molecules as a function of the 
distance r and cut it at its minimum. Let rall,mtn(Wi> W2) 
be the position of the minimum and Uall,mln(W1' W2) its 
value, then the potentials U~1l of the reference system 
are 

u~ll(r, wi> W2) = uall(r, wi> W2) + Uall,miD(Wi> W2) 

for r<rall,mln(Wi> W2) , (3) 

Hence, the perturbation potentials are 

U~1l = Uall - U~1l • (4) 

It has been discussed in our previous work2o why this 

choice of the reference system is better than Simply 
cutting the site-site interactions at their minima. For 
UAB and UsB the division of the potential is done numeri
cally. 

Having thus divided the potentials into reference and 
perturbation parts, the configurational partition function 
can be expanded which yields for the Helmholtz energy 
to first order25 

A =A 0 + (Np/2) LXa xIlA~1l , (5) 
a,ll 

with 

A~/l = fU~Il(r, wi> W2)g~Il(r, wi> W2)dw1 dW2 dr . (6) 

Here A 0 is the Helmholtz energy of the reference sys
tem consisting of softly repulsive nonspherical mole
cules with interactions U~Il' The g~1l are the pair cor
relation functions of that reference system. 

The pair correlation functions g~B are needed for eval
uating the A~1l terms and for finding a hard body system 
with approximately the same free energy as A ° by a blip 
expansion. We obtain them as zeroth order terms of a 
perturbation expansion26 in which softly repulsive spher
ical potentials <PaB are introduced by 

(7) 

where the angular brackets denote angle-averaging over 
the orientations w1 and w2, if U~1l depends on them, and 
(3= 1/kT. For the mixture of spherical particles inter
acting with the potentials <PaB the pair correlation func
tions gaB and the background correlation functions Y"'B 
= exp({3 <PaB)gaB are determined by solving the Percus
Yevick equation in Baxter's formulation. 23 The numeri
cal procedure is described in Appendix A. Then the 
pair correlation functions g ~B of the reference system 
are approximated26 as 

g ~Il(r, wi> W2) = exp[ - (3u~Il(r, wi> W2) JYaB(r) • (8) 

The Helmholtz energy A ° of the reference system is 
determined with the help of a mixture of hard spheres 
and hard dumbbells, the latter having the same distance 
l between the interaction sites as the 2CLl molecules. 
For that purpose we use a blip expansion20 of the Helm
holtz energy A H of the hard system around A 0 • Let us 
introduce the abbreviations 

e~s = exp[ - (3u~B(r, wi> W2)] , 
(9) 

where the u!1s denote the potentials between the hard 
spheres and hard dumbbells, then the functional expan
sion is done in terms of t.eas = e!s - e~Il' This yields to 
first order 

AH/NkT=AO/NkT-(p/2)LXaXsBas, 
a,ll 

with 

Using the approximation Y~1l =Yall' expressed by Eq. 
(8), the blip integrals Ball can be approximated by 

(10) 

(11) 

J. Chem. Phys., Vol. 78, No.9, 1 May 1983 



5752 J. Fischer and S. Lago: Molecular liquid mixtures 

TABLE 1. Densities and residual Helmholtz energies at zero pressure for a lCLJ liqUid. Re
sults of perturbation theories are compared with simulation data of McDonald and Singera and 
Adams. b Column two gives the zero pressure densities obtained by direct interpolation on the 
Monte Carlo isotherms while column three gives the values from the fitted equation of state (EOS). 

Simulation WCA/VWGH This work 

kT/E pc} (direct) prfJ(EOS) Ar/NkT (EOS) pa3 

0.720 0.838 0.842 -4.93 0.840 
0.810 0.799 0.799 -3.97 0.803 
0.902 0.757 0.751 - 3.21 0.762 
0.977 0.714 0.710 -2.72 0.726 

aReference 29. 

(12) 

In order to determine the three hard interaction di
ameters dAA , dAB' and dBB , the procedure is not unique 
now. Similarly to the treatment of spherical mixtures 
by other authors8

•
9 we chose dAA and daB by 

BAA=O, BeB =0. (13) 

Then we fixed 

dAB = (dAA + daB)/2 , (14) 

as the hard convex body equation of Boublik24 is valid 
only for additive hard interactions. Thus, Eq. (10) 
finally yields 

AO/NkT=A"/NkT + PXAXB 

(15) 

In spite of the fact that the correction term represented 
by the integral is generally rather small it cannot be 
neglected in the calculation of the excess properties. 
The numerical treatment of the blip integrals B .. 8 in the 
approximation of Eq. (12) is described in Appendix B. 

