Supplementary Material

Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools

POSTIGO C.^{1,2*}, ANDERSSON A.³, HARIR M.^{4,5}, BASTVIKEN D.³, GONSIOR M.⁶, SCHMITT-KOPPLIN P.^{4,5}, GAGO-FERRERO P.⁷, AHRENS L.², AHRENS L.² and WIBERG K.²

¹Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain

² Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden

³ Linköping University, Department of Thematic Studies-Environmental Change, 581 83 Linköping, Sweden

⁴ Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany

⁵ Chair Analyt Food Chem, Technical University Munich, Maximus von Imhof Forum 2, 85354 Freising Weihenstephan, Germany

⁶Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States

⁷ Catalan Institute for Water Research (ICRA), Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain

*corresponding author: e-mail: cprqam@cid.csic.es

Number of pages: 70

Number of Figures: 19

Number of Tables: 27

Table of Contents

I.	Targeted disinfection byproducts
II.	Chemicals and reagents7
III.	Water treatment in the investigated drinking water treatment plants (DWPTs). 8
IV.	Additional physical-chemical characterization of water samples9
V.	Target DBP analysis 10
VI.	Targeted halogenated DBPs in water samples16
VII.	Tranformation of DBP concentration of Cl-equivalent concentrations
VIII.	Further interpretation of negative ESI-FT-ICR MS data
IX.	Identification of DBPs in the investigated mixtures through LC-ESI(-)-Orbitrap MS

List of Figures

Figure S1. Scheme of the water treatment trains implemented in the DWTPs investigated
Figure S2 Total ion chromatogram (TIC) obtained after GC-EI-MS analysis of MilliO
water fortified with the target THMs THALs and HANs at a concentration of
$10 \mu\text{g/L}$
Figure S3 Total ion chromatogram (TIC) obtained after GC-EI-MS analysis of MilliO
water fortified with the target HACMs at a concentration of 10 µg/L
Figure S4. Total ion chromatogram (TIC) obtained after GC-EI-MS/MS analysis of
MilliO water fortified with the target HAAs at a concentration of 10 µg/L 13
Figure S5. Box plots showing the properties of verified formulas in IN and OUT
samples, after FT-ICR MS analysis
Figure S6. Plots showing DBE, AI_{mod} , and COS versus the number of carbon for
verified DBPs (m/z ions only present in disinfected water) according to negative
ESI-FT-ICR MS analysis
Figure S7. The number of verified chlorinated and brominated DBPs (CHO-type) in
the investigated DBP mixtures against the number of oxygen atoms of each DBP
composition according to negative ESI-FT-ICR MS analysis
Figure S8. Venn diagrams showing the number of molecular formulae unique and
common to non-disinfected (IN) and disinfected water (OUT) in each
investigated drinking water treatment plant, after non-target FT-ICR MS
analysis
Figure S9. Contribution of each group of halogenated compounds to the
chemodiversity of the investigated disinfected waters, after FT-ICR MS
analysis. Y-axis shows the percent of verified molecular formulae
Figure S10. Plots showing DBE, AI_{mod} , and C_{OS} versus the number of carbon for
verified DBPs (m/z ions only present in disinfected water) common to all
DWTPs according to negative ESI-FT-ICR MS analysis

List of Tables

Table S1. Target DBPs, and corresponding acronyms, CAS numbers, purity and provider of the analytical standard, molecular formula, and mass
Table S2. Additional physical-chemical characterization of water samples
Table S3. Retention time and ions/SRM transitions monitored for GC-MS analysis of the target DBPs. The quantification ion/SRM transition is highlighted in bold. 15
Table S4. Concentrations of target halogenated DBPs in ng/L measured in disinfected water samples (n.d.= not detected)
Table S5.Nitrogen-containing formulae in the investigated samples after search and formula filtration ^a
Table S6.Sulfur-containing formulae in the investigated samples after search and formulae filtration ^a

