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8.1 FUNDAMENTALS

Following the Webster definition, an autonomous vehicle “has the right

or power of self-government,” “exists or act separately from other things
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or people,” “is undertaken or carried on without outside control,” and

“responds, reacts, or develops independently of the whole.”

If we take these words at face value, it is therefore clear that there is a

common mistake confusing this definition with the kind of systems cur-

rently appearing on mass media, where the driver has very little interven-

tion. As a matter of fact, it is doubtful that autonomous driving, as it is

defined above, would bring the commonly accepted benefits (capacity,

efficiency, cleanness). New mobility paradigms, where autonomous on-

demand vehicles are at the heart, would rather need to be connected and

automated vehicles. Only in this context would cars be able to “drive at

close range and increase the infrastructure’s capacity, prevent a big deal of

accidents by communicating with other vehicles and with the infrastruc-

ture, save or eliminate parking space by driving one passenger after other”

(Holguı́n, 2016). But what are the differences then between autonomous

and automated and connected vehicles?.

Automated vehicles can be defined as those in which at least some

safety-critical aspects occur without direct driver input. Or in other

words, an automated vehicle is one that can, at least partly, perform a

driving task independently of a human driver. When these vehicles, with

different levels of automation can communicate among them and with

the infrastructure/cloud, a very relevant socioeconomic impact can be

obtained, namely safety, congestion and pollution reduction, capacity

increase, etc. By contrast, autonomous cars have theoretically the ability

to operate independently and without the intervention of a driver in a

dynamic traffic environment, relying on the vehicle’s own systems and

without communicating with other vehicles or the infrastructure.

Original equipment manufacturers (OEMs), Tier ones, and new big

players are not developing the same product in this area, but it is not

always easy to differentiate their unique selling points because all of them

are using erroneously the term “autonomous” cars/driving.

To cope with this problem, the Society of Automotive Engineers

issued in 2014 the international norm J3016 (SAE, 2016), bringing order

to different prior proposals of standardization from NHTSA and the SAE.

It serves as general guidelines for how technologically advanced an auto-

mated vehicle is, providing a common taxonomy for automated driving

in order to simplify communication and facilitate collaboration within

technical and policy domains.

There exist six levels of driving automation spanning from no automa-

tion to full automation (see Fig. 8.1). These levels are descriptive and
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technically-oriented, indicating minimum rather than maximum system

capabilities for each level.

A key distinction appears between level 2, where the human driver

performs part of the dynamic driving task, and level 3, where the auto-

mated driving system performs the entire dynamic driving task. It is

worth noting that in no way does it propose a particular order of market

introduction.

Fig. 8.1 classes the six automation levels following different classifica-

tion aspects, relevant to understand the implications of each level. The

execution, monitoring, and fall-back can be performed either by the

human driver or the system, being the differentiator between levels 1�4.

Driving modes are an additional aspect, which allows to talk about full

automation, when all of them (e.g., expressway merging, high speed

cruising, low speed traffic jam, closed-campus operations. . .) can be han-

dled by a system.

The classical ADAS belong to Levels 0�1 and many examples are

already on the market. Some additional solutions of Level 2 have begun

to appear in the last couple of years. However, the market emergence of

products in Levels 3�5 is quite controversial.

Figure 8.1 SAE J3016 automation levels for driving (SAE, 2016).
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Although the new players sell the vision that these systems will be on

the market in a short period of time (before 2020), the European OEMs,

affiliated and represented under the European Road Transport Research

Advisory Council (ERTRAC) have a more conservative roadmap (see

Fig. 8.2). They envision different pathways for urban environments (high

automation in areas with low speed and/or dedicated infrastructure)

and elsewhere (building on Level 0 use of ADAS to full automation of

Level 5 for trucks and cars).

This chapter aims to shed some light into this fascinating debate, pro-

viding an overview of the current state of the technology in automated

driving, focusing on the potential of the current technology and the

Figure 8.2 Pathways for automated driving (ERTRAC, 2015).
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different socioeconomic aspects that will condition the deployment of

these complex systems.

To that end, the most relevant technology bricks needed for the auto-

mation of a car will be introduced in Section 8.2. In Section 8.3 some

relevant aspects of cooperative automated vehicles will be presented. It

will be followed by a chapter describing one of the most challenging bar-

riers for automated driving, Verification and Validation (Section 8.4). A

brief introduction to the most relevant projects and prototypes through

the world is presented in Section 8.5. Finally, a brief description of the

socioregulatory aspects will be introduced in Section 8.6.

8.2 TECHNOLOGY BRICKS

This section is devoted to briefly summarizing the key technologies

needed for a vehicle to incorporate some degree of automation. The

enabling technologies, presented in Part A, are complemented with addi-

tional subsystems to conform a closed-loop control architecture, as

detailed in Section 8.2.1. From the perception and localization outputs,

the vehicle needs to assess the driving situation and infer the subsequent

risk (Section 8.2.2). Then, different decision-making strategies are used

(Section 8.2.3) to plan, considering a safe driver-vehicle interaction

(Section 8.2.4), the most adapted vehicle motion (Section 8.2.5), which

is processed and executed, at the end of the decision pipeline, by longitu-

dinal and lateral control algorithms (Section 8.2.6).

8.2.1 Control Architectures
Every control system is articulated based on a functional block architec-

ture, which describes the relationships and dependencies between each of

the elements necessary for the control action to be performed correctly.

The complex tasks of control of a vehicle must be structured in the form

of logical steps that are built on each other and whose complexity can be

simplified by a decomposition into functional blocks. In the case of

autonomous vehicles, it is also possible and necessary to define all the ele-

ments that must be taken into account when carrying out the task of

autonomous driving, as well as their relationships and the exchange of

information to be shared among them. In this way, we can define the

control architecture of an autonomous vehicle as the organization of the

different systems of an autonomous vehicle, perception, computation, and
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actuation, to achieve the objectives for which that system has been

designed.

Fig. 8.3 shows the general structure of the control architecture of an

autonomous vehicle, where the two fundamental elements from the point

of view of the management of the driving system are presented: the

High-Level control or decision algorithms and the Low-Level control or

control algorithms. The first one aims at guiding the autonomous vehicle

based on the information supplied by the sensors, regardless of the type of

vehicle being piloted. This guiding system generates high level commands

such as “turn the steering wheel x degrees,” “stop the vehicle” or “select

a speed of x kmh.” These orders are received by the low-level control,

which is the one that is directly related to the actuators of the vehicle,

and is able to handle them at its convenience in order to follow the

instructions that come from the higher layer. This functional separation is

present in most autonomous vehicle control systems, being an inheritance

of conventional robotic control systems. The fundamental advantage is

that with this structure, the high-level control system is independent of

the vehicle in which it is installed, with its actuators being transposable

and therefore can be moved from one vehicle to another without making

any modifications, easing the interoperability.

The high level control can be subdivided into three elements as shown

in Fig. 8.4. In the guidance system, the appropriate algorithms are exe-

cuted so that the autonomous vehicle tracks the route that has been preset

Figure 8.3 General schema of the control architecture.
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to it, as a function of the digital cartography, the information of the

sensors, the data of the individual vehicle, and the current driving regula-

tions. This guiding system makes the appropriate decisions and sends

them to the specific controllers that perform the lateral control and

longitudinal control of the vehicle, who are in charge of managing the

trajectory and the speed of the vehicle, whose outputs will be sent to the

controller of the low-level to be executed by the actuators.

In this generic architecture for the control of an autonomous vehicle,

four additional components must be added, as shown in Fig. 8.5. On the

one hand, there is the functional block of actuation, where the actuators

of the vehicle are: throttle, brake, steering, and gearbox, although many

more systems can be added at convenience, such as lights, alarms, or

safety systems. Within the actuation block, ad hoc automations are incor-

porated, if necessary, when the vehicle itself is not ready to be managed

automatically. Once automated, all mechanical components of the vehicle

Figure 8.4 Detail of the High-Level Control.

Figure 8.5 Detailed general schema of the control architecture.
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must be able to receive the corresponding instructions generated by the

low-level control system.

On the other hand, is the functional block of the sensors, which con-

cerns the equipment that the control systems need to perform correctly

the task of guidance and the perception of the environment. The task of

guiding is basically through GPS receivers, inertial systems (speedometer,

gyroscope, accelerometers, and compass), as well as advanced digital map-

ping. In recent times, this information for guidance has been enriched

with information from the fusion of computer vision or Lidar in so-

called visual odometry. The perception of the environment allows the

autonomous vehicle to carry out the driving task, taking into account the

possible obstacles that appear in its route, the traffic signals, pedestrians,

and other vehicles that circulate along the way. For this, two types of sen-

sors are mainly used: computer vision and 3D Lidar.

The third element, part of the control architecture of an autonomous

vehicle, is the communications system. The communications allow sur-

passing the visual horizon to which both the human driver and the sen-

sors installed in the autonomous vehicles are limited, allowing to reach

the so-called electronic horizon. This enables the possibility of receiving

information from the circulation environment, both infrastructure and

other vehicles, so that control systems can take the appropriate decisions

or take the necessary actions to prevent an accident, adapt to the circum-

stances of the road, or anticipate any kind of situation. In addition, com-

munication systems enable autonomous cooperative driving, so that

autonomous vehicles are able to collaborate with each other, allowing the

emergence of high-level behaviors, such as platooning. In addition, com-

munication systems allow autonomous vehicles to receive information

and enable cooperative systems which, while initially designed for manu-

ally driven vehicles, must be compatible with autonomous technology.

Finally, the fourth additional element of the generic architecture of

the autonomous vehicles is the data buses. These connect all the elements

that make up the functional blocks of the architecture in order to allow

the exchange of data, sensory information, and control orders in real

time. These communication buses are basically two types: on the one

hand, Controller Area Network buses (CAN), which allow the transmis-

sion of information in real time with messaging defined by priorities.

Given their small bandwidth (maximum 1 Mbps), they are mainly used

for the interconnection of physical components with low-level control.

The other type are the Local Area Network (LAN) networks, networks
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of computer equipment that operate with a high bandwidth (maximum

1 Gbps), allow the interconnection of all the equipment and sensors with

enough capacity.

Once this general autonomous vehicle control architecture is described,

it is possible to present the different particular approaches of the different

research groups that participate in the autonomous vehicle area.

8.2.2 Situation Awareness and Risk Assessment
Driving is a matter which needs the continuous evaluation of two main

factors: the vehicle current state (position, velocity, acceleration, direc-

tion) and the environment conditions (near vehicles, obstacles, pedes-

trians, etc.). To the extent that these two factors are accurately assessed,

appropriate decisions can be taken towards reliable autonomous driving.

The closer we get to the fact that the vehicle itself is capable of doing this

evaluation, the closer we will be to a vehicle-centric approach (Ibañez-

Guzmán et al., 2012) to autonomous driving, where the main goal is the

safe movement of the vehicle.

This section presents the current state of technology capable of

providing onboard situation awareness (SA) and risk assessment (RA)

capabilities.

To assess the driving situation, a highly automated vehicle needs the

following main capacities (Urmson et al., 2009): global positioning, vehi-

cle tracking, obstacle detection, and self-location in a road model.

The Global Positioning System (GPS) technology is established as the

most useful one for answering the Where am I? question (Skog et al.,

2009). To face problems such as GPS performance degradation or GPS

signal occlusion, it is common to add inertial sensors like Inertial

Navigation Systems (INS) or Dead Reckoning (DR) systems (Zhang and

Xu, 2012; Tzoreff and Bobrovsky, 2012), with low-cost inertial sensors

based on Micro Electromechanical Systems (MEMS) being the most

suitable for autonomous driving application. However, due to different

drawbacks like the presence of noise in the MEMS-based sensors or fail-

ures in the integrating software, INS and DR applications are susceptible

to drift, thus causing a loss of accurate vehicle location (Bhatt et al.,

2014). The solution that is usually adopted to combat this problem is the

use of the above technology combined with sensing technologies such as

computer vision, radar, or LIDAR (Jenkins, 2007; Conner, 2011). These,

combined with artificial intelligence algorithms, have been developed to
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put into the market reliable sensing and control systems employed for SA

and RA assessment. Table 8.1 shows the main properties of different sens-

ing technologies commonly used in the vehicle-centric approach to

autonomous driving.

More recently, some companies have deployed high-performance

autonomous cars, with Google Car (Google Inc, 2015) being the most

outstanding example. It is fair to say that its astonishingly good behavior

in urban environments is not owed so much to its sensing capacities as to

very accurate a priori information about the route (ultraprecision 3D

maps where the positions of every element—curbs, lights, signals, etc.—

are registered with centimeter precision). Nevertheless, it is necessary an

accurate detection of relevant information to on-line decide on the safety

of the current trajectory. Among aforementioned sensing technologies, it

is an accepted fact that 3D LIDAR is the more outstanding one for

vehicle-centric autonomous driving, although some manufacturers

already provide devices combining different technologies (vision and radar

(Delphi Inc., 2015), vision and LIDAR (Continental, 2012)).

Table 8.2 shows the main features of some currently available 3D

LIDAR devices for autonomous driving purposes.

Safety is a key piece of the autonomous driving paradigm. Risk (the

probability of a vehicle suffering some damage in the future) must be

assessed in every particular vehicle situation.

For this purpose, recent works propose mathematical models (motion

models) to predict how a situation will evolve in the future. For autono-

mous driving, those motion models which consider interaction (among

vehicles, and pedestrians) are the most useful ones. The challenges include

detecting interactions and identifying interactions; the commonly used

variables are communications, joint activities, or social conventions and

the common tools include rule-based systems. Different motion models

are considered and Lefevre et al. (2014) have summarized their main

characteristics, as shown in Table 8.3.