The Helmholtz energy A" of the mixture of hard 
spheres and hard dumbbells is obtained from Boublik's 
hard convex body equation of state. 24 Consider a hard 
convex body O! and let V", be the volume, Sa the surface, 
R", the (l/41T) multiple of the mean curvature integral, 
and Qa =R~. For the description of the mixture "one 
fluid" quantities are introduced by A = ~ xa A a , where 
A stands for any of the geometric quantities V, S, R, or 
Q. With the help of the dimensionless quantities k j 

= (RS/V) and k2 == (QS2/9V2
) the equation of state of the 

hard convex body mixture writes as 

L- _1_ + ~ + k2V
2
(3 -v) 

pkT - l-v (1-v) (l-v)3' 
(16) 

where v = pV. Equation (16) can be integrated to give for 
the residual part A: of the Helmholtz energy 

A:/NkT=(k2 -1)ln(l-v) 

+ [kl + k2 - k j v]v/(1 - V)2 • (17) 

In a later paper27 it was shown that this equation also 
yields good results for a system of hard dumbbells if 
the mean curvature integral is taken as that of a prolate 
spherocylinder. Thus, the required geometric quanti-

Ar/NkT pa3 Ar/NkT 

-4.86 0.831 -4.80 

- 3. 90 0.794 - 3.85 
- 3.15 0.754 - 3.11 
- 2.66 0.719 - 2.62 

~eference 30. 

ties of a hard dumbbell with sphere diameter d and a 
center-to-center distance l are 

VD=(1T/6)d 3(1 +3/2L -1/2L3) , 

SD=1Td 2(1 +L) , 

RD = (1/2) d(1 + 1/2 L) , 

with L = lId. 

III. RESULTS 

The intention is to show the accuracy of our perturba
tion theory for different model liquids. This is done by 
comparison with simulation data and other theoretical 
results, where possible. Since for mixtures of lCLJ and 
2CLJ molecules only preliminary simulation results 
are available19 we compare with experimental data. It 
shall be mentioned that for pure 2CLJ liquids the com
parison has already been given in the previous paper on 
perturbation theory. 20 

For predicting the excess properties of real liquid 
mixtures the combination rule is crucial. This point 
shall be deferred to a later paper. 12 

A. The pure lCLJ liquid 

The WCA/VWGH theory25 is considered as one of the 
most successful perturbation theories for that case. It 
uses a hard sphere reference system and correlation 
functions which have been corrected to agree with sim
ulation results. In our case the reference system con
sists of soft repulsive spheres and the correlation func
tions are the PY solutions for that reference system. 
To check the accuracy of our approach we compare in 
Table I densities and Helmholtz energies at zero pres
sure with results of simulations and of the WCA/VWGH 
theory. These quantities are important for calculating 
excess functions of mixtures. The WCA/VWGH results 
have been computed by the present authors. 

Some words concerning the simulation results seem 
to be necessary. At low temperatures p-p-T data of 
Verlet2s and of McDonald and Singer29 are available. 
The latter have the advantage that an ansatz for the 
Helmholtz energy has been fitted to them and the absolute 
value of the free energy has been calculated consistently 
with this ansatz by Adams30 using a grand canonical en
semble. Therefore, we used these results for compari
son. The zero pressure densities can be obtained either 

J. Chem. Phys., Vol. 78, No.9, 1 May 1983 
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TABLE II. Excess properties obtained from simulations and different theories for equimolar 
model mixtures of lCLJ liquids at zero pressure. The interaction parameters for the pure 
substances are listed in Ref. 2, for the crossed interactions the Lorentz-Berthelot rule is 
used. gE and hE are given in J/mol, vE in cm3/mol. 