Table S7. Statistics for comparison of the molecular mass of verified Cl and Br formulae in the investigated samples, after negative ESI-FT-ICR MS analysis. 26 Table S8. Statistics for comparison of the H/C content of verified Cl and Br formulae Table S9. Statistics for comparison of the O/C content of verified Cl and Br formulae Table S10. Statistics for comparison of the AImod of verified Cl and Br formulae in Table S 11. Statistics for comparison of the Cos of verified Cl and Br formulae in the Table S12. Statistics for comparison of the DBE of verified Cl and Br formulae in the Table S13. List of verified formulae of the 19 DBPs common to all four disinfected water samples according to negative ESI-FT-ICR MS analysis (only present in Table S14. List of verified formulae of the 23 DBPs unique to DWTP1 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of Table S15. List of verified formulae of the 124 DBPs unique to DWTP2 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of Table S16. List of verified formulae of the 44 DBPs unique to DWTP3 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of Table S17. List of verified formulae of the 121 DBPs unique to DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of Table S18. List of verified formulae of the 49 DBPs common to DWTP1 and DWTP2 according to negative ESI-FT-ICR MS analysis (only present in all three Table S19. List of verified formulae of the 48 DBPs common to DWTP1 and DWTP3 according to negative ESI-FT-ICR MS analysis (only present in all three Table S20. List of verified formulae of the 47 DBPs common to DWTP1 and DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three Table S21. List of verified formulae of the 80 DBPs common to DWTP2 and DWTP3 according to negative ESI-FT-ICR MS analysis (only present in all three Table S22. List of verified formulae of the 190 DBPs common to DWTP2 and DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three Table S23. List of verified formulae of the 61 DBPs common to DWTP3 and DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three

Table S24. List of verified formulae of the 3	33 DBPs common to DWTP1, DWTP2, and
DWTP3 according to negative ESI-FT	I-ICR MS analysis (only present in all three
replicates of disinfected water)	

Table S27. DBPs identified after LC-ESI(-)MS/MS analyses with QExactive MS..... 53

I. Targeted disinfection byproducts

Table S1. Target DBPs, and corresponding acronyms, CAS numbers, purity andprovider of the analytical standard, molecular formula, and mass.