Table 8.1 Main features of different sensing technologies
Range for
optimal
operation

Spatial
info

Sample
rate

Speed
measurement

Operation
under bad
weather

Operation
at night

VISION 0�25 m 2D/3D High No Bad Weak

Radar 1�200 m � High Yes Excellent Excellent

LIDAR 2D 1�20 m 2D Medium No Weak Excellent

LIDAR 3D 1�100 m 3D Medium No Weak Excellent
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Table 8.2 Some commercial 3D LIDAR devices
Range Type of data FOV (H)-(resolution) Weight Accuracy

Data rate FOV(V)-(resolution)

All-purpose 3D LIDAR

VLP-16 100 m Dist./reflect. 360˚�(0.1˚) 0.8 kg 63 cm

0.3 M points/s 615˚�(0.4˚)

HDL-32 80�100 m Dist./reflect. 360˚�(0.1˚) 1.3 kg 62 cm

0.7 M points/s 110˚/�30˚�(0.4˚)

HDL-64 120 m Dist./reflect. 360˚�(0.018˚) 13.5 kg ,2 cm

2.2 M points/s 12.0/�25˚�(0.4˚)

RobotEye 160 m Dist./reflect.

0.5 M points/s

360˚�(0.01˚)

on-line adjust.

2.8 kg 65 cm

635˚�(0.01˚)

on-line adjust.

Minolta 100 m Dist./reflect. 180˚�(0.01˚) N.A. N.A.

0.4 M points/s 25˚�(0.01˚)SingleBeam

Specific purpose 3D LIDAR

DENSO 200 m Dist./reflect. 40˚�(0.1˚) 0.2 kg 66 cm

Pedestrian 8k points/s 2˚�(1˚)

DENSO 120 m Dist./reflect. 36˚�(0.1˚) 0.2 kg 66 cm

16k points/s 22/12˚�(1˚)Lane

SRL1 10 m Distance 27˚�(1˚) ,0.1 kg 610 cm

2.3k points/s 11˚�(1˚)Obstacle

Table 8.3 Two motion models
Variables Challenges Tools

Physics-based Kinematic and

dynamic data

State estimation from

noisy sensors

Kalman filters

Monte Carlo

samplingSensitivity to initial

conditions

Maneuver-based Intentions Complexity of intentional

behavior

Clustering

Planning as

prediction

Perception Hidden Markov

modelsSurrounding objects

and places Goal oriented

models

Learning
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8.2.3 Decision Making
Human driving capacity requires not only the ability to properly maneu-

ver the steering wheel, brake, and accelerator according to a set of traffic

rules, but also must assess social risks, health, legal consequences, or the

life-threatening results of driving actions (e.g., What should the vehicle

do if a pedestrian does not stop at a red light?). The resolution of driving

requires high levels of human knowledge, for this reason science uses

complex artificial intelligence systems to emulate them. The decision-

making system has the role of interpreting the abstract information sup-

plied for the perception system of the vehicle and generates actions to

carry out sustainable and safe driving.

To operate reliably in the real world, an autonomous vehicle must

evaluate and make decisions about the consequences of its potential

actions by anticipating the intentions of other traffic participants. The first

decision-making systems in autonomous vehicles appeared in 2007 in

DARPA Urban Challenge (Urmson et al., 2008). These systems allowed

the vehicles to operate in the urban scenarios in which they were

involved, U-turns, intersection, parking areas, and real traffic among

others. These early decision systems used common elements such as plan-

ners where systems were implemented using finite state machines, deci-

sion trees, and heuristics. More recent approaches have addressed the

decision-making problem for autonomous driving through the lens of tra-

jectory optimization. However, these methods do not model the closed-

loop interactions between vehicles, failing to reason about their potential

outcomes (Galceran et al., 2015). Nowadays, there are no real systems

that outperform a human driver. Advances in decision making are aimed

at increasing the intelligence of the systems involved in decision making.

Cognitive systems (Czubenko et al., 2015), agents systems (Bo and

Cheng, 2010), fuzzy systems (Abdullah et al., 2008), neural networks

(Belker et al., 2002), evolutionary algorithms (Chakraborty et al., 2015),

or rule-based methods (Cunningham et al., 2015) compose the

Intelligent-Decision-Making Systems (IDMS) (Czubenko et al., 2015).

Fig. 8.6 shows the location of IDMS from a point of view of the func-

tional architecture for autonomous driving (Behere and Törngren, 2015).

A general intelligent system in the autonomous driving functional

architecture will contain processing units of sensory processing, a world

model, behavior generation, and value judgement with information flow

as shown in Fig. 8.7 (Meystel and Albus, 2002).
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Figure 8.6 Autonomous driving functional architecture.



Autonomous driving in complex scenarios where multiple vehicles

are involved (e.g., urban areas) with inherent risk to the integrity of peo-

ple, require real-time solutions. In this case decision making demands

reliability, safety, and a fault tolerance system. In this direction it is neces-

sary to mention, a real-time motion planning algorithm, based on the

rapidly-exploring random tree (RRT) approach proposed by (Kuwata

et al., 2009). The proposed algorithm was at the core of the planning and

control software for Team MIT’s entry for the 2007 DARPA Urban

Challenge, where the vehicle demonstrated the ability to complete a

60 mile simulated military supply mission, while safely interacting with

other autonomous and human driven vehicles.

A Multicriteria Decision Making (MCDM; Furda and Vlacic, 2010)

and Petri nets (Furda and Vlacic, 2011) are proposed for solving the

problem of the real-time autonomous driving. MCDM offers a variety of

benefits such as:

• The hierarchy of objectives allows a systematic and complete specifica-

tion of goals to be achieved by the vehicle.

• The utility functions can be defined heuristically to reflect the choices

of a human driver, or, alternatively, learning algorithms can be applied.

• MCDM allows the integration and evaluation of a very large number

of driving alternatives.

• Decision flexibility can be achieved by defining the set of attribute

weights depending on the road conditions.

• Additional objectives, attributes, and alternatives can be added without

the need for major changes.

• The driving maneuvers are modeled as deterministic finite automata.

• The decision making unit is modeled as a Petri net.

The author concluded that the method was highly based on heuristics,

but the application of MCDM in this new research area offers a variety of

benefits with respect to the problem specification, decision flexibility, and

scalability.

Figure 8.7 General ANSI intelligent system description.
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8.2.3.1 Simulation and Software tools for IDMS
The first tasks of testing and implementation of IDMS are strongly rela-

tional with software simulation and implementation. There are numerous

works about framework and middleware capable of the testing and devel-

opment of IDMS (Veres et al., 2011; Behere, 2013). Table 8.4 shows a set

of software environments and tools capable of participating in the process

of modeling, simulation, and implementation of a decision-making sys-

tem. The table shows the name of the environment, a short description,

its purpose and features, and a website where the software packages can

be found.

8.2.4 Driver�Vehicle Interaction
As shown in Fig. 8.8, a car’s cockpit has constantly increased its complex-

ity and evolved, according to the implemented systems, available technol-

ogies, and driver needs present at each specific moment in automotive

history.

At the end of the 1990s and the beginning of 21st century the

increase of in-vehicle implemented functions and the associated human

interaction complexity, obliged OEMs to pay more attention to the

proper design of the driving place and the driver�vehicle interaction. At

that time, new transversal HMI departments were introduced in most

R&D automotive manufacturing organizations to manage this new chal-

lenge. The role of this department was to take the leadership to develop,

from a global vehicle perspective, the complete driving place in terms of

the driver�vehicle interaction—of course, with the support of all other

technical areas involved.

In recent years, the massive introduction of new driver assistance sys-

tems and infotainment and telematics applications has given even more

relevance to the HMI design activities.

Nowadays, the introduction of automated driving functions in the

next-generation vehicles has HMI and driver�vehicle interaction as one

of the key challenges for its success in the market. In this sense, there is a

need to rethink ant to redesign the driving place and the way the “driver”

or “vehicle supervisor” is going to interact with the vehicle and the auto-

mated and autonomous functions.

Some of the key questions related to the HMI design for automated

vehicles are the following:

• How can two different driving modes coexist at the same time?
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Table 8.4 Analysis, simulation, and controller development tools for developing of
IDMS
Software
environment/
tools

Short description, purpose, or
features

Website

Charon Charon HS modeling language,

supports hierarchy and

concurrency, has simulator and

interfaces to Java.

www.cis.upenn.edu/mobies/

charon

Modelica/

Dymola

OO HS modeling language for

multi-domain physics, has

simulator, has object libraries.

http://www.modelica.org/

http://www.3ds.com/

products/catia/portfolio/

dymola

HyTech Modeling and verification of

hybrid automata, has symbolic

model checker.

http://embedded.eecs.berkeley.

edu/research/hytech/

HyVisual Visual modeling (Ptolemy II) and

simulation of HS, supports

hierarchies.

http://Ptolemy.berkeley.edu/

hyvisual/

Scicos/

Syndex

Modeling and simulation of HS,

has toolbox, real-time code

generation, provides formal

verification tools.

http://www.scicos.org/

Shift Has its own programming language

for modeling of dynamic

networks of hybrid automata,

has extension to real-time

control and C-code generator.

http://path.berkeley.edu/shift/

Simulink/

Stateflow

Has analysis, simulation, has

libraries and domain specific

block-sets, can compile C-code

for embedded applications via

the use of embedded

MATLABt, and Real Time

Workshopt.

http://www.mathworks.com/

OROCOS Portable C11 libraries for

advanced machine and robot

control. Including kinematics

chains, EKF, Particle Filters, RT

software components, state

machine, etc.

http://www.orocos.org/

ROS It is a set of software libraries and

tools that help you build robot

applications. From drivers to

state-of-the-art algorithms, and

with powerful developer tools.

It is NOT RT framework.

http://www.ros.org/

(Continued)
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• How would the driver select the automated mode?

• Which functions should be controlled during automated mode and

how to manage them?

• How should the vehicle give back the control to the driver?

• How should be the transitions between different automation levels be

achieved?

• Which kind of information should the vehicle provide to the driver

in automated mode to make him/her feel safe and comfortable?

• Which present and future technologies can be used and are more

appropriate to make all this happen?

Table 8.4 (Continued)
Software
environment/
tools

Short description, purpose, or
features

Website

YARP It is a communication middleware,

or “plumbing,” for robotic

systems. It supports many forms

of communication (tcp, udp,

multicast, local, MPI, mjpg-

over-http, XML/RPC, tcpros,

. . .).

http://www.yarp.it/

CLARATy It consists of a Functional Layer

that provides abstractions for

various subsystems and a

Decision Layer that can do high

level reasoning about global

resources and mission

constraints.

http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?

arnumber51249234

BALT &

CAST

It is a middleware for cognitive

Robotics development.

http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber5
4415228; http://ieeexplore.

ieee. org/lpdocs/epic03/

wrapper.htm?arnumber5
4415228

Figure 8.8 Evolution of car’s driving place.
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To approach in a consistent manner all these questions, there are sev-

eral issues which are very relevant and that must be taken into account:

• To follow a systematic methodology that allows to identify relevant

functions and HMI parameters for automated driving, to design inno-

vative HMI solutions, and to evaluate the developed concepts from a

human factors perspective.

• To implement a multidisciplinary approach that takes into account,

from the very first moment, the opinion of engineers, specialists, and

technicians coming from different disciplines.

• To prepare and to adapt new methods and new development and eval-

uation tools (driving simulators, mock-ups, vehicle prototypes, . . .)
that allows to perform clinics with users to measure in detail ergo-

nomics and technical aspects.

• To test the driver�vehicle interaction proposed solutions in very early

development stages to get the voice of the user at the beginning of

the development process.

• To use, in an intelligent manner, the future possibilities of new HMI

technologies such as augmented reality (see Fig. 8.9), state-of-the art

displays, new control elements, gesture recognition, interior lighting,

reconfiguration possibilities, etc.

• To improve, in a very safely manner, the in-vehicle onboard user

experience.

8.2.5 Motion Planning
Motion planning first for mobile robots and then for autonomous vehicles

has been extensively studied over the last few decades. The resulting

Figure 8.9 Example of an augmented reality evaluation study for an automated
driving prototype (carried out at CTAG’s driving simulator).
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strategies were designed to meet, under different hypotheses, a variety of

kinematic, dynamic, and environmental constraints. In this section, path

and speed planning are presented under a specific approach, but different

strategies could be alternatively considered (c.f. Paden et al., 2016 or

Katrakazas et al., 2015 for more details)

8.2.5.1 Path Planning
General techniques to obtain optimal paths can be grouped into two cate-

gories: indirect and direct. Indirect techniques discretize the state/control

variables, and convert the path planning problem into one of parameter

optimization which is solved via nonlinear programming (Dolgov et al.,

2010) or by stochastic techniques (Haddad et al., 2007). The latter use

Pontryagin’s maximum principle and reexpress the optimality conditions

as a boundary value problem, whose approximate solutions have been

investigated under a large set of possibilities and constraints. The subse-

quent description is based on the latter family, where a local planner is

encapsulated into a generic procedure to cope with complex scenario

topologies and obstacle avoidance.