Ar/Kr (116 K) Ar/N2 (84 K) 

gE hE vE r hE vE 

MC-N,v, T a 45 -18 - 0.60 35 40 -0.23 
MC-N,p, Tb 46 - 29 - 0.69 35 16 - 0.25 
Varb,c 47 - 31 - 0.73 42 42 - 0.26 
BHd 39 - 28 - 0.62 32 35 - 0.23 
This work 40 -19 - 0.51 35 40 - 0.22 
WCA/LL" 36 21 -0.48 40 56 -0.26 
WCA/Bf 28 -10 - 0.46 

aReference 3. cReference 5. 
~eference 4. dReference 6. 

by interpolation on the directly calculated isotherms or 
from the fitted equation of state. In spite of the high 
accuracy of that work the differences are remarkable 
with respect to the excess volumes of mixtures. Com
paring the results of the different simulations shows 
that Ver let's zero pressure densities are generally 
smaller by about 0.010 in pa3 than those of McDonald 
and Singer. Some scattering is also in the Helmholtz 
energies obtained from different approaches. For the 
state point kT /E == 0.75 and pa3 == O. 84 Hansen and Ver
let31 give Ar/NkT == - 4. 53, while from McDonald, Singer, 
and Adams one gets Ar/NkT== -4. 59. 

Both perturbation theories yield equally good results 
for the zero pressure densities. Their variation with 
temperature, however, seems to be slightly too weak. 
The Helmholtz energies seem to be better predicted by 
WCA/VWGH. Fortunately, the differences in Ar ob
tained from the three approaches are nearly constant 
with temperature. 

B. Mixtures of 1CLJ liquids 

As it has been shown25 that the WCA theory is more 
accurate than the variational theory and the first order 
BH theory for pure liquids, it looks somewhat puzzling 
that the WCA results for the excess properties of mix
tures reported hitherto8,9 are worse than the results of 
the two other approaches. 5,6 We will demonstrate that 
this is not the case for our version of the WCA theory. 

Monte Carlo studies have been made by Singer and 
Singer3 in the N, v, T ensemble for molecules with size 
ratios O. 79 < aBB/aAA <1.27 and energy ratios 1 <EBB/EAA 
< 1. 52. After some extrapolation processes these au
thors obtained the excess properties gE, v E, and hE at 
zero pressure for several model mixtures. As far as 
the errors are concerned in that procedure, the authors 
report standard deviations in the zero pressure volumes 
of the mixtures of 0.05 to 0.10 cm3/mol. To avoid 
these extrapolation processes, simulations have been 
made by McDonald in the N, p, T ensemble. 4 The 
agreement between both simulation series is reasonable 
for gE and v E, but not so for hE. In Table II we compare 
these simulation results with the results of the varia
tional theory, 5,4 the BH-perturbation theory, 6 the WCA 
theory of Lee and Levesque,8 the WCA theory of Boub-

Ar/CH4 (91 K) 

gE hE vE 

-10 -35 -0.12 
-14 -60 -0.22 
-12 - 34 -0.14 
-12 - 30 - 0.12 
-13 - 33 - 0.12 

4 41 -0.12 

"Reference 8. 
fReference 9. 

11k, 9 and our own perturbation theory for the model mix
tures Ar/Kr, Ar/N2 (lCLJ), and Ar/CH4 (lCLJ). 

We learn from Table II that the excess properties ob
tained from variational theory, Barker - Henderson per
turbation theory and our WCA-type theory are in close 
agreement with the simulation data of Singer and Singer. 
The uncertainties in the simulation results do not allow 
discernment of the best approach. One problem with the 
WCA approaches of Lee and Levesque8 and of Boublfk9 

is presumably the fact that in the blip expansion the hard 
sphere correlations have to be known for distances 
smaller than the contact value. For those distances 
questionable extrapolation processes have been used in 
both cases. This extrapolation is not necessary in our 
formalism as the correlation functions are calculated 
for the softly repulsive spheres. In Boublfk's approach 
an additional source of error may be the fact that the 
hard-sphere diameters in the mixture are assumed to 
be the same as in the pure liqUid. In the work of Lee 
and Levesque a potential inconsistency is in the fact that 
the pure substance properties are not calculated with 
perturbation theory but are obtained from a fitted equa
tion of state. 

Recently the umbrella sampling technique has been 
applied by Nakanishi et al. 32 for the calculation of the 
excess Helmholtz energy of a mixture consisting of 
molecules of equal size but different energy interactions. 
Fortunately those authors already gave the results of 
variational theory for their model mixtures. In Table 
III we have added the results of our perturbation theory. 