DBP	Analyta	Acronym		Molecular Mass		Supplier
class	Analyte	Acronym	formula	(Da)*	Number	(purity, %)
	Dibromochloromethane	DBCM	Br ₂ ClCH	206	124-48-1	Sigma (>99)
Trihalo-	Bromoform	TBM	Br ₃ CH	250	75-25-2	Sigma (>99)
Tribala	Dichloro-iodomethane	DCIM	Cl ₂ ICH	210	594-04-7	CanSyn (>95)
I mathanaa	Chloro-bromo-iodomethane	BCIM	BrClICH	254	34970-00-8	CanSyn (>95)
(THMs)	Dibromo-iodomethane	DBIM	Br ₂ ICH	298	593-94-2	CanSyn (90-95)
(111115)	Chloro-diiodomethane	CDIM	ClI ₂ CH	302	638-73-3	CanSyn (90-95)
	Bromo-diiodomethane	BDIM	BrI ₂ CH	346	557-95-9	CanSyn (90-95)
	Iodoform	TIM	I ₃ CH	394	75-47-8	Sigma (99)
Trihalo-	Chloral	TCAL	Cl ₃ C ₂ HO	146	75-87-6	Sigma (>98)
acetal-	Bromodichloroacetaldehyde	BDCAL	BrCl ₂ C ₂ HO	190	34619-29-9	CanSyn (90-95)
dehydes	Dibromochloroacetaldehyde	DBCAL	Br ₂ ClC ₂ HO	234	64316-11-6	CanSyn (90-95)
(THALs)	Bromal	TBAL	Br ₃ C ₂ HO	278	115-17-3	Sigma (>97)
	Chloroacetonitrile	CAN	C ₂ H ₂ ClN	75	107-14-2	Sigma (>99)
	Bromoacetonitrile	BAN	C ₂ H ₂ BrN	119	590-17-0	Sigma (>97)
TT 1	Iodoacetonitrile	IAN	C ₂ H ₂ IN	167	624-75-9	Sigma (>98)
Halo-aceto-	Dichloroacetonitrile	DCAN	C ₂ HCl ₂ N	109	3018-12-0	Sigma (>98)
muriles	Dibromoacetonitrile	DBAN	C ₂ HBr ₂ N	197	3252-43-5	Sigma (>90)
(HAINS)	Bromodichloroacetonitrile	BDCAN	C ₂ BrCl ₂ N	187	60523-73-1	CanSyn (>85)
	Dibromochloroacetonitrile	DBCAN	C ₂ Br ₂ ClN	231	144772-39-4	CanSyn (>85)
	Tribromoacetonitrile	TBAN	C ₂ Br ₃ N	275	75519-19-6	CanSyn (90-95)
	Chloroacetamide	CACM	ClC ₂ H ₄ ON	93	79-07-2	Sigma (>98)
	Bromoacetamide	BACM	BrC ₂ H ₄ ON	137	683-57-8	Sigma (>98)
	Iodoacetamide	IACM	IC ₂ H ₄ ON	185	144-48-9	Sigma (>98)
	Bromochloroacetamide	BCACM	BrClC ₂ H ₃ ON	171	62872-24-8	CanSyn (>99)
	Dichloroacetamide	DCACM	Cl ₂ C ₂ H ₃ ON	127	683-72-7	Sigma (>99)
Halo-	Dibromoacetamide	DBACM	Br ₂ C ₂ H ₃ ON	215	598-70-9	CanSyn (>99)
acetamides	Chloroiodoacetamide	CIACM	CIIC ₂ H ₃ ON	219	62872-35-9	CanSyn (>99)
(HACMs)	Bromoiodoacetamide	BIACM	BrIC ₂ H ₃ ON	263	62872-36-0	CanSyn (>85)
	Diiodoacetamide	DIACM	I ₂ C ₂ H ₃ ON	311	5875-23-0	CanSyn (>99)
	Trichloroacetamide	TCACM	Cl ₃ C ₂ H ₂ ON	161	594-65-0	Sigma (>99)
	Bromodichloroacetamide	BDCACM	BrCl ₂ C ₂ H ₂ ON	205	98137-00-9	CanSyn (>99)
	Dibromochloroacetamide	DBCACM	ClBr ₂ C ₂ H ₂ ON	249	855878-13-6	CanSyn (>99)
	Tribromoacetamide	TBACM	Br ₃ C ₂ H ₂ ON	293	594-47-8	CanSyn (>99)
	Chloroacetic acid	CAA	ClC ₂ H ₃ O ₂	94	79-11-8	Sigma (>99)
	Bromoacetic acid	BAA	BrC ₂ H ₃ O ₂	138	79-08-3	Sigma (>99)
	Iodo acetic acid	IAA	$IC_2H_3O_2$	186	64-69-7	Sigma (98)
	Chlorobromo acetic acid	BCAA	BrClC ₂ H ₂ O ₂	172	5589-96-8	Sigma (>99)
	Dichloroacetic acid	DCAA	$Cl_2C_2H_2O_2$	128	79-53-6	Sigma (>99)
	Dibromoacetic acid	DBAA	Br ₂ C ₂ H ₂ O ₂	216	631-64-1	Sigma (>99)
** 1 . 1	Chloroiodoacetic acid	CIAA	ClIC ₂ H ₂ O ₂	220	53715-09-6	CanSyn (>90)
Haloacids	Bromoiodoacetic acid	BIAA	BrIC ₂ H ₂ O ₂	264	71815-43-5	CanSyn (>85)
(HAAS)	Diiodoacetic acid	DIAA	$l_2C_2H_2O_2$	312	598-89-00	CanSyn (>90)
	Trichloroacetic acid	TCAA	Cl ₃ C ₂ HO ₂	162	76-03-9	Sigma (>99)
	Bromodichloroacetic acid	BDCAA	BrCl ₂ C ₂ HO ₂	206	71133-14-7	Sigma (>99)
	Dibromochloroacetic acid	DBCAA	Br ₂ ClC ₂ HO ₂	250	5278-95-5	Sigma (>99)
	Tribromoacetic acid	TBAA	Br ₃ C ₂ HO ₂	294	75-96-7	Sigma (>99)
	Dalapon (2,2- dichloropropanoic acid)	DCPA	$Cl_2C_3H_4O_2$	142	75-99-0	Sigma (>99)

*Nominal monoisotopic mass (Da).