The path planning system is composed of several subsystems that oper-

ate separately as standalone processes depending on one another. These

subsystems are: Costmap Generation, Global Planner, and Local Planner. The

former is in charge of the computation of the costmap that will be used

by the other two methods in order to compute the trajectories, consider-

ing the safety existing for the different possibilities (attending to the obsta-

cles in the environment, as well as to the estimations of the expected

changes in the near future); the second is used for the computation of a

trajectory that allows the vehicle to travel between the current position

and the goal in the unstructured map. The third provides the system with

the mechanisms needed to follow it, computing the commands required

by the low-level controller to move the prototype.

8.2.5.1.1 Costmap Generation
The costmap maintains information about occupied/free areas in the map

in the form of an occupancy grid. It uses sensor data and information

from the static map to store and update information about obstacles in

the world, which are marked in the map (or cleared, if they are no longer

there). Costmap computation is supported on a layered costmap, which

will be used for the integration of the different information sources into a

single-monolithic costmap. At each layer, information about occupied/
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free areas in the surroundings of the vehicle is maintained in the form of

an occupancy grid, using the different observation sources as input. Using

this information, both dynamic and static obstacles are marked in the

map. For example, let us suppose each cell in the map can have 255 dif-

ferent cost values. Then, at each layer, costmap is represented as follows:

• A value of 255 means that there is no information available about a

specific cell in the map.

• 254 means that a sensor has marked this specific cell as occupied. This

is considered as a lethal cell, so the vehicle should never enter there.

• The rest of cells are considered as free, but with different cost levels

depending on an inflation method relative to the size of the vehicle

and its distance to the obstacle.

Cost values decrease with the distance to the nearest occupied cell

using the following expression:

C i; jð Þ5 exp
�
21:0 � α � �:cij 2~o:2 ρinscribed

�� � 253 (8.1)

In this expression, α is a scaling factor that allows increasing or

decreasing the decay rate of the cost of the obstacle. :cij 2~o: is the dis-

tance between the cell cijAC (where C is the set of cells in the costmap)

and the obstacle. Finally, ρinscribed is the inscribed radius, which is the

inner circle of the limits of the car.

Despite all of them being free cells, normally different distance thresh-

olds are defined in order to set different danger levels in the map. For

example, it is possible to define four thresholds:

• ζ lethal: There is an obstacle in this cell, so the vehicle is in collision. It

would be represented by the cost level 254.

• ζ inscribed: Cell distance to the nearest obstacle is below ρinscribed. If the
center of the vehicle is in this cell, it is also in collision, so areas below

this distance threshold should be avoided. Cost level would be 253.

• ζcircumscribed: If the vehicle center is on this cell, it is very likely that

the car is in collision with an obstacle, depending on its orientation.

A cell with a distance to an obstacle below this threshold should be

avoided, but there are still chances of being in one of them without

colliding an obstacle.

• The rest of cells are assumed to be safe (except from those with

unknown cost, for which it is not known if they are occupied or not,

being considered as lethal).

In the presented approach, just those paths passing through cells with

a cost below ζcircumscribed are considered. This cost is obtained using the
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Eq. 8.1 and other cost factors that will be explained later. Paths passing

through the cells over this threshold will be truncated at the last safe

point.

For the computation of the costmap and the costs associated to each

cell, ROS plugin costmap 2d (http://wiki.ros.org/costmap_2d) could be

used, which implements some of the functionalities described in this

section.

Layered Costmap

Nowadays, in the layered costmaps, four different layers are usually being

considered:

• A first layer represents the obstacles in a static map previously cap-

tured. This map represents the static obstacles in the whole area in

which the vehicle will move. This layer is the only one used by the

nonprimitive-based global planner, since nonstatic obstacles are not

being considered for nonprimitive-based trajectory generation (mean-

ing by nonstatic those obstacles that are not already included into the

map). These are supposed to be avoided at local planning level.

• A second layer, also based on a static map, is included. For optimiza-

tion reasons, in this and following layers, the costmap is not computed

for the whole map at each iteration. Instead, just the cells in an area

centered into the current car position are updated. The goal is not to

update the whole map, since these layers are just used for local plan-

ning or local maneuvering. Static obstacles are also included for local

planning, since the vehicle is not desired to pass along restricted areas

while avoiding obstacles. This allows the vehicle to know which areas

are forbidden, also at local planning level.

• A third layer is used to represent the dynamic obstacles detected by

the different sensors. Using this input, ground is detected and

removed, extracting just the vertical obstacles to which the vehicle

could collide. Parameters in this layer are chosen so the obstacle infla-

tion is stronger than the one computed for the second layer. This

gives more priority to the obstacles being detected in real time over

those in the static map.

• The last layer provides an estimation of the future motion of the

dynamic obstacles. To do so, input point clouds are segmented using a

voxel grid, in order to reduce dimensionality. The world surrounding

the vehicle is divided into a discrete number of voxels of equal size.

For each voxel, an occupancy probability is assigned, based on the

number of points from the input point cloud in its neighborhood.
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Using this probability, valid voxels (with a higher occupancy probabil-

ity) are distinguished from the noisy ones (with a smaller probability).

All these layers are combined into a single costmap. Note that it is

interesting to include the motion of the obstacles in the costmap because

then the vehicle tries to avoid the obstacle by the side in which it is not

crossing its trajectory

8.2.5.1.2 Global Planner
Usually there are two global planners in use in autonomous vehicles: the

primitive-based planner and the nonprimitive global planner. These plan-

ners are intended to obtain a feasible path going from the vehicle’s current

position to a determined goal.

Although both methods are included in this section, their aims in the

system are completely different. The nonprimitive-based global planner is

used for regular navigation, while the primitive-based global planner, is

used for recovering the vehicle in situations in which there is an obstacle

in the way for a long time, or the vehicle is performing some complex

maneuver, like parking.

Primitive-Based Global Planner

The primitive-based global planner constructs a path from the vehicle’s

position to a desired goal. The path is generated by combining “motion

primitives,” which are short, kinematically feasible motions. These

motion primitives are generated using a model of the vehicle in order to

comply with the curvature restrictions of the vehicle.

The computation of these primitives is performed as follows: a set of

predefined orientations is considered. For each orientation, the model is

evolved until it reaches one of the predefined orientations, at different

speeds. This process is done both forwards and backwards. After this pro-

cess, a set of small trajectories that fulfill vehicle restrictions is obtained,

which will be used as the building blocks for the planner.

Having these, an ARA algorithm is used for the search of a feasible

path. At each node expansion, a new x, y, and θ position is explored, until

the best path is found or the exploration time finishes (if so, the best path

found until then is used). During this search, the cost of backward primi-

tives is set higher than the cost of forward ones to prevent the vehicle from

using backward paths as much as possible, without decreasing the perfor-

mance. Also the original search algorithm can be improved by adding a

new cost that penalizes the concatenation of forward and backward primi-

tives. This is done with the intention of planning more natural paths.

296 Intelligent Vehicles



Nonprimitive-Based Global Planner

The nonprimitive based global planner computes the minimum cost path

from the vehicle’s position to the goal using, e.g., the Dijkstra’s algorithm.

Given the speed of the search algorithm to obtain the global plan, this

planner is being used as a rough estimate of the route that the vehicle is

going to follow. The static obstacles of the costmap are then overinflated

in order to make the planner construct smooth paths, feasible for being

followed by an Ackermann vehicle.

If the generated routes are not constructed bearing in mind the non-

holonomic restrictions of the vehicle, it is frequent that the initial angle

between the vehicle’s orientation and the orientation of the global plan is

larger than the maximum angle required by the local planner to generate

feasible paths. That is the reason why the nonprimitive-based planner is

used in combination with a local planner state machine that takes into

account this circumstance and reorients the vehicle properly before using

the Frenet-based local planner.

8.2.5.1.3 Local Planner
Once the global path is defined, a method is required that is able to com-

pute the steering and speed commands needed to control the vehicle, in

order to follow that path. This method should be also able to avoid the

obstacles present in the road. This must be done in a safe and efficient way.

The basic idea of the local path generation is to define a set of feasible

paths and choose the best option in terms of their cost. The winner path

defines the steering and speed commands that the vehicle will use.

Having options among local paths is useful to overcome the presence of

unforeseen obstacles in the road.

Usually the current Euclidean coordinate system is transformed into a

new system based on the Frenet space. This space is computed as follows:

the global path is considered as the base frame of a curvilinear coordinate

system. The feasible local paths are defined in terms of this base frame in

the following way:

• The nearest point (where the distance is computed perpendicular to

the global path) to the main trajectory will be the origin of the curvi-

linear coordinate system.

• The horizontal axis will be represented by the distance over the global

path, in its direction.

• The vertical axis is represented by the vector perpendicular to the ori-

gin point, which is pointing to the left with respect to the path

direction.
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In this schema, trajectories can be computed easily in the curvilinear

space (that is, maneuvering information is generated). These are then

transformed to the original Euclidean space, in which the obstacles infor-

mation is added by assigning costs to each path.

Based on this idea, the method can be divided in five stages:

1. Generation of the costmap. Using the information generated by the

sensors or by the methods described in previous sections, the system

constructs a costmap in which costs are related to the distance to

obstacles.

2. Base frame construction. Based on the global path constructed in the

previous section, the base frame of the curvilinear coordinate system is

generated.

3. Candidate paths generation. Candidate paths are generated into the

curvilinear space. Then, they are transformed to the Euclidean space.

4. Selection of the winner path. Costs for all the paths are assigned, and

the one with the lowest value is selected.

5. Computation of the vehicle commands. Vehicle speed and steering

angles are computed based on the characteristics of the winner path.

Base Frame Construction

In this stage, the base frame of the curvilinear coordinate system is

defined, so the algorithm is able to compute the trajectories in this space

as if the global plan was a rectilinear trajectory. At this point, the potential

presence of obstacles or the restrictions associated to the vehicle’s motion

model are not considered, limiting this stage to the generation of

trajectories.

The origin of coordinates of the base frame is the nearest point in the

global plan to the vehicle’s position.

The base frame’s arc length is obtained as the distance of each point

along the global plan (represented as a green line) to the origin of coordi-

nates. This distance is represented in the x-axis of the curvilinear system.

y-axis, q, represents the perpendicular lateral distance respect to the path.

The left side is represented by positive values and the right by negative

values.

For the computation of the transformation between the Euclidean and

the curvilinear coordinate system, the path curvature κ is needed:

κ5
S

Q
� κb �

12 q�κbð Þ � @2q=@s2
� �

1κb � @q=@s
� �2

Q2

 !
(8.2)
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where

S5 sign 12 q�κbð Þ

Q5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@q

@s

 !2

1 12q�κbð Þ2
vuut

8>><
>>: (8.3)

A generated path will be rejected if q. 1
κb
. In this case, the path cur-

vature and sense is opposed to that of the base frame. The path violates

the nonholonomic condition of the movement of the vehicle, so the

vehicle enters in a recovery state.

Only paths with a lateral offset q equal or smaller to the curvature

radius of the base frame 1
κb
are accepted.

If q5 1
κb
, that means that the path passes through the center of curva-

ture of the base frame. Also, the maximum curvature a path can have in

order to be feasible by the vehicle is limited by the maximum steering

angle. If this restriction is violated, the corresponding path is rejected.

Curvature is directly related to the movement of the vehicle, which can

be described through several models.

Candidate Paths

As seen, path generation is performed in the curvilinear space, without

considering the obstacles in the environment. These will be taken into

account later, once the tentative trajectories are transformed to the

Euclidean space.

Maneuvering paths generation. The curvature of the generated paths is

defined by the lateral offset q with respect to the base frame. First and sec-

ond order derivatives of q are needed for the computation of κ (see

Eqs. 8.2 and 8.3), so a function dependent on the lateral offset is needed

to compute a smooth lateral change.

Candidate paths generation. Once the paths in the curvilinear coordinate

system are computed, they are transformed to the Euclidean space. In this

new space, their associated costs will be evaluated. Now the paths are in

Euclidean coordinates, the maximum distance they can reach individually

(if obstacles are considered) can be calculated. To do that, the cells Cij of

the costmap associated to the points of the trajectory are checked. If this

cost is over the value associated to the threshold circumscribed, the path

is truncated at this point.
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When a path collides with an obstacle, it is not completely removed.

The reason is that there are certain situations in which the maximum

length cannot be reached with any path. However, it is still desirable to

approach slowly towards the maximum reachable point, with the hope

that the obstacles that are blocking the way will disappear in the next

iterations. In crowded areas with many pedestrians this is a typical situa-

tion: the way is blocked, but when pedestrians see a vehicle that is

approaching, they move away. However, if the vehicle reaches a point in

which it can not move for a long time, the recovery behavior is triggered.

The problem with this strategy is that one of the colliding paths could

win even if there is a path able to go through a clear area. In order to

avoid that, a weighted cost function based schema is implemented. This

schema, which permits a smart selection of the winner path, is explained

in the next section.

Winner Path

The winner path is selected through the use of a linear combination J[i]

of weighted cost functions, related to the following parameters: occlusion,

length, distance to the global path, curvature and consistency of the path.

J[i] is evaluated as follows:

J i½ �5ω0C0 i½ �1ωlCl i½ �1ωdCd i½ �1ωκCκ i½ �1ωcCc i½ � (8.4)

Here, i is the path index, and C0, Cl, Cd, Cκ, and Cc are the costs of

occlusion, length, distance to the global path, curvature, and consistency,

respectively. Their relatives ωi, iA o; l; d;κ; cf g are the associate weights

that allow to adjust the influence of each of the costs to the final cost

value. All these costs are normalized to 1.0, andX
iA o;l;d;κ;cf g

ωi 5 1:0 (8.5)

so it is easy to determine the proportional influence of each weight

Occlusion. The occlusion cost is related to the safety of the path. This cost

estimates the goodness of a path, with the bests paths being those passing

far enough from the obstacles. To do that, the method iterates along the

path, simulating the footprint of the car at each position. The occlusion

cost corresponding to the trajectory point i will be the maximum cost of
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each of the cells cijEC under the footprint of the vehicle at that position.