TABLE III. Excess Helmholtz energies 
aE for model mixtures of LB2, LB3, 
and LB4 type. The models are defined 
in Ref. 32. The state pOints are XA 

~0.5, T=120 K, andp<r'l=0.75; aE is 
given in J/mol. 

LB2 LB3 LB4 

MCa 174 438 767 
Variationala 187 476 769 
This work 185 472 763 

~eference 32. 

J. Chern. Phys., Vol. 78, No.9, 1 May 1983 
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TABLE IV. Model parameters of argon, nitrogen, and oxygen 
and pure substance properties at 84 K. The experimental val
ues are from Refs. 34-36. 

Experimental 
Model 1CLJ/2CLJ values 

E/k (K) 0- (A) l (A) 
v(p = 0) 

(cm3/mol) 
v (Pu) 

(cm3/mol) Pu (bar) 

Ar 119.8 3.405 0 28.34 28.26 0.705 
N2 37.3 3.310 1. 0897 35.85 36.06 2.077 

°2 44.6 3.090 1. 0166 27.16 27.30 0.504 

We observe that the results of both theories are close 
together in all three models and agree very well with 
the simulation results in the LB2 and LB4 model. The 
discrepancy in the LB3 model is thought to be within the 
accuracy of umbrella sampling. 

Concluding we can say that for mixtures of spherical 
molecules our WCA-type perturbation theory yields ex
cess properties which agree, even for strong energy 
differences, with those of the simulations within the ac
curacy of the latter. The difference, however, is in the 
prediction of the total properties, as for pure substances 
our theory is close to WCA/VWGH and hence consider
ably better than the two other approaches. 

C. Mixtures of 1CLJ/2CLJ liquids 

For mixtures of molecules with nonspherical cores a 
BH-type perturbation theory was published16 in which 
the site-site correlation functions are calculated by 
RISM. That theory has been applied to lCLJ/2CLJ 
mixtures. For the lack of simulation results compari
son was made with the experimental data of Ar /N2 and 
Ar/02' We have applied our theory to the same mix
tures and used the same pure substance parameters. 33 

We also performed calculations with the Lorentz
Berthelot combination rule and a value of ~ '* 1 which 
was adjusted such that gE agrees with the experimental 
results. 

In Table IV it is shown that the model parameters for 
argon, nitrogen, and oxygen yield zero pressure volumes 
which are in good agreement with the experimental data. 

Experimental values for gE, hE, and vE of argon/ 
nitrogen31- 39 and argon/oxygen31,39 have been critically 
selected by Rowlinson and Swinton. 40 These authors 
also give a comparison with three simpler theories, the 
BH-perturbation theory for lCLJ/lCLJ liquids, 6 the 
one-fluid van der Waals theory, 2,41 and the treatment of 
Snider and Herrington. 2 ,42 In all theories the crossed 
interaction was fitted to the experimental gE; hence hE 

and vE are a measure for the predictive power of the 
approach. Rowlinson and Swinton conclude that the re
sults from all three theories resemble each other more 
closely than they agree with experiment. In Table V we 
have extended that comparison by including the results 
of our perturbation theory and those of Enciso and Lom
bardero. 

It is seen from Table V that the results of the BH/ 
RISM theory of Enciso and Lombardero are in strong 
disagreement with the experiments as well as with the 
other theories. Moreover it is physically hard to un
derstand why the volume of the argon/oxygen mixture 
should decrease with decreasing ~. The present authors 
believe that some inaccuracies in the numerical treat
ment could be the reason. Possibly the site-site cor
relation functions close to the contact points are in 
error. 18,19 

As to our results, we learn from Table V that for 
argon/nitrogen v E is in good agreement with experiment, 
but not hE. On the contrary, for argon oxygen ~ is in 
good agreement, but not v E

• On the basis of these re
sults a simultaneous variation of the parameters ~ and 
TJ in the combination rule could not improve the agree
ment. Comparing with the simpler theoretical ap
proaches as given in Table V or in Ref. 40 we can only 
repeat the statement of Rowlinson and Swinton that the 
results of all theories, ours included, resemble each 
other more closely than they agree with experiment. 
This is somewhat striking since it was thought40 that 
treating oxygen and nitrogen as nonspherical molecules 
would bring theory and experiment closer together. 