II. Chemicals and reagents

Ultrapure water (resistivity of 18.2 M Ω ·cm at 25 °C; TOC \leq 5 ppb) used to prepare analytical methods blanks and to rinse sampling bottles and labware during the cleaning process was obtained using a Milli-Q Advantage system and aQ-POD dispenser equipped with a Millipack® Express 40 filter (Asymmetric PolyEtherSulfone (PES) membrane, 0.22 µm) for particles and bacteria removal, connected in series with a LC-Pack® Point-of-use Polisher cartridge (C18 reversephase silica) for trace organics removal (Merck Millipore).

All reagents and solvents used were of high purity and mostly supplied either by VWR International (Spånga, Sweden) or Merck KgaA (Darmstadt, Germany).

L(+)-ascorbic acid and sodium thiosulfate pentahydrate used to quench chlorine in water were Normapur® grade and supplied by VWR. Anhydrous sodium sulfate used to increase the ionic strength of the water to improve LLE efficiency and to dry the extracts was also Normapur® grade (VWR). ISOLUTE® Na₂SO₄ drying cartridges used to dry extracts for HACMs and HAAs analysis were obtained from Biotage, Sweden.

As for the acids used, ACS reagent grade formic acid (98-100%) (Emsure®), nitric acid 70%, and hydrochloric acid 30% (Suprapure®) were provided by Merck, whereas sulfuric acid 96% was supplied by VWR.

The solvents used for sample extraction and liquid chromatography analysis were: Ethyl acetate (EtAc) for pesticide residue analysis, HPLC-grade water (ChromasolvTM), and HPLC-grade methanol (MeOH) (LiChrosolv[®]) and methyl *tert*butyl ether (MTBE) (SupraSolv[®]) were provided by Merck.

All reagents used in the production of diazomethane (derivatization agent) were supplied by Sigma Aldrich (Merck): diazald® (99%), Aldrich® diazomethane-generator with System 45TM compatible connection, diethylene glycol monoethyl ether (carbitol TM) (99%) and ACS-grade potassium hydroxide.

III. Water treatment in the investigated drinking water treatment plants (DWPTs)

DWTP1 (46,000 m³/day)

Artificial groundwater (surface water infiltrated into the subsoil)

Figure S1. Scheme of the water treatment trains implemented in the DWTPs investigated.