Based on this, the occlusion cost will be:

C05
max cif g
255

; i5 1; :::;L (8.6)

In this expression, L is the length of the current path being evaluated.

max cif g is the maximum value of all the costs, associated to a point in the

path. If the maximum value of each cost is 255, so C0 is divided by this

value, in order to normalize it to 1.

Length. This cost represents the length of the current path. By iterating

along the points in the path, the distance between them is accumulated,

so the real distance traveled in Euclidean coordinates is known. The lon-

ger a path is, the better, as it is assumed that it will traverse an obstacle-

free zone. Thus, long paths should produce low cost values. This is done

through the expression:

Cl 5 12

PL
i51 :pi 2 pi21:
qfmax

1 sf
(8.7)

Here, pi is a certain point inside the evaluated path. qfmax
is the maxi-

mum value that a qf can have for a certain path. Lengths are normalized

to a value that a path will never reach. This cost is subtracted from 1.0, in

order to make it comparable to the rest of costs (as said, lower values are

preferred respect to the higher ones).

Distance to the global path. In the presented implementation, information

about the average lateral oset with respect to the global path has been also

considered. The use of this cost will benefit the choice of those paths that

are allowed to come back to the global path after an occasional obstacle is

avoided. It is computed as follows:

Cd 5

PL
i51 :pi 2 nearest pi; gð Þ:

L � qfmax

(8.8)

where nearest(p,g) is the nearest point in the global path g to the point p.

This cost is normalized with respect to the maximum expected offset qfmax
.

Curvature. This cost gives priority to the smoother paths. Let p xi; yið Þ,
i5 1, . . ., L, be a point in the path. Then,
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Cκ5max
_xi � ̈yi2 ̈xi�_yi
_xi1 _yi
� �3=2

( )
; i5 1; :::;L (8.9)

Consistency. This cost avoids the continuous changes in the winner

paths between iterations. Once the vehicle starts a maneuver, the idea is

to keep this behavior in the following iterations. This is done through

the following expression:

Cc 5
1

s22 s1

ðs2
s1

lids (8.10)

The lateral cost liðsÞ is the distance between the current and the previ-

ous winner path at the same longitudinal position s.

Selection of the winner path. Once all costs are computed, the expression

described in Eq. (8.4) is applied. In those paths for which it is impossible

to advance due to the presence of a nearby obstacle or because the car is

incorrectly aligned to the global path (meaning that no valid paths can be

generated in this situation), the cost will be negative (invalid path). From

all paths, that path with the smallest cost (winner path W) is selected. If

for any reason there are no valid paths, a recovery maneuver is initiated.

8.2.5.2 Speed Planning
The speed reference is commonly assumed to be continuously differen-

tiable, and is often designed by optimizing an appropriate performance

index (minimum time is the commonest criterion, but minimum accel-

eration and/or jerk has also been used). For most of them, as topologi-

cal semantic maps are not used, iterative or optimization processes are

required to satisfy a certain number of driving comfort constraints—

maximum speed, longitudinal and lateral acceleration, and jerk. The

strategy described below tackles this problem, approximating the consid-

ered path by well-known primitives, from which a speed profile can be

derived.

Indeed, any path in an unstructured environment can be decomposed,

with the help of a path planning algorithm, into a succession of turns—

composed of clothoids and arcs of circles—and straight lines. The

clothoid is chosen because an arc of a clothoid has variable curvature, in

every point proportional to the arc length, and it provides the smoothest

link between a straight line and a circular curve. It is used in roads and
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railroads design: the centrifugal force actually varies in proportion to the

time, at a constant rate, from zero value (along the straight line) to the

maximum value (along the curve) and back again.

This decomposition is extremely useful in finding closed-form optimal

speed profiles because both straight line segments and circle arcs can be

associated with constant speeds. More precisely, when a turn is initiated

the maximum velocity will be constrained by the comfort lateral accelera-

tion threshold, and when a straight segment is being tracked, the maxi-

mum longitudinal speed, acceleration, and jerk will be the limits imposed

on the reference speed.

The speed profile can be defined as follows:

• Constant speed curves at a minimum value Vmin when the curvature

profile is a circular arc or its preceding clothoid.

• A smooth transition from the minimum value Vmin to a maximum

allowed speed Vmax and back again to Vmin that fulfills the acceleration

and jerk constraints.

• A set of one or two smooth transition curves (of type 2 above) that go

from zero to the maximum speed, and vice versa.

In order to obtain closed-form expressions for the second type of

curve, the speed trajectory is divided into a number of intervals. Let us

suppose seven intervals ti21; ti½ �, i5 1. . .7 and represented in terms of the

arc length sr as follows:

s
?

rðtÞ5
( s

?
rmax

; tA½t0; t1� or tA½t6; t7�
0; tA½t1; t2�or tA½t3; t4� or tA½t5; t6�
2 s

?
rmax

; tA½t2; t3� or tA½t4; t5�
̈srðtÞ5 ̈srðti21Þ1 s

?ðtÞrUðt2 ti21Þ
_srðtÞ5 _srðti21Þ1 ̈srðti21ÞUðt2 ti21Þ1

1

2
s
?

rðti21Þðt2 ti21Þ2

srðtÞ5srðti21Þ1 _srðti21ÞUðt2 ti21Þ1
1

2!
̈srðti21Þðt2 ti21Þ21

1

3!
s
?

rðti21Þðt2 ti21Þ3

(8.11)

The arc length will go from the initial point of the closing clothoid in

a turn (sr t0ð Þ) to the final point of a straight line segment (sr t7ð Þ), the ini-

tial and final speeds (_sr t0ð Þ; _sr t7ð Þ) will be set by the minimum speed Vmin,

and the initial and final accelerations ( ̈sr t0ð Þ; ̈sr t7ð Þ) and jerks

ð s?r t0ð Þ; s?r t7ð ÞÞ will be both equal to zero. Concerning the comfort
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constraints, the maximum speed will be V �
max and the maximum speed

and acceleration will be determined by design parameters γmax and Jmax.

Note that the value of V �
max corresponds to the Vmax previously

defined if there is enough distance to reach the target. If the available arc

length is less than some critical value, the maximum speed will be set

equal to the initial speed V0 resulting in the generation of a constant

speed profile. Otherwise, a maximum speed between V0 and Vmax will be

computed. The closed form polynomial expression of equations (8.11)

permits the maximum speed to be computed as follows:

V �
max5

Vmax; if condition1 is satisfied

V0; if condition2 is satisfied

�
(8.12)

condition1

Δs $ Vmax1V0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax 2V0

Jmax

s
1 Vmax 1Vminð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax 2Vmin

Jmax

s
(8.13)

condition2

Δs,
V0

2
� V0

γmax

1
γmax

Jmax

� �

2
1

2Jmax

γ2max 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ4max 1 8J2maxγmaxΔs 1 4J2maxV

2
0 2 4γ2max JmaxV0

q� �
(8.14)

where Δs 5 sðt7Þ2 sðt0Þ
An alternative algorithm can be implemented to reduce the overall

time needed to cover the path by slightly compromising the passenger

comfort. Instead of reducing the speed to Vmin in each turn, only the

nondegenerate turns are taken into account for this purpose.

8.2.6 Vehicle Control
Mathematical models are of great importance in the analysis and control

of automotive vehicle dynamics. Several mathematical models are avail-

able in the literature with different levels of complexity and accuracy

according to the physical phenomena captured. Usually the motion of the

vehicle is considered in the yaw plane, mainly describing the longitudinal
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and lateral vehicle motion. In the description of the vehicle motion, dif-

ferent longitudinal and lateral dynamic couplings must be considered:

• Dynamic and kinematic couplings are due to the motion in the yaw

plane caused by wheel steering.

• The interaction between tire and road is at the origin of another

important coupling.

• The longitudinal and lateral accelerations cause a load transfer between

the front and rear axles as well as the right and left wheels.

The complexity degree is used to obtain a trade-off between com-

plexity and accuracy. A complexity model can provide a good accuracy

level but remains too complex for controller synthesis. For this reason,

usually a nonlinear bicycle model is used for lateral control and a one-

wheel vehicle model for longitudinal control design.

A nonlinear bicycle model considers the longitudinal (x), lateral (y), and

yaw motion (θ). For this model, it is assumed that the mass of the vehicle

is entirely in the rigid base of the vehicle, and it considers the pitch load

transfers while neglecting the lateral load transfer caused by roll motion.

In the Fig. 8.10, α is the steer angle, and a and b represent the dis-

tance between wheels and the gravity center of the vehicle. The indexes f

and r indicate front and rear.

The dynamic equations are:

m ̈x2 _y _θ
� �

5
P

i5 f ;r Fxi 1Fr

m ̈y1 _x _θ
� �

5
P

i5 f ;r Fyi

Iz θ€ 5Fyf � a2Fyr � b
(8.15)

Figure 8.10 Nonlinear bicycle model.
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where m is the vehicle mass, Iz is the yaw moment of inertia, Fr is the

sum of resisting forces, and Fxi, Fyi are longitudinal and lateral tire forces

along the x-axis and y-axis, respectively. These forces can be relationed

with the longitudinal tire force Fxwi, lateral force Fywi, and the wheel steer

angle α as:

Fxf 5Fxwf cos αð Þ2Fywf sinðαÞ
Fyf 5Fxwf sin αð Þ2Fywf cosðαÞ

�
(8.16)

When a driving torque Td and a braking torque Tb are applied the

rotational motion can be derived as:

Iz _ωwi5Tdi2FxiR2Tbi i5 f ; rð Þ (8.17)

where R is the radius of the wheel and ωwi is the yaw angular velocity.

The trajectory of vehicle center of gravity in an absolute inertial coor-

dinate system is given by:

_X 5 _xcos θð Þ2 _ysinðθÞ
_Y 5 _xsin θð Þ1 _ycosðθÞ

�
(8.18)

8.2.6.1 Longitudinal Motion Control
For controller synthesis, usually the longitudinal model is based on a one-

wheel vehicle model. So, the sum of the longitudinal forces acting on the

vehicle center of gravity is:

m_v5Fp2Fr (8.19)

where v5 _x is the vehicle speed, Fp is the propelling force, and Fr is the

sum of resisting forces. The propelling force is the controlled input result-

ing from brake and driving actions.

The equation describing the wheel dynamics is:

Iz _ω5Td 2FxR2Tb (8.20)

For longitudinal controller synthesis, a nonslip rolling is assumed.

Then

v5Rω; Fp5 Fx (8.21)

So, the longitudinal dynamics is: 
m1

_Iz
R2

!
_v5

Td 2Tb

R
2Fr (8.22)
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A Lyapunov-based approach is frequently used to synthetize the longi-

tudinal control. Consider the speed tracking error given by:

e5 vref 2 v (8.23)

where v and vref are the actual and reference speeds. The derivative of the

error is:

_e5 _vref 2 _v5 _vref 2
1

Mt

ðTd 2 Tb1RFrð ÞÞ (8.24)

where Mt 5 mR21 Iw
� �

=R, using the expression of _v given by the non-

linear longitudinal model. Note that Tb can be considered zero, since that

when throttle is active the brake is inactive.

As is known, in the Lyapunov methodology to ensure the conver-

gence of the tracking error towards zero it is neccesary to propose a

Lyapunov candidate function, which verifies two conditions: it must be

definite positive and its derivative with respect to time must be negative.

Usually the following function is proposed:

V 5
1

2
e2 (8.25)

Its time-derivative will be:

_V 5 e_e (8.26)

To ensure the convergence to zero, the following condition is

imposed, where c. 0:

_V 52 cV (8.27)

Substituting the value of _e, the following expression can be obtained

for _V

_V 5 e
�
_vref 2

1

Mt

Td 2RFrð Þ
	

(8.28)

Then the control law is:

T̂ d 5Mtðce1 _vref Þ1RFr (8.29)

with the parameter c. 0.

It is important to highlight that the stability condition assumes that

the model matches with the real system. This is a very strong assumption.

The uncertainties in the real parameters of the system must be considered
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in the controller synthesis. A robustification term must be added to the

control law to ensure the robust convergence of the tracking error.

8.2.6.2 Lateral Motion Control
The lateral control problem is complex due to the longitudinal and lateral

coupled dynamics as well as the tire behavior. These phenomena are well

captured in a simplified way by the nonlinear bicycle model.

An algorithm chosen to perform the steering control tasks of the vehi-

cle is fuzzy logic. Another algorithm frequently chosen to perform the

steering control tasks of the vehicle is the predictive controller. When the

reference trajectory is a priori known, a predictive algorithm has impor-

tant advantages compared with other algorithms and is simpler to imple-

ment as PID controllers.

The precepts contained in the control strategies included under the

term predictive control are:

• This kind of algorithm uses an explicit plant model that is able to pre-

dict the system output until a given time (prediction horizon).

• The future control signals obtained by the controller are calculated

minimizing an objective function to a certain number of steps (control

horizon).