One might speculate now about the persistent discrep
ancies between theory and experiment. Of course, 
there are several assumptions in the theories which 
could be the reason. On the other hand, some of the 

TABLE V. Excess properties for the equimolar mixtures argon/nitrogen and argon/oxygen at 
84 K and zero pressure. Experimental data are compared with the results for 1CLJ/1CLJ or 
1CLJ/2CLJ model mixtures. In the theories the Lorentz-Berthelot and an adjusted combining 
rule are used. gE and hE are given in J/mol, vE in cm3/mol. 

A rgon/ nitrogen Argon/oxygen 

gE hE v E ~ hE vE 

Expt. a 34 52 - 0.18 37 60 0.14 

1CLJ/1CLJ} 1. 000 36 39 -0.26 1. 000 0 0 0.00 
BHb 1. 001 34 35 -0.27 0.987 37 52 0.06 

1CLJ/2CLJ} 1.000 27 20 - 0.18 1.000 - 29 -41 -0.09 
This work 0.9975 34 31 -0.17 0.9797 37 56 0.03 

1CLJ/2CLJ} 1.000 27 -4 -0.26 1. 000 -13 0.15 
ELc 0.997 34 8 -0.24 0.983 37 14 -0.05 

"References 37-40. bReference 6. ~eference 16. 

J. Chern. Phys., Vol. 78, No.9, 1 May 1983 
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-- pure substonce 

--- equlmolor mixture 

o 3 
r IAJ 

FIG. 1. Angle-averaged pair correlation functions g&oo of the 
softly repulsive reference systems for the model liquids argon 
(lCLJ), nitrogen (2CLJ), and their equimolar mixture at 84 K 
and zero pressure. 

experimental data have only been measured once and 
some time ago, or have been measured twice by the 
same group. Considering then, that for krypton/xenon 
the experimental values for vE differ40 by about 0.20 
cm3/mol, our theoretical results could also be within 
the error bars of experiment. 

Finally, Fig. 1 shows pair correlation functions g~oo 
for argon/nitrogen at 84 K, zero pressure and ~ 
== O. 9975. According to our approach these are the 
angle-averaged correlation functions of the softly repul
sive particles. We see that the correlation functions do 
not change Significantly in going from the pure sub
stances to the mixture. The results may be interesting 
for the justification of the one-fluid van der Waals 
model. 
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APPENDIX A 

In this Appendix we describe the numerical solution 
of the Percus-Yevick equation for a binary mixture of 
particles with spherically symmetric interactions of 
finite range using Baxter's formalism. 23 

Let eas denote the Boltzmann factor of the potential 
energy between two particles of component a and {3, gas 
be the pair correlation function, has ==gaB -1 be the total 
correlation function, and CaB be the direct correlation 
function. 

Baxter23 introduces range parameters R1 and R2 and 
associated quantities 

RCIS == (Ra + Rs)/2 , 

Sas == (Ra -Rs)/2 , 

such that 

cas(r)=0 , if r>RCl8 • 

(A1) 

(A2) 

(A3) 

Then, by introducing new functions qas and their deriva
tives q~8 with the boundary conditions 

(A4) 

he is able to transform the Ornstein-Zernike relations 
to 

for Sas < r <Ras, (A5) 

where the integration with respect to t is over the range 

S,..<t<min[R,...R 11l -r] , 

and 

(A6) 

where the integration with respect to t is over the range 

Say<t<Ray. 

In our case the Eqs. (A5) and (A6) are closed by the 
Percus-Yevick approximation22 

gaB = eas(gas - Cas) . (A 7) 

Baxter's formulation offers the advantage that for 
finite range potentials the set of Eqs. (A5) -(A 7) for has, 
Cas, and qas can be solved in appropriate finite range 
intervals. Having found the solutions in those intervals, 
the total correlation function can be continued to higher 
r values by using Eq. (A6). 

In our case the interaction potentials <P AA' <P AB, and 
<PBB shall have finite ranges denoted by rAA , r AB , and 
rBB such that r AA <rAB <rBB . In order to keep the inte
gration intervals as small as possible we chose Baxter's 
range parameters as R2 =rBB and R1 = 2rAB - r BB if rAB 
> (rAA +rBB)/2 orR1=rAA ifrAB«rAA +rBB )/2. We 
checked that a change of the range parameters to some
what larger values affects the numerical result for the 
correlation functions only insignificantly. 