IV. Additional physical-chemical characterization of water samples

SAM CO	PLE DE	A ₂₅₄ (Abs/n	Cl⁻ n)(mg/L	S-SO ₄ (mg/L)	F ⁻ (mg/L	I-IO ₃)(mg/L	N- NH4 ⁺ (mg/L)	N-NO ₂ (mg N/L)	N-NO ₃ (mg N/L)	Na ⁺ (mg/L)	K ⁺ (mg/L)	Mg ²⁺)(mg/L)	Ca ²⁺ (mg/L)
LO	Qs	-	0.03	0.02	0.01	0.03	0.01	0.004	0.02	0.01	0.01	0.01	0.5
DWTP	IN 1	7.3	35	11	0.77	5.6	<loq< td=""><td><loq< td=""><td>1.9</td><td>16</td><td>5.0</td><td>10</td><td>32</td></loq<></td></loq<>	<loq< td=""><td>1.9</td><td>16</td><td>5.0</td><td>10</td><td>32</td></loq<>	1.9	16	5.0	10	32
DWIF	OUT	6.6	35	11	0.77	5.6	<loq< td=""><td><loq< td=""><td>1.9</td><td>16</td><td>5.1</td><td>10</td><td>33</td></loq<></td></loq<>	<loq< td=""><td>1.9</td><td>16</td><td>5.1</td><td>10</td><td>33</td></loq<>	1.9	16	5.1	10	33
DUZDO	IN	7.3	15	15.	0.15	1.1	<loq< td=""><td><loq< td=""><td>0.04</td><td>13</td><td>2.7</td><td>4.7</td><td>24</td></loq<></td></loq<>	<loq< td=""><td>0.04</td><td>13</td><td>2.7</td><td>4.7</td><td>24</td></loq<>	0.04	13	2.7	4.7	24
Dwir.	OUT	6.9	15	15.	0.16	1.1	0.06	0.01	0.04	13	2.7	4.7	31
	IN 2	4.9	55	5.2	0.29	2.1	<loq< td=""><td><loq< td=""><td>1.1</td><td>36</td><td>2.9</td><td>15</td><td>15</td></loq<></td></loq<>	<loq< td=""><td>1.1</td><td>36</td><td>2.9</td><td>15</td><td>15</td></loq<>	1.1	36	2.9	15	15
DWIP.	OUT	4.8	556	5.2	0.29	2.1	0.02	0.06	1.1	36	2.9	15	15
סעעדס	IN	5.6	18	3.2	0.19	1.4	<loq< td=""><td><loq< td=""><td>0.02</td><td>13</td><td>1.7</td><td>2.5</td><td>17</td></loq<></td></loq<>	<loq< td=""><td>0.02</td><td>13</td><td>1.7</td><td>2.5</td><td>17</td></loq<>	0.02	13	1.7	2.5	17
DWTP2	⁴ OUT	4.8	19	3.1	0.19	1.3	<loq< td=""><td><loq< td=""><td>0.03</td><td>16</td><td>1.7</td><td>2.5</td><td>18</td></loq<></td></loq<>	<loq< td=""><td>0.03</td><td>16</td><td>1.7</td><td>2.5</td><td>18</td></loq<>	0.03	16	1.7	2.5	18

Table S2. Additional physical-chemical characterization of water samples.

*measured in the sample collected before disinfection; **measured in the sample collected after disinfection.

Iodide (Γ), and phosphate (P-PO₄⁻³), chlorite (ClO₂⁻) and chlorate (ClO₃⁻) were <LOQ in all samples (LOQ of Γ : 0.025 mg/L, LOQ of P-PO₄⁻³: 0.003 mg/L, LOQ of ClO₂⁻: 0.005 mg/L and LOQ of ClO₃⁻: 0.011 mg/L.

V. Target DBP analysis

• Sample extraction

The LLE approaches used to extract targeted DBPs from water samples were based on the US Environmental Protection Agency (USEPA) method for the analysis of DBPs in drinking water (Hodgeson and Cohen 1990). All samples were extracted in duplicate.

Ascorbic acid (2.5 mg/L) freshly prepared in Milli-Q-grade water was used to quench residual free chlorine (<0.5 mg/L) in the samples and preserve the target DBPs.

For extraction of THMs, THALs, and THANs, 100 mL of water was acidified to pH<0.5 with 5 mL of concentrated H₂SO₄ and then 30 g of dried granular Na₂SO₄ was added to increase the ionic strength of the water and favor the partition of the analytes into the extracting solvent (MTBE). After dissolution, the internal standard (IS) (100 μ L x 1 μ g/mL of 1,2-dibromopropane (Sigma Aldrich) in MTBE) was added and mixed in the solution. Finally, the extracting solvent (2.5 mL of MTBE) was added. Samples were agitated with a mechanical shaker at 500 rpm for 30 min. After settling for 5 min, the MTBE, laying on the top of the sample, was collected and dried using a Na₂SO₄ column, and stored in a 2-mL vial at -20°C in the dark until GC-MS analysis.