• Sliding horizon concept. The prediction is carried out and the objec-

tive function is minimized in order to obtain input commands to the

plant. The first control command obtained in the minimization is

applied, discarding the rest, and slides the horizon into the future,

repeating this steps in every sampling period.

The different predictive control algorithms differ in the models used

to describe the system and in the cost function to be minimized.

Fig. 8.11 shows the general structure of Model Predictive Controller.

Many successful implementations of predictive controllers have been pro-

posed in the literature. In particular, and for simplicity reasons we show

the Dynamic Matrix Control (DMC) algorithm. The mathematical

model used in this method to represent the system is the step response of

the piecewise linearized system. The cost function used is intended to

minimize future errors and control efforts. The name of the algorithm

comes from the fact that the dynamic of the system is represented in a

single matrix formed by the step response elements.

Mathematical expressions for the prediction and the cost function are:

ŷ5Gu1 f (8.30)
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with u, proportional to the lateral torque.

J 5
Xp
j51

ŷ t1jjtð Þ2w t1jð Þ
 �2
1
Xm
j51

λ Δu t1j21ð Þ
 �2
(8.31)

where ŷ is a vector with dimension equal to the prediction horizon con-

taining the predicted outputs until the prediction horizon p, w is the

future output desired value, u is a vector with dimension equal to

the control horizon m containing the future control actions, G is the

dynamic matrix control of the locally linearized system, and f is the vector

of free response, with dimension equal to the prediction horizon. The

free response is the prediction of how the system will behave if the com-

mand keeps constant and equal to the last command calculated. The λ
parameter allows to carry out the weighing of the path tracking errors

and the control efforts separately, in the way that we could design a con-

troller to try to adjust to the desired trajectory, regardless of usage com-

mand, or on the other hand the controller could be more permissive with

the path tracking errors and has a more soft use of command, saving

energy in the control.

The main methodology of a predictive controller could be summa-

rized as: the model of the process is used to predict the future outputs

using the information of the past input signals, past control commands, as

Figure 8.11 MPC structure.
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well as the future control actions calculated by an optimizer. To calculate

the future control signals, the optimizer uses the cost function mentioned

previously. Keeping in mind this explanation, the model process is funda-

mental to the correct functioning of the system.

Note that if in the optimization process it doesn’t include the restric-

tions of the physical model, it is possible to obtain the minimization of

the next cost function analytically:

J 5 eeT 1λuuT (8.32)

where e is the vector of predicted errors until the prediction horizon and

u is the vector of future signal control increments until the control hori-

zon. The mathematical expression to calculate the future commands is

obtained taking the derivative of J and equating to zero:

u5 GTG1λI
� �21

GT w2 fð Þ (8.33)

The optimizer will be able to calculate the steer angle in the way to

minimize the differences between the free response and the desired trajec-

tory. In other words, the optimizer will calculate the steer angle in order

to produce the best path tracking.

The software reads the sensors and sets the values of the internal states

of the system in each iteration. These states are the position, the orienta-

tion, and the velocity of the vehicle. With these values the step response

of the system is calculated. The parameters of the step response form the

dynamic matrix G. The prediction of vehicle behavior is calculated using

the read values of the sensors at the beginning of the iteration. The pre-

diction of vehicle movement is compared with the desired trajectory

from the point closest to the prototype. The future errors vector is the

result of the previous comparison. The future commands are obtained

using the equation, but only the first term of future commands vector is

applied, keeping in mind the concept of sliding horizon. Finally, the vari-

ables of the algorithm are updated.

8.3 COOPERATIVE AUTOMATED DRIVING

To tackle the current traffic congestion problems it is essential to improve

road capacity and safety while reducing travel time. With a cooperative

approach, individual vehicles relate to the environment communicating

with other individual vehicles or road infrastructures. Indeed, using
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wireless communication, potential risk situations can be detected earlier

to help avoiding crashes and more extensive information about other

vehicles’ motions can help to improve traffic throughput.

The extension of the commercially available Adaptive Cruise Control

(ACC) system toward the Cooperative ACC (CACC) system has a high

potential to be the first cooperative system to be deployed in the market.

By introducing V2V communications, the vehicle gets information not

only from its preceding vehicle—as occurs in ACC—but also from the

vehicles in front of the preceding one.

This section pays particular attention, on the one hand, to platooning,

based on the CACC concepts, and on the other hand, to the early-stage

developments on Urban Road Transport.

8.3.1 Platooning
Platooning is a particular example of connected (and cooperative) adap-

tive cruise control (CACC), where a single driver may be in control of

an entire “road train,” potentially also including their lateral (lane chang-

ing) behavior. It combines the use of exteroceptive sensors (mainly

76 Ghz radars), the automation of pedals (or even steering wheel) with

the use of a V2V secure wireless communication (using mostly 5.8 GHz

DSRC) between the involved vehicles to synchronize braking and accel-

eration, obtaining a reaction time that is unattainable by humans.

Platoons, deeply investigated for freight transportation systems using

heavy-duty trucks, are usually managed following a dynamic assignment

for the interested vehicles before the trip. Then, a platoon formation stage

leads to the nominal platoon operation mode. A machine state usually

handles different events, such as an emergency break, the interference

introduced by an intermediate vehicle, the special management of a

motorway entrance or exit. The latest advance in truck platooning pro-

poses the use of fault-tolerant systems (Companion, 2016) to perform an

eventual recalculation of the assignment when significant deviations from

the original plan are detected (Fig. 8.12).

Truck platooning is likely to be one of the earliest applications of road

vehicle automation to be commercially viable. It is highly likely that it

would mostly materialize on highways, where traffic is less turbulent than

on city streets, with a deployment where automation would gradually

increase, going from driver assistance up to highly (or even fully) auto-

mated vehicles. To make this happen, regulations governing how long
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truckers can drive (or supervise) before taking breaks may have to be

modified to consider situations where drivers are in the sleeper berth

while an autonomous truck is in operation.

Although the different studies show certain variability in their conclu-

sions, it is widely accepted that the deployment of platooning might have

a positive impact on the following aspects:

Capacity: The accordion effect that generates traffic jams could be signif-

icantly reduced using constant spacing, increasing thus the capacity of roads

by closer spacing of vehicles, narrower lanes, reduction in the wave effect

of braking, faster average speeds, and fewer accidents (Swaroop and

Hedrick, 1996; Rajamani, 2011). In Fig. 8.13A, a research work

(Fernandes, 2012) shows how the maximal flow can be increased up to five

times with respect to the peak of the flow/density curve in the classical

traffic model. However, to be effective with respect to traffic flow, platoon-

ing should be performed with vehicles evolving on dedicated tracks and

operating on a nonstop basis from origin to destination (Anderson, 2009).

As such, by eliminating the stop-and-go problem of common car and

transit systems, platooning could contribute to a faster and more

comfortable mobility with higher energy efficiency.

Conversely, other research has suggested that cooperation may nega-

tively impact capacity in merge or lane-drop situations, creating bottle-

necks. In this connection, some regulatory bodies are likely to require

Figure 8.12 Platoon scheme (from Peloton Tecnology).
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dedicated truck lanes. The main reason behind this idea is that even a

three-truck platoon will function as a visual and physical barrier for cars

needing to get on or off the road, and cars attempting to dart between

trucks in a platoon represent a new safety hazard.

Fuel consumption: For heavy-duty trucks, the potential fuel savings

obtained by platooning are particularly large, ranging from 4%�10% with

conservative gaps (Al Alam et al., 2010; Janssen et al., 2015) up to over

20% when spacing is 1/10 vehicle length (see Fig. 8.13B). Thus, 2 trucks

driving 100,000 miles annually can save h6,000 on fuel by platooning,

compared to driving on cruise control.

Employment: In the long term, fully automated trucks may provide a

solution to the growing driver shortage. The American Trucking

Associations estimates that the industry will need more than 96,000 new

drivers annually for the next 10 years to keep pace with current consumer

spending rates (Costello and Suarez, 2015).

Vehicle platooning is an active research area and many contributions

have been reported over the last decades. Early theoretical results on the

control of platoons were presented in Levine and Athans (1966) and

Melzer and Kuo (1971), focusing on a centralized optimal control

scheme. Safety is typically addressed by the concept of string stability

(Swaroop and Hedrick, 1996; Ploeg et al., 2014), which is related to the

suppression of disturbances in vehicle position, velocity, or acceleration, as

they propagate through the platoon. More recently, research on
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implementation aspects has been emerging, herein analyzing the aspects

of heterogeneous vehicle strings (Shaw and Hedrick, 2007), intervehicular

communication constraints (Al Alam et al., 2010), and implementation

issues (Naus et al., 2010).

Although there are still some technological barriers to overcome

(e.g., V2V safety and security or the stable platoon control under any

circumstances), the main risks for the soft deployment of this type of

cooperative systems come from the legal, business, deployment/timing,

and user acceptance aspects. The interoperability between service provi-

ders, the absence of commitment and corresponding deficient market

take up from stakeholders, or the potential boycott by driver-

representation lobbies are some of the most significant risks in the exhaus-

tive list of barriers and risks towards platooning (Janssen et al., 2015).

8.3.2 Urban Road Transport
One of the most difficult and challenging scenarios in implementing

automated driving is the urban environment, since there are many com-

plex and changing situations with different moving actors and infrastruc-

ture elements (vehicles, pedestrians, bikes, intersections and crossing areas,

traffic lights, etc.) that must be taken into account at any moment.

Considering this complexity, cooperative communication technologies

have a very high potential to support and to enhance automated driving

strategies, in its different automation levels, in a holistic approach that

could cover vehicles, vulnerable road users, traffic infrastructure, shared

digital data, and mobility management centers.

Through the exchange of cooperative information among all actors

involved, it could be possible, for example, to extend the sensing capabili-

ties of automated and autonomous vehicles beyond the perception of

their own physical sensors. Moreover, urban traffic authorities can also

enhance the information gathered at their mobility management centers

with the one coming from automated vehicles that would be acting as

moving sensors, increasing therefore its capacity to implement new traffic

management strategies. In this connection, some interesting applications

of cooperative urban road transport are listed in the next section.

Nevertheless, due to its specific high complexity, urban automation

deserves still a big R&D joint effort among all involved stakeholders.

Specific research in the domains of environmental sensing, Internet of

Things, cloud computing, Big Data, or artificial intelligence will signifi-

cantly contribute to the progress of automation in urban environments.
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8.4 VERIFICATION AND VALIDATION

While Automated Driving is becoming nowadays a key topic for the

future of the automotive industry, the technology behind it has been

evolving since some years ago and it is reaching maturity in some of the

Advanced Driver Assistance Systems (ADAS) that can be found right now

in serial vehicles (e.g., ACC, AEB, or LKA).

In parallel to this evolution, the processes and procedures for testing

ADAS functions have been also developed and established during the pre-

vious decades, according to the functions’ requirements and the norma-

tive established. Therefore, today, it is possible to find standard procedures

for testing such functions, e.g., Euro NCAP procedures (Fig. 8.14).

In the case of the Automated Driving functions, the work is still to be

done. Several research projects in various stages of development can be

found in this field, including extended on-road testing with vehicle fleets,

but these demonstrations are only the beginning of the Verification and

Validation steps, and the challenges are still not solved.

Among others, some of the main questions appearing that have to be

clarified are the following:

• How Automated Driving functions should be tested (methods and

tools) to achieve the levels of safety and confidence required?

• How much testing will be needed at each development stage?

Test approaches supporting massive and specific tests in the different

technologies and at the different levels and points of the lifecycle are

needed, and should cover concepts and algorithms, software units and

physical components, integrated systems, and in-vehicle functions.

The V-Model development cycle (see Fig. 8.15) has been used in the

development of vehicle functions already for some time. More recently, it

has been adopted as the reference model that can be used for the ISO

Figure 8.14 AEB testing following EuroNCAP procedures.
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26262, for functional safety critical systems. But, although ISO 26262

and the V-Model provide a generic methodological framework for assur-

ing automotive safety and also a reference for development of automated

driving functions, automated driving presents unique challenges for the

application of both approaches, that are now under discussions in the dif-

ferent working groups and fora dealing with both topics.

With regards to the performance of tests at early phases, the use of

modeling and simulations presents a clear advantage for achieving

acceptable levels of safety and assurance for an autonomous vehicle.

Virtual testing allows performing many test cases with variation of para-

meters in order to assure a correct performance of the algorithms, bring-

ing the system into a good maturity level.

However, there is still a need for extensive testing of the overall system

in the real environment, on first the proving ground and as a second step

in real world campaigns. In this sense, the development of new specific

proving grounds devoted to testing this kind of vehicle will have a major

relevance in the coming years.

In-vehicle quantitative validation also requires a set of tools that allows

to control a wide range of different parameters (related to the adjustment

of the system to be tested, but also of the other targets in the scenario).

On the other side, systems for repetitiveness of the maneuvers instead of

using human drivers, in addition to the minimization of risks, allows

being more efficient in the testing process. With this aim, several systems

Figure 8.15 Traditional V-Model development cycle.
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have been proposed in the recent years to bring the vehicle under test in

exactly the same test conditions while guaranteeing safety. In this case, it

is possible to find in the market reference systems with enough precision,

driving robots, or new movement platforms and dummies to support the

new needs appearing in the market (Fig. 8.16).

The amount of testing needed for covering the needs of the

Automated Driving functions is the other key topic, and subject to much

debate. On the one hand, the discussion is focused on the number of

kilometers that must be driven in order to establish a safe operation of an

Automated Driving function, and, on the other hand, to arrive at a rea-

sonable and efficient testing cost to meet the time to market in an afford-

able manner.