The set of Eqs. (A5)-(A7) is solved iteratively with T 

bounded by Ras in Eq. (A6). For the numerical evalua
tion we take R2 as unit length and subdivide the interval 
[ - R 2, R2] usually into 200 intervals of equal length A. 
This yields the grid points at which the functions are 
given numerically. In prinCiple, all the integrations 
are made with Simpson's rule. In case an integra
tion interval is not bounded by grid points the functions 
are interpolated or extrapolated by parabolas and the 
appropriate area under the parabola is calculated. 

In solving Eqs. (A5)-(A 7) let the functions g~s be the 
ith approximation. In an inner iteration cycle described 
below we solve Eq. (A6) for the functions (q~s)' and their 
integrals q~B which are functionals of the given h~/l func-
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tions (h~8 =g~8 -1). These q' and q functions are in
serted into Eq. (A5) which yields the functions C~II' 
Then, from Eq. (A 7) we get resulting g functions as 

g~8rea = e"8(g~8 - C~II) • 

For constructing the (i + l)th approximation we mix the 
previous input and output functions getting intermediate 
functions 

g~81.1nt =(1- A)g~s + Ag~,:88 

with weight factors A of about 0.1. To ensure that gAB 
== gBA we finally put 

g~~1 = (g~1.lnt + g~;1.lnt)/2 . 

As a first approximation for g the Boltzmann factors 
are taken 

To measure the convergence of the g iteration we use 
the quantity 

In general, € has a lower bound by the fact that the 
mixed pair correlation functions gijf"" and g~':es are 
calculated in different ways. Due to the numerical 
treatment these functions never coincide exactly and it 
is essentially their difference that determines €. In 
general, € can be made less than 10-8 • Then, the larg
est difference between giB and gi·;·· which occurs close 
to the maximum of these functions is less than 5 x 10-4• 

This means that the functions gAB and gBA always differ 
by less than 10-3

• We think that this difference is char
acteristic for the accuracy of all our numerically ob
tained g functions. 

In the inner iteration cycle Eq. (A6) is solved for the 
functions (q~lI)' and q~1I with given functions h~II' Let 
the functions (q~~)' be the kth approximation. These 
functions are integrated USing the boundary condition 
Eq. (A4) to give q~~. Inserting the q functions into Eq. 
(A6) we get as next approximation 

(l,k+1)' = - rhl + 21TP Lx fdtqik hl(r - t) 

The starting functions are 

(l,1)'=-rh1=-r(e-1) fori=1, 

and 

(ql.1)' = (ql-l,,)' for i> 1 , 

where l refers to the last inner iteration cycle corre
sponding to the functions h~i. As a measure of the con
vergence we take 

As it is economic to couple the convergence of the inner 
iteration cycle to the convergence of the g iteration, the 
q iteration was stopped if <5 < 10-2 E. 

Having found the solution for has in the range 0:5 r 
:5 Rail and for q",B and C"'B from Eqs. (A5)-(A7), we con
tinue the functions hall to larger r values by using the 

appropriate form of Eq. (A6): 

(A8) 

Whereas hitherto all the functions were given at the grid 
pOints r = k 6.(k = 0, ± 1, ... ) it is now convenient to give 
values for q"'B at SOlS + l6.(l = 0, 1, ... ), while the h"'l1 
shall be given at Rail + m 6.(m = 0, ± 1, ... ). This change 
in the grid points was done by cubic interpolation. Now, 
suppose we know all has functions up to the grid points 
R"'II + (m -1)6., m being the same for all a{3, and ask for 
h"'l1 at the points R",s + m 6.. If the integrals in Eq. (A8) 
are evaluated again with Simpson's rule using t = S"'II 
+ l6. (z = 0,1, ... ) as lattice points then they write as the 
following algebraic expressions: 

f
Rail 

dt qa)t)(r - t)h>tl( r - t) 
Sail 

6. 46. 
= "3 q",)S",y)(R>tl + m 6.)h'lf!(R>tl + m 6.) + Tq",y(Sa r + 6.) 

X [R>tl + (m -l)6.]h!1l[R>tl + (m -1)6.] + . " . 