To extract HAAs, a similar procedure was followed, using 50 mL and proportional amounts of H₂SO₄ (2.5 mL) and Na₂SO₄ (15 g). After dissolution, the internal standard (IS) (100 μ L x 1 μ g/mL of 2.,3-dibromopropanoic acid (Sigma Aldrich) in MTBE). Then, 5 mL of the extracting solvent (MTBE) was added and the sample was vigorously manually shaken for 2 min. After settling for 5 min, the MTBE, laying on the top of the sample, was collected and transferred to 20 mL vial. The extraction step with 5 mL of MTBE was repeated twice, and finally, the combined MTBE extract was dried using ISOLUTE® Na₂SO₄ drying cartridges (Biotage, Sweden) and concentrated under N₂ to a volume of 0.4 mL in a graduated test tube. The HAA extract (0.4 mL) was derivatized for one hour at room temperature with 0.2 mL of freshly prepared diazomethane. During the derivatization process, the methyl esters of HAAs were formed. These compounds are more volatile than HAAs and thus, amenable to GC-MS analysis. Diazomethane was produced in small (~3 mL) amounts from diazald using a diazomethane generator (Sigma Aldrich, Merck), following the manufacturer indications. After derivatization, the extract was transferred to a 2-mL vial with 300 μ L insert for GC-MS analysis.

The extraction of HACMs was conducted following the same steps as aforementioned for the extraction of HAAs. However, three main differences in the extraction protocol have to be highlighted: i) the water pH was lowered only to 5 with diluted H_2SO_4 to avoid HACMs degradation, ii) the use of ¹³C-bromoacetamide dissolved in EtAc as IS, and iii) the use of EtAc as extracting solvent. The combined extract of EtAc obtained after three extraction cycles was dried using ISOLUTE® Na₂SO₄ drying cartridges and concentrated under N₂ to a volume of 0.2 mL in a graduated test tube. Finally, the concentrated extract was transferred to a 2-mL vial with 300 µL insert for GC-MS analysis.

• GC-EI-MS analysis of THMs, THALs, HANs, and HACMs

Analytical determination of THMs, THALs, HANs, and HACMs in MTBE extracts was performed using a 7890B GC connected in series to a 5977A MSD (Agilent Technologies). One µL of the extract was injected in splitless mode using a 7693 automated autosampler equipped with a multimode inlet (split flow=50 mL/min, splitless time=1.5 min). The temperature of the injector was maintained at 200°C for 0.1 s and rapidly increased to 300 °C (600°C/min). GC separation was achieved with a capillary GC column Rtx-200 MS (30 m x 0.25 mm x 0.25 µm) (Restek, Teknokroma, Barcelona), 1.2 mL/min of constant Helium flow, and a temperature gradient. For the analysis of THMs, THALs, and HANs the temperature gradient started at 30°C (held for 5 min), and ramped at a rate of 9°C/min to 165 °C, and then at a rate of 20 °C/min to 300°C (held for 3 min) and then, ramped at a rate of 9°C/min to 165°C and a rate of 25°C/min to 285 °C (held for 10 min). During both analytical runs, the temperatures of the GC-MS transfer line, and the MS source were set to 280 °C and 200 °C, respectively.

The analyzer was operated in selected ion monitoring (SIM) mode. A minimum of four ions was registered per analyte (see Table S3). Figures S2 and S3 show the total ion chromatogram obtained after analysis of calibration standard solutions at a concentration of 10 μ g/mL. Mass acquisition and data analysis were performed using Mass Hunter B.07.00 software (Agilent Technologies).

The THMs chloroform (TCM) and dichlorobromomethane (DCBM) were not captured with the analytical conditions used as they eluted in the solvent peak front and therefore, they had to be excluded from the analysis.

Figure S2. Total ion chromatogram (TIC) obtained after GC-EI-MS analysis of MilliQ water fortified with the target THMs, THALs, and HANs at a concentration of 10 μ g/L.

Figure S3. Total ion chromatogram (TIC) obtained after GC-EI-MS analysis of MilliQ water fortified with the target HACMs at a concentration of 10 μ g/L.

• GC-EI-MS/MS analysis of HAAs.

Analytical determination of methyl esters of HAAs was performed using a 7890B GC connected in series to a 7000C triple quadrupole (Agilent Technologies). Ionization was carried out in the electron ionization mode. One μ L of the derivatized extract was injected in splitless mode using a7638B automated injector (split flow=50 mL/min, splitless time=1.5 min). GC separation of the analytes was achieved using a capillary GC column Rtx-200 MS (30 m x 0.25 mm x 0.25 μ m) (Restek, Teknokroma, Barcelona), 1.2 mL/min constant flow of Helium and a temperature gradient (