As a main conclusion, the verification and validation processes for the

Automated Driving functions should meet, in an efficient way, the strong

safety and acceptance objectives required to deploy the systems in millions

of vehicles around the world and, in parallel, should be efficient enough

in terms of costs and time to arrive to the market with the right product.

Both facts suppose the modification of current frameworks and develop-

ment processes, the increase on the usage of virtual testing and modeling,

and finally, to be able to perform real environment tests in the most

appropriate and repetitive conditions to evolve and fine-tune the correct

system performances.

8.5 MAIN INITIATIVES AND APPLICATIONS

8.5.1 Prototypes
8.5.1.1 Relevant Prototypes at International Level
Besides some pioneer works at the University of Ohio in the 1970s, at

the Carnegie Mellon University in the 1980s, in specific Programmes in

Figure 8.16 Example of new tools for automated driving testing.
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Europe and Japan (i.e., Prometheus and Advanced Safety Vehicles pro-

jects, respectively), the turning point of automated vehicles are the

DARPA Grand and Urban Challenges (2005 and 2007).

Although more than 20 teams designed and built automated vehicles

to meet the challenges posed by the organizers, the most successful proto-

types were the following:

• Stanley, Stanford University (Thrun et al., 2006): it won the 2005 Grand

Challenge. The vehicle is a Volkswagen Touareg, where the native

drive-by-wire control system was adapted to be run directly from an

onboard computer without the use of actuators or servo motors. It

used five roof mounted Lidars to build a 3-D map of the environment,

supplementing the position-sensing GPS system. As in many other

prototypes, an internal guidance system utilizing gyroscopes and accel-

erometers monitored the orientation of the vehicle and also served to

supplement GPS and other exteroceptive sensor data. Additional guid-

ance data was provided by a video camera used to observe driving

conditions out to 80 m (beyond the range of the LIDAR) and to

ensure room enough for acceleration. Includes a Planning and

Control layer with a local path planner, obstacle detection, health

monitor module in the case of critical system or GPS failures, emer-

gency stop remote control. The sequel of Stanley, Junior, obtained

second place in the Urban Grand Challenge.

• SandStorm, Carnegie Mellon University (Buehler et al., 2007): the 2005

version of Sandstorm, mounted in a Hummer, used six fixed Lidars, a

steerable LIDAR, and short- and long-range radar. It implements a

global route planning, path planning, satellite images, and other

topography data to generate the global path. The A� heuristic func-

tion together with cubic B-splines were used to smooth a reference

path. Velocity and steering were controlled using classic PID control-

lers derived from Simulink models.

• Boss, Carnegie Mellon University (Urmson et al., 2008): winner of the

Urban Grand Challenge. It is a Chevrolet Tahoe that uses perception,

planning, and behavioral software to reason about traffic and take

appropriate actions while proceeding safely to a destination. It is

equipped with more than a dozen lasers, cameras, and radars to view

the world. It allows the tracking of other vehicles, detecting static

obstacles, and localizing itself relative to a road model. Planning sys-

tem combines mission, behavioral, and motion planning to drive in

urban environments
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More recently, other relevant prototype examples from Universities

have achieved very significant milestones:

• The CMU autonomous vehicle research platform (Wei et al., 2013): based on

a Cadillac SRX. Since the car is not equipped with drive-by-wire con-

trols for operation, several mechanical and electrical modifications were

necessary to enable computer control of the required inputs that oper-

ate the vehicle. The vehicle is capable of a wide range of autonomous

and intelligent behaviors, including smooth and comfortable trajectory

generation and following; lane keeping and lane changing; intersection

handling with or without V2I and V2V; and pedestrian, bicyclist, and

work-zone detection. Safety and reliability features include a fault-

tolerant computing system and smooth and intuitive autonomous-

manual switching

• Shelley, Stanford’s self-driving Audi TTS (Funke et al., 2012): it managed

to autonomously ascend Pikes Peak in 2010. More recently, they took

the vehicle to Thunderhill Raceway Park, and let it go on track with-

out anyone inside, hitting over 120 miles per hour. The goal of this

prototype was to push autonomous driving to the vehicle’s handling

limits. To that end, a high speed, consistent control signal is used in

combination with numerous safety features capable of monitoring and

stopping the vehicle. The high level controller uses a highly accurate

differential GPS and known friction values to drive a precomputed

path at the friction limits of the vehicle

• Vislab (Broggi et al., 2012), from the University of Parma, with which

the International Autonomous Challenge was accomplished. The plat-

forms are small and electric vehicles produced by Piaggio. The automated

driving technology did not affect its performance since the sensors, the

processing systems, and the actuation devices are all powered by solar

energy, thus they do not drain anything from the original batteries. The

vehicle managed to run almost 16.000 km on a 100-day trip, combining

automated and manual mode in very challenging driving zones.

• Spirit of Berlin and Made in Germany, prototypes from the Freie

Universität Berlin (Berlin, 2007). They have a modular sensor setup

with most of its sensors mounted on top of the car on a flexible rack.

Obstacle processing is done by a combination of rotating and fixed

Lidars with stereo camera systems. In addition, the car localizes itself

with an integrated GPS/INS unit and RTK correction signals.

In addition to these representative prototypes, many others have

appeared in recent years from OEMS (Daimler, BMW, Audi, GM, Ford,
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Volvo, . . .), Tier 1 providers (Bosch, Delphi, Valeo, Continental . . .), and
new incomers providing either the embedded intelligence or the whole

automated vehicle (Waymo, Tesla, Peloton Technologies, EasyMile,

Navya, Otto, Cruise, Zoox, Baidu, Aimotive). In addition, big players

working on new solutions for the mobility as a Service paradigm are

intensively working on highly/fully automated driving solutions (Lyft,

Uber, Nutonomy, Didi Chuxing).

8.5.1.2 Relevant Prototypes in Spain
There are some R&D centers and universities in Spain working since sev-

eral years intensively in the domain of automated driving, such as CSIC,

UPCT, CTAG, and INSIA. Some of them have prepared real functional

automated driving prototypes to test the progress of their different

developments.

In 2012 the AUTOPIA Program, from CSIC, showcased their tech-

nology in communications and control performing a widely publicized

demonstration, from El Escorial up to Arganda, in Madrid (see

Fig. 8.17A). One automated prototype vehicle (Platero, Citroën C3) ran

driverless for 100 km following a leading manual car (Clavileño, Citroën

C3 Pluriel), with sensing and communicating devices, which dynamically

generated a high precision map to be tracked by the automated following

car. The journey covered a wide range of driving scenarios, including

urban zones, secondary roads and highways, in standard traffic conditions.

To that end, V2X communications were combined with onboard sensors

to achieve a centimetric localization and a safe and smooth motion plan-

ning (Godoy et al., 2015).

Probably the most relevant activity performed so far in Spain was

carried out by PSA, in collaboration with CTAG, and took place in

Figure 8.17 (A) Platero in the El Escorial demonstration, (B) PSA autonomous trial
Vigo-Madrid.
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November 2015. A level 2 and level 3 PSA C4 Picasso prototype (see

Fig. 8.17B), equipped with different sensors and enriched digital maps,

covered in automated mode the distance of 599 km from Vigo to

Madrid, showing the feasibility to deploy automated driving vehicles in

the coming years. DGT was also deeply involved in this trial, facilitating

all required authorizations to perform this test in open roads.

Other relevant prototypes have been built in Spain, such as the

Renault Twizy automated by the Technical University of Cartagena

(Navarro et al., 2016). It has a large set of exteroceptive sensors connected

to three different computing platforms running on VxWorks. It includes

a global route planning based on maps, a machine learning (SVM) for

detecting pedestrian and vehicles, local path planning, and an obstacle

avoiding system based on Bezier curves trajectories.

CTAG has also developed some automated driving prototype vehicles

in the framework of European, national, or bilateral cooperative R&D

projects. To mention two interesting examples (see Fig. 8.18), it is possi-

ble to mention a prototype developed in the framework of the project

CO2PERAUTOS2 (INNTERCONECTA Spanish R&D Program),

implementing some cooperative automated driving functions such as

cooperative highway chauffeur and cooperative urban chauffeur, includ-

ing also some cooperative sensing use cases (Sánchez et al., 2015). A sec-

ond relevant example, in this case in cooperation with PSA, is the

MobilLab automated driving prototype, devoted to explore the challenges

of HMI and driver-interaction for automated and autonomous vehicles.

INSIA (University Institute for Automobile Research of Technical

University of Madrid) is also involved in several projects regarding intelli-

gent vehicles, specifically in automated and connected experiences,

including cooperative systems, like AUTOCITS (Regulation Study in the

Adoption of the autonomous driving in the European Urban Nodes

Figure 8.18 Examples of CTAG prototypes: Cooperative Automated Driving proto-
type, Mobil-Lab HMI prototype.
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funded by European Commission), focused on the deployment of pilots

of Cooperative Systems and Autonomous Vehicles in the cities of

Madrid, Paris, and Lisbon. The first projects on autonomous driving

began with SAMPLER and ADAS-ROAD projects in which automatic

evasive maneuvers were performed when risky situations were detected.

Then, the Cooperative and Autonomous Vehicles (CAV) project was

focused on the integration of autonomous vehicles with C-ITS in critical

environments such as complex crossings, roundabouts, and tunnels.

AUTOMOST (Automated Driving for dual transport systems) project is

aimed to the development of autonomous city buses. INSIA also have

strong links with the Spanish automotive sector and with other important

actors such as the Spanish Ministry of Defence with the project

REMOTE-DRIVE (drive-by-wire for tactic vehicles in surveillance mis-

sions) where a military tactic vehicle has been automated to act in emer-

gency and defence missions. This center includes a testbed private circuit,

two fully automated vehicles (see Fig. 8.19), two instrumented vehicles,

one instrumented motorcycle, electronics and instrumentation lab, V2X

proprietary communication technology, and a granted patent of a device

to automatically control the steering of a vehicle from a computer.

8.5.2 Projects
Automated and connected driving has become one of the technological

mega-trends, recognized by several reports of consulting firms (Manyika

et al., 2013). In addition to that, strategic roadmaps from different

international organizations merely confirm the importance of these

technologies:

• The Amsterdam Declaration (European Union, 2016), signed on

April 2016 by all 28 EU member states during the informal meeting

of the Transport Council, lays down agreements on the steps necessary

Figure 8.19 INSIA’s autonomous vehicles prototypes.
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for the development of self-driving technology in the EU. In this doc-

ument the EU member states and the transport industry pledge to

draw up rules and regulations that will allow autonomous vehicles to

be used on the roads.

• La Nouvelle France Industrielle (NFI, 2013) is a French strategic doc-

ument whose aim is to focus economic and industrial stakeholders

around common goals, to align government means more effectively to

these goals, and to harness local ecosystems to build a new, competi-

tive French industrial. It has borne fruit with the presentation of 34

industrial renewal initiatives, among which driverless vehicles, pushing

the French automotive sector to be a pioneer in vehicle automation,

notably by removing regulatory barriers to growth

• The German Association of the Automotive Industry (VDA) proves

that the adaptation to legal provisions and parameters is required, since

the corresponding regulations always assume that a driver is actively

steering and controlling the vehicle at all times. However, this is not

the case in higher automation levels. Their position paper (der

Automobilindustrie eV, 2015) on automated paper argues why The

Vienna Convention of 1968 must be amended accordingly in order to

create a basis for compliance with the national road traffic regulations

of the respective signatories.

• NHTSA (National Highway Traffic Safety Administration) released a

policy document for Automated Vehicles in 2016 (U.S. Department

of Transportation, 2016), where it recognizes three realities that neces-

sitate some sort of guidance: (1) the rise of new technology is inevita-

ble; (2) more significant safety improvements will be achieved by

establishing an approach that translates knowledge and aspirations into

early guidance; (3) as this area evolves, the “unknowns” of today will

become “knowns” tomorrow. The overall intention is therefore to

establish a foundation and a framework upon which future Agency

action will occur.

Supported by this trend and guidelines, the European Commission

and public authorities of the EU Members States have already funded an

important number of research and innovation projects (see Fig. 8.20) that

seek to set the basis for a sustainable and competitive development of

automated driving technologies in Europe.

The first attempts in autonomous driving permitted to see that taking

the driver out of the loop in the evolution process from automated to

autonomous driving will not happen easily and probably will not happen
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at all. As a result of this, some initiatives guided his steps through highly

automated vehicles. Among them, the project HAVEit, Highly Automated

Vehicles for Intelligent Transport (2008�11), aimed at a higher level of

automation to be used on existing public roads in mixed traffic.

Following this path, the project interactIVe (2010�13) involved 29

entities from 10 countries working together towards the increase of an

accident-free traffic in Europe and developed advanced assistance systems

for safer and more efficient driving. The driver is continuously supported

by these systems, that warn the driver in potentially dangerous situations.

The systems do not only react to driving situations, but are also able to

actively intervene in order to protect occupants and vulnerable road users.

The continuation of interactIVe was AdaptIVe, an European project

launched in 2014 that is about to conclude. It is a lighthouse project on

automated driving, involving most of the major OEMs and Tier ones. Its

main goal is to demonstrate automated driving in complex traffic envir-

onments, taking into account the full range of automation levels. In

Figure 8.20 Overview of EU-funded Project on automated and connected driving
(Dokic et al., 2015).
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addition, it is working on (1) providing guidelines for the implementation

of cooperative controls involving both drivers and automation; (2) defin-

ing and validating specific evaluation methodologies; (3) assessing the

impact of automated driving on European road transport; and (4) evaluat-

ing the legal framework with regards to existing implementation barriers.