Here, only the first term contains the unknown value 
h!1l(R>tl + m A) and may be written as aallf h'lf!(x'If!) with the 
known coefficient a<>ay and x!1l being an abbreviation for 
R'If! + m 6.. All the other terms are known and their sum 
may be called ba8y' Then, Eq. (A8) writes as 

X"'B h"8(X"'8) = 21TP ~Xy(a"'8Y hy8 (xye) + b<>8Y) , (A9) 

which constitutes a system of four linear algebraic 
equations for the desired quantities h"a(Raa + m 6.). Since 
already the 4 x 4 matrix relation for the h functions rep
resented by Eq. (AS) decomposes into 2 x 2 matri ces 
where hAA is coupled to hBA and similarly hAB to hBB , 
the evaluation of Eq. (A9) simplifies to the solution of 
two sets of two linear equations. It shall be mentioned 
that this continuation procedure was stimulated by a 
previous work of Perram. 43 

APPENDIX B 

In this Appendix we describe the numerical evaluation 
of the blip integrals Ba8 given in Eq. (12). By using the 
definition of HYaB they can be rewritten as 

(B1) 

We remind that the angular brackets denote angle-aver
aging over the orientations Wi and w2, if the potential 
depends on them. 

The angle-averaging over e~B does not present any 
specific numerical problems, as the U~II potentials are 
continuous. For the integration corresponding to the 
dumbbell-dumbbell interaction, e. g., three angles lib 
li 2, and rP12 were introduced, as in Fig. 2(b), and Simp
son's rule was applied using 12 subintervals between 0 
and 1T /2 for each angle. 

The angle-averaging over the Boltzmann factors of 
the hard interaction potentials needs more care as these 
are discontinuous. We have to distinguish between the 
three types of hard interactions. 
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ol bl 

FIG. 2. (a) The sphere/dumbbell, and (b) the dumbbell/ 
dumbbell geometry. 

(a) The interaction between two spheres of diameter 
dAA • Trivially, 

(B2) 

where 11 is the Heavyside step function, which is discon
tinuous at dAA • 

(b) The interaction between a sphere and a dumbbell, 
for which the geometry is shown in Fig. 2(a). After 
some simple geometric considerations we get 

(e:B)=(r2-d!B +Z2/4)/rl for rOI~r~rO_' (B3) 

where 

rOI = (diB _12/4)112 , 

ro- = dAB + [/2 . 
(B4) 

The function (e:B ) is now continuous, but its first de
rivative jumps at rOI and ro-. 

(c) The interaction between two dumbbells, for which 
the geometry is shown in Fig. 2(b). At a given distance 
r we need to consider for symmetry reasons only orien
tations with O~ <P s 11, Os cos 111 S 1, and O~ cos 112 
~ cos 111 , It is convenient to introduce three distances 
r+, ru and r __ which are the distances of closest ap
proach for crossed, perpendicular and line-on-line con
figuration of the two dumbbells 

r+=(d~B _12/2)1/2, 

r~ = (d~s _12/4)112 + 1/2 , (B5) 

r __ =dss + 1 . 

For distances r between r~ and r __ , one sphere of dumb
bell (1) can come into contact only with one sphere of 
dumbbell (2). There it is possible to obtain from geo
metric considerations44 

(egs) = 1-2(r -1- dBS )2 (r -1 + 2dss)/312r 

forr~srsr __ • (B6) 

In the interval r+~ rS r~ the situation is more compli
cated and no closed analytical expression has been given 
hitherto. Therefore, we prescribed a regular lattice 
in the (cos 910 cos 92) plane with 200 intervals between 0 
and 1. For given values of cos 91 and cos 92 one can 
calculate the values <P. and <Pb at which two spheres stop 
or begin to overlap. Thus, at least the <P integration can 
be performed analytically. As far as numerical results 
allow conclusions, the function (egs) and its first deriva
tive are continuous everywhere, but its second deriva
tive has discontinuities at r+, r~, and r __ • This makes 
the interpolation procedure of Ref. 21 somewhat ques
tionable. 

The r integration in Eq. (B1) does not present serious 
problems. In principle it is done with Simpson's rule. 
In the first integral, the lower limit of integration is 
dAA , r 01' or r +, respectively. Moreover, in the first 
integral of BAS one has to take account also of the dis
continuity in the first derivative of (e:s ) at ro-o 
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