Another example for the successful integration of driverless intelligent

vehicles (level 5) in urban environments is the project of CityMobil2. As a

successor of CityMobil, the project is implementing intelligent transporta-

tion systems (ITS) for automated transport in protected environments. The

applied vehicles are based on the “CyberCars” concept defined and pro-

moted by INRIA in France, but extended to new marketable platforms

(Easymile, Navya).

As already mentioned, cooperative driving addresses automotive and

road traffic systems that make use of information and communication

technologies (ICT), in conjunction with automated or nonautomated

driving vehicles. These technologies are used to exchange specific infor-

mation between vehicles (vehicle-to-vehicle communication, or V2V)

and between vehicles and road infrastructure (V2I).

In the last years, several European projects and initiatives have marked

important milestones in the deployment of these technologies.

SAFESPOT (2006�10) developed dynamic cooperative networks where

the vehicles and the road infrastructure communicated to share informa-

tion gathered onboard and at the roadside, to enhance the driver’s percep-

tion of the vehicle surroundings. Intersafe 2 (2008�11) aimed to develop

and demonstrate a cooperative Intersection safety system able to signifi-

cantly reduce injury and fatal accidents at intersections. The Grand

Cooperative Driving Challenge (GCDC, 2011), and its sequel i-Game

(2013�16), aims at accelerating the development and implementation of

cooperative driving technologies, by means of a competition between

international teams.

Several experimental case studies have shown the feasibility of

platooning. One of the earliest demonstrations was given in the US in

1997 by the PATH project at UC Berkeley using a platoon of eight cars,

followed then in the 2000s by experiments with trucks that had only

automated longitudinal control (Fig 8.21A). Regarding truck automation,

the first studies were “Chauffeur” within the EU project T-TAP from the

mid-1990s to the beginning of 2000 (Fritz et al., 2004), where driving

experiments were conducted with three heavy trucks along the Brenner

Pass through the Alps between Austria and Italy.
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From 2005 to 2009 the Aachen University developed a platoon of

four heavy trucks (Fig. 8.21B) in their project KONVOI (Kunze et al.,

2009) with the objective of increasing transportation capacity while

reducing fuel consumption. In 2008 Japan started a 5-year project

“Energy ITS” aiming at reducing energy consumption by truck platoon-

ing (Tsugawa, 2014).

The most recent European projects SARTRE (Sartre, 2016) and

COMPANION (Companion, 2016) have showed significant advances in

platooning. The former (Fig. 8.21C) developed strategies and technolo-

gies to allow heterogeneous vehicle platoons (car and trucks) to operate

on normal public highways, showing its potential with a five vehicle

demonstration. The latter (Fig. 8.21E,F) provided solutions for handling

the lack of holistic solutions including the creation, coordination, and

Figure 8.21 From top left to bottom right: (A) PATH Program (PATH, 2017);
(B) Konvoi Project (Kunze et al., 2009); (C) SARTRE Project (Sartre, 2016); (D) European
Truck Platooning Challenge (Eckhardt, 2015); (E, F) COMPANION Project (Companion,
2016).
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operation of platoons. As a result, a real-time coordination system can

dynamically create, maintain, and dissolve platoons, according to a

decision-making mechanism, taking into account historical and real-time

information about the state of the infrastructure. More recently, in 2016

about a dozen trucks from major European manufacturers completed a

week of largely autonomous driving across Europe in the European

Truck Platooning Challenge (Eckhardt, 2015), the first major exercise

involving multibrand platooning on the continent (see Fig. 8.21D). In

parallel in the USA, Peloton Technologies is the first company to provide

automated vehicle technology for commercial truck platooning.

Another interesting and completely different project on cooperative

and automated vehicle technology is AutoNet2030. It has worked

towards a decentralized decision-making strategy which is enabled by

mutual information sharing among nearby vehicles. It considers the grad-

ual introduction of fully automated driving systems, which makes the best

use of the widespread existence of cooperative systems in the near-term

and makes the deployment of fully automated driving systems beneficial

for all drivers already from its initial stages.

8.5.3 Special Applications
The potential of autonomous driving goes beyond standard road applica-

tions. There are several areas where the use of this technology can be

applied. Researchers, scientists, universities, and R&D departments of the

best automotive companies have explored this idea and other possible

special applications based on this type of vehicles have been implemented

along years. In this way, there are specific applications for off-road envir-

onments, nonurbanized scenes, where the useful information for the

interpretation of the surroundings is much more limited: military mis-

sions, rescue, supervision and surveillance, land exploration, agricultural

applications, among others. Furthermore, an additional field of broad

development is the specific applications for public passenger transporta-

tion, taxi services, car-sharing, or for freight transport and, in a general

way, any application that either cannot be performed by a human opera-

tor due to imminent danger exposure or provides a new solution for a

specific service.

The military environment is one of the main promoters of this type of

applied technology. The first military applications were carried out in

1930 with the so-called “Nagayama tank,” a tank that received the orders
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of movement via radio. Subsequently, and more famously, the Soviet

Union developed one during the late 1930s and early 1940s, the so-called

“Teletank.” These military platforms used in the well-known “Winter

War,” at the beginning of World War II, consisted of tanks controlled by

radio without any operator, carrying out missions to approach the enemy

while they were guided from another tank at a safe distance. Another

military platform that became popular, not for the technology used, but

for laying the groundwork for post-World War developments in tele-

operation technologies, was “The Goliath,” a small-tracked tank, used by

the German army during World War II, in battles such as the Normandy

landings. “The Goliath” was controlled remotely by wires up to 650

meters and its mission was to demolish buildings and infrastructures of

the enemy through the explosive charge that was carried.

More recently, the American organization DARPA, founded the

“DARPA Grand Challenge,” an autonomous vehicles’ competition where

they had to travel long distances in a totally autonomous mode. In first

instance, it was intended to promote driving and vehicles with a high

level of automation, with new developments in technology, but the final

goal had a strong military character. In 2004, the first edition of this com-

petition was celebrated, in which vehicles had to complete a route of

240 km along an off-road environment. No participant completed the

route. In 2005, the second edition was held, where five vehicles success-

fully completed the test. This edition continued to consist of an off-road

environment, where the participating vehicles had to go through different

complex situations like narrow tunnels, roads where it is difficult to

delimit the boundaries, or perform complicated turns. The third edition

of the DARPA Grand Challenge took place in 2007, better known as

“Urban Grand Challenge”; in this case, the environment was urban and

96 km long, respecting traffic rules and the other vehicles.

Since then, different armies around the world have been developing

their own Unmanned Ground Vehicles (UGV’s). For example, UGVs have

been developed such as the “Guardium-LS UGV,” a military platform used

by Israel equipped with a large amount of ballistic material, capable of

being tele-operated from another mobile platform and able to detect and

avoid obstacles that appear in their way. Another interesting example is the

Tank Automotive Research Development and Engineering Center

(TARDEC) group of U.S army that develops UGVs for military applica-

tions whose purpose is to be able to be tele-operated from anywhere in the

world. On the other hand, in this type of application, unlike when urban
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environment are considered, it is difficult to predict the state of the

road through which the vehicle circulates, besides not being able to rely on

elements that serve as reference, such as lane lines, curbs, buildings, cross-

ings, etc. With the LiDAR technology, obstacles that are above the ground

level could be easily recognized; however, in these off-road conditions it

cannot be assumed that the condition of the terrain is always in good con-

dition and the identification of negative obstacles is of great importance.

That is why research projects are being developed especially dedicated to

the identification of such obstacles, such as the case of Shang et al. (2015),

where a different set up for the LiDAR sensors is presented in order to

identify the negative obstacles in nonurbanized environments. They were

the winners of the “Overcome Danger 2014,” a ground vehicle challenge

supported by the Chinese army, similar to the DARPA Grand Challenge of

the USA.

Another interesting application of autonomous vehicles is their use for

space missions. For example, the vehicle Mars Rover can be guided by a

human operator remotely but the obstacles avoidance and best trajectory

finding for reaching the destination are tasks that the vehicle performs

autonomously.

Apart from these projects supported by governments or state adminis-

trations, some companies from the private sector are also paying special

attention to developing new solutions for special off-road applications

such as Jaguar Land Rover. Throughout 2016, they have been working

on a self-driving off-road connected vehicle. On the one hand, the off-

road vehicle can identify the terrain where it circulates based on recogni-

tion of the environment and it can offer semi-autonomous driving. On

the other hand, it is intended that these vehicles can talk to each other

and communicate, in such a way that, if several vehicles circulate in a

convoy, the first one can communicate to the other vehicles located

behind it the state of the terrain, the speed, and location, etc., through

DSRC communication modules.

In the agricultural sector, the autonomous navigation of the industrial

machinery is promoting a great increase of the productivity in tasks of

plowing, mowing, harvesting, etc. All these tasks become more efficient

when a fleet of tractors works at the same time throughout the day and

the operator manages all the work in remote. There are several develop-

ments in this sector. One of the most outstanding is the manufacturer of

agricultural machinery Case IH with its concept of autonomous vehicles,

capable of following a preloaded route and calculating the most optimal
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paths to perform. Furthermore, since the vehicle has sensors for the rec-

ognition of the environment, it can identify obstacles and make the deci-

sion to stop and send a warning signal if necessary. In a similar line, other

agriculture machinery manufacturers have developed vehicles that can fol-

low a predefined trajectory.

In addition, autonomous navigation serves as a catalyst for other ser-

vices that are carried out in an urban or interurban scene. One of the

most successful special applications among the manufacturers and software

companies is the taxi service. In fact, the first self-driving taxi was tested

in Singapore in 2016 by nuTonomy. This software startup for autono-

mous vehicles has launched a taxi service that currently operates in a spe-

cific area of Singapore with specific destinations, using electric cars,

providing, therefore, a solution to decongesting the cities of traffic and

pollution. On the other hand, Uber is currently developing its autono-

mous taxi service, conducting tests in the city of Pittsburgh, through the

sensor fusion of different LiDARs, Radars, stereovision, and computer

vision for the recognition of the environment and making use of machine

learning in their control algorithms.

Besides the specific aforementioned initiative, there are many potential

interesting cooperative applications related to urban automation. To sum-

marize some of them, the following examples could be found in the

future:

• Automated parking and valet parking cooperative services.

• Cooperative services to support and to manage autonomous vehicles

in dedicated lanes, such as last-mile autonomous vehicles.

• High precision positioning cooperative services.

• Cooperative services for urban chauffeur and urban autopilot, for

example, to manage intersection scenarios in a safely and efficient

manner.

• Cooperative services for robotaxis and autonomous car sharing fleets.

• Cooperative sensing services to extend perception capabilities of AVs.

Parking scenarios usually represent a kind of relatively stable -

environment where vehicle automation is already happening. With the

support of cooperative communication technologies, the next step will be

in the direction of autonomous valet parking applications. In this case, cars

and garages will cooperate to park autonomously the vehicle, without the

presence of the driver, which will interact with the car through his/her

smart device. All vehicles manufactures and main Tier 1 suppliers in this

domain are in a development phase to bring this functionality into the
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market, with the involvement also of parking management companies

(Fig. 8.22).

Other important area, very much related to connectivity and coopera-

tive services, which have an interesting potential to make urban mobility

more sustainable, is linked to the implementation of electric autonomous

last-mile vehicles. There are many R&D projects and predeployment

activities running at this moment to support the future introduction of

these kind of solutions (Fig. 8.23).

Talking about urban scenarios that automated vehicles will have to

cover, intersections are very complex situations where cooperative ser-

vices can really provide support. As an example, cooperative traffic lights

can exchange Green Light Optimal Speed Advisor (GLOSA) information

with automated vehicles to let them adapt their speed to pass the intersec-

tion in the safest and most efficient manner (Fig. 8.24).

Moreover, V2V, V2I, V2VRU, or V2Cloud cooperative sensing strate-

gies can enhance the perception capabilities of automated vehicles, allow-

ing them to manage better these complex urban scenarios (Fig. 8.25).

Figure 8.22 Remote valet parking assistance demonstration (BMW).

Figure 8.23 Last-mile driverless shuttles testing trial that will run from 23rd January
2017 until 7th April 2017 in a dedicated lane in Paris (Easymile).
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8.6 SOCIOREGULATORY ASPECTS

8.6.1 Legal Pathways
There are important questions to be answered regarding autonomous

vehicles, like security, ethics, use of data, and coexistence of autonomous

technology with conventional vehicles (manually controlled vehicles).

Firstly, the system must be safe for both the driver and the other users

of public roads. In addition, autonomous vehicles must comply with the

traffic laws of the region in which they operate, in the same way as all

other vehicles in circulation.

Secondly, it is necessary that the regulation on autonomous vehicles is

as homogeneous as possible. So that there should not be differences

between states that prevent the same model of vehicle from operating in

all of them (which would be an important obstacle to the deployment of

this technology).

Figure 8.24 Example of automated GLOSA cooperative service (CTAG).

Figure 8.25 C2C pedestrian detection demonstration at Bordeaux ITS World
Congress (PSA-CTAG).
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Then, appropriate education and training are essential to ensure the

safe deployment of automated vehicles. Therefore, manufacturers and

other entities should develop, document, and maintain some form of

training for employees, distributors, and users. The differences between

the use and operation of autonomous vehicles and conventional vehicles

should be addressed. In addition, these programs should be designed to

provide users with the level of understanding necessary to use them prop-

erly and safely.

A critical aspect in this type of technology is the changing between

manual control and autonomous vehicle control. Adequate mechanisms

and procedures must be provided to ensure the change is made safely,

comfortably, and efficiently.

In addition, the data generated by the use of connected and/or auton-

omous vehicles may be useful, for example in case of accidents, to analyze

the causes of them. It is necessary to clarify the conditions and availability

for the use and exchange of data generated by connected and automated

vehicles, as well as the responsibility of each of the parties involved.

Moreover, manufacturers and other entities are expected to develop

software upgrades for automated vehicles or new vehicle versions incor-

porating different and/or upgraded hardware. If these software or hard-

ware upgrades substantially change the operation of the vehicle, an

evaluation or additional certification process may be necessary. The pur-

pose of these updates may be to improve performance, security, or other

aspects of the system. In addition, in case of changes in the software, the

download of these updates or patches could be done through “over-the-

air updates” or other methods that should be regulated.

Finally, it is necessary to contemplate the possibility of when two

situations of risk happen simultaneously, requiring a consideration of

“dilemma situations.” It may be necessary to define the procedure in these

kinds of situations.

8.6.1.1 General Framework: Vienna and Amsterdam
There are two traditional international framework agreements on Road

Traffic: the Geneva Convention and the Vienna Convention. Firstly, the

Geneva Convention on Road Traffic was signed in 1949 by 95 states to

promote the development and safety of international road traffic by estab-

lishing certain uniform rules. Secondly, the Vienna Convention on Road

Traffic from 1968 is an international treaty ratified by 74 countries. It was

designed to facilitate international road traffic and to increase road safety
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through the adoption of uniform traffic rules. At European level, the

need to modify the Vienna Convention to promote the use of autono-

mous vehicles in road traffic has intensified, mainly due to the need of a

“driver” controlling the vehicle at all time. Article 1, paragraph (v):

“Driver means any person who drives a motor vehicle or other vehicle

(including a cycle), or who guides cattle, singly or in herds, or flocks, or

draught, pack or saddle animals on a road.” Article 8, paragraph 5: “Every

driver shall at all times be able to control his vehicle or to guide his

animals.”

Then, on April 2016, European Union transport ministers, as well as

a number of car manufacturers, signed the European Declaration of

Amsterdam. The main objective of this initiative is the cooperation

between governments and industry to develop a legal framework and to

boost research and development on connected and automated driving.

In addition, there are currently informal discussions on the analysis

and development of regulations for the autonomous vehicles at the

United Nations Economic Commission for Europe’s “Working Party on

Road Traffic (WP.1).”

8.6.1.2 Legal Framework and Regulation About Autonomous Vehicles
This section summarizes the state of the regulation of autonomous vehicle

driving in early 2016. Initiatives in USA and Europe are mainly cited,

but others are also discussed.

The US Federal Government released in September 2016 an autono-

mous vehicle policy designed to help the safe development of driverless

technology, while also allowing enough flexibility so development of the

technology can continue.

In addition, in the United States the number of states working on leg-

islation related to autonomous vehicles has gradually increased. The

enacted autonomous vehicles legislations in the USA are listed below.

Nevada was the first state to authorize the operation of autonomous

vehicles in 2011. AB 511 authorizes operation of autonomous vehicles it

also defines “autonomous vehicle” and directs state Department of Motor

Vehicles to adopt rules for license endorsement and for operation (includ-

ing insurance, safety standards, and testing). SB 140 permits use of cell

phones or other handheld wireless communications devices for persons in

a legally operating autonomous vehicle (these persons are deemed not to

be operating the vehicle for the purposes of this law). SB 313 requires

certain conditions that human operators and autonomous vehicles must
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meet in order to being registered, or tested or operated on a highway

within the state.

California, in 2012 (SB 1298), permits the operation and testing of

autonomous vehicles pending the adoption of safety standards and perfor-

mance requirements that would be adopted under this bill. In 2016 (AB

1592) California authorized the Contra Costa Transportation Authority

to conduct a pilot project (only at specified locations and speeds) “for the

testing of autonomous vehicles that do not have a driver seated in the dri-

ver’s seat and are not equipped with a steering wheel, a brake pedal, or an

accelerator.”

Florida declared in 2012 (HB 1207 and HB 599) “desires to encour-

age the current and future development, testing, and operation of auton-

omous vehicles on the public roads of the state” and found that it

“presently does not prohibit or specifically regulate the operation of

autonomous vehicles.” In 2016 (HB 7027) legislation expands the allowed

operation of autonomous vehicles on public roads and eliminates the

requirement that the vehicle operation is being done for testing purposes

and the presence of a driver in the vehicle.

Florida House Bill 7061 (2016) defined driver-assistive truck platoon-

ing technology and required a study on the use and safe operation of this

kind of technology and allows for a pilot project upon conclusion of the

study.

Through House Bill 1143 (2016), Louisiana defined “autonomous

technology” for purposes of highway regulatory provisions and related

matters.

In the Michigan Senate Bills 169 and 663 (2013), issues like “auto-

mated technology,” “automated vehicle” and “automated mode” were

defined. Automated vehicles were allowed to be tested by certain parties

under certain conditions. By 2016 Michigan Senate Bills 995, 996, 997,

and 998, modified aspects such provide immunity from liability that arises

out of any modification made by another person without the autonomous

technology manufacturer’s consent.

Through House Bill 1065 (2015), North Dakota provided for a legis-

lative management study of automated motor vehicles. The study might

include research into the degree that automated motor vehicles could

reduce traffic fatalities, crashes and congestion.

In 2015 Tennessee prohibited (SB 598) local governments from banning

the use of motor vehicles equipped with autonomous technology if the

motor vehicle otherwise complies with all safety regulations. SB 2333 (2016)
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allows an operator to use an electronic display (integrated with the vehicle)

for communication, information, and other uses enabled by the display only

if the autonomous technology isn’t disengaged. SB 1561 (2016) establishes

certification program through department of safety for manufacturers of

autonomous vehicles before such vehicles may be tested, operated, or sold;

creates a per mile tax structure for autonomous vehicles.

The Utah House Bill 373 (2015), modified the Motor Vehicles Act by

authorizing the Department of Transportation to deploy connected vehi-

cle technology tests.

The HB 280 (2016) requires a study related to autonomous vehicles,

including evaluation of the different standards, best practices, regulatory

strategies, and schemes implemented by other states.

Washington, D.C. through DC B 19�0931 (2013) defined “autono-

mous vehicle” as a “vehicle capable of navigating District roadways and

interpreting traffic control devices without a driver actively operating any

of the vehicle’s systems.” It authorizes autonomous vehicles to operate on

public roadways if a driver can assume control of the autonomous vehicle

at any time.

At European level, there are different countries that have carried out

initiatives for the development of regulation related to autonomous driv-

ing. The most significant, are listed below.

The Ministry of Transport and Communications of Finland is prepar-

ing an amendment to the Road Traffic Act that would allow for driverless

robotic cars to drive within a restricted area on public roads. The act in

question would constitute experimental legislation that would be in force

for five years starting at the beginning of 2015.

France (L’Etat) announced in July 2014 that the necessary regulations

to guarantee road safety in the first experiments of autonomous vehicles

on public roads should be developed. On August 3, 2016, the Conseil des

ministres of France announced an Ordinance (Ordonnance: experimentation

de vehicules a delegation de conduite sur les voies publiques), which allows the

deployment of (partially or completely) autonomous vehicles tests, but

only if safety is ensured.

Germany does not have specific (ad hoc) legislation on autonomous

vehicles due to the strict interpretation of the Vienna Convention fol-

lowed in Germany. In addition, Germany’s Minister of Transport has

announced that a section of the A9 autobahn that connects Berlin and

Munich is to be set up for testing autonomous vehicles and connected

vehicles (V2V and V2I).
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In the Netherlands, the Ministry of Infrastructure and the

Environment amended the Dutch regulation to allow large-scale road

tests. Companies that wish to test autonomous vehicles must submit an

application for admission to the RDW (Dutch Vehicle Authority) and

demonstrate that the tests will be conducted in a safe manner.

In Spain, by means of instruction 15/V-113 of November 2015, the reg-

ulation for the authorization of tests with autonomous vehicles on open roads

to traffic in general was published. In addition, in January 2016, the regula-

tion on assisted parking of motor vehicles (INSTRUCTION 16 TV/89) was

made public.

Sweden started in 2014 a project (Drive Me) which has given Volvo

permission to test 100 autonomous vehicles in the city of Gothenburg by

2017�2018. It will be the world’s first large-scale autonomous driving

project. This initiative, which is the result of the collaboration between

Volvo, the Swedish Department of Transport, the Swedish Transport

Agency, the Lindholmen’s Science Park, and the city of Göteborg, is sup-

ported by the Swedish Government.

UK Department for Transport released in February 2015 a regulatory

review. Testing automated vehicles is allowed on any road in the UK

without needing to seek permission from a network operator, report any

data to a central authority, or put up a surety bond. In July 2015 a Code

of Practice for testing autonomous vehicles was published. It explains to

testers how to comply with the UK laws: “testers must obey all relevant

road traffic laws; test vehicles must be roadworthy; a suitably trained

driver or operator must be ready, able, and willing to take control if nec-

essary; and appropriate insurance must be in place.”

Finally, some of the initiatives developed in other countries are indi-

cated. In Australia, there is an initiative called Australian Driverless

Vehicle Initiative (ADVI) that includes different companies, government

bodies, and research centers. The main objective of this initiative is to

“build momentum by rapidly exploring the impacts and requirements of

this new technology in a truly Australian context and making recommen-

dations on ways to safely and successfully bring self-driving vehicles to

Australian roads.”

There are several initiatives developed in Singapore, related to the

autonomous car. In 2014, the Committee for Autonomous Road

Transport for Singapore (CARTS) was launched by the Singaporean

Ministry of Transport. One of the tasks of this team is to investigate and

create a framework for autonomous vehicles to work safely and efficiently
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on public roads. Besides this, the Land Transport Authority (LTA) jointly

Agency for Science, Technology and Research (A�STAR) announced

Singapore Autonomous Vehicle Initiative (SAVI), which one of their

focus areas is to prepare technical and statutory requirements for future

deployment of autonomous vehicles in Singapore. In addition, in August

2016, Singapore’s government gave NuTonomy permission to test self-

driving Taxis in a business park called “one-north.” The tests began in

the third quarter of 2016.

8.6.2 Ethical Aspects
Automated vehicles will be able to make precrash decisions, overcoming

thus many of the limitations experienced by humans. However, there will

be fatal car crashes that are unavoidable.

In these situations, a computer can quickly compute the best way to

crash taking into consideration the likelihood of the outcome. One major

disadvantage of automated vehicles is that, unlike a human driver who

can decide how to crash in real time, an automated vehicle’s decision of

how to crash is a priori designed by a programmer ahead of time

(Goodall, 2014). And there are many challenging driving situations where

a dilemma may appear, requiring actions that are legally and ethically

acceptable to humans.

To illustrate this complexity, consider for instance a sort of modified

trolley problem, called the tunnel problem (Open Roboethics Initiative,

2016). A self-driving car just before entering a tunnel encounters a child

that attempts to run across the road, but trips in the center of the lane,

effectively blocking the entrance to the tunnel. The car has but two

options: hit and kill the child, or swerve into the wall on either side of the

tunnel, thus killing you. How should the car react? Or even more subtle.

An autonomous car is facing an imminent crash, but it could select one of

two targets to swerve into: either a motorcyclist who is wearing a helmet,

or a motorcyclist who is not. What is the right way to program the car?.

Both outcomes will certainly result in harm as there is no obvious

“correct” answer to these kind of dilemmas. If crash-optimization is con-

sidered as the most relevant criterion, the outcome may result in unfair

actions, as the most responsible potential victim would be penalized,

somehow awarding careless road actors and stakeholders.

An alternative and apparently elegant solution would be not to make a

deliberate choice. However, such a random decision mimics human
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driving, which is completely against one of the key reasons to deploy

autonomous cars: to avoid the human factor, responsible for 95% of acci-

dents. Even worse, while human drivers may be forgiven for making a

poor split-second reaction, robot cars will not enjoy that freedom, as such

an action might be the difference between premeditated murder and

involuntary manslaughter.

Some others argue that instead of assuming designers are the right

people to decide in all circumstances how a driverless car should react,

alternative methodologies may be explored allowing drivers to decide on

the preferred unfortunate outcome.

In any case, to optimize crashes, designers/programmers would need

to face an ethics problem, as they will need to design optimization algo-

rithms that calculate the expected costs of various possible options, select-

ing the one with the lowest cost. It is therefore legitimate to ask the

question of whether control algorithms of automated vehicles can be

designed a priori to embody not only the laws but also the ethical princi-

ples of the society in which they operate (OCR Software blog, 2016).

The basis for such complex decision system could be inspired from Isaac

Asimov’s three laws of robotics: (1) property damage takes always prece-

dence of personal injury; (2) there must be no classification of people, for

example, on size, age, and the like; (3) if something happens, the manu-

facturer is liable (Gerdes and Thornton, 2016).

Another very relevant ethical aspect derived from the pervasive con-

nectivity of the new generation of vehicles is the challenge to preserve

data security, and more in particular, privacy. Indeed, all the data that cir-

culates within the transportation system will be subject to an intense

reflection in order to regulate the data to be collected, owned, and

shared; who will keep it, why, and for how long.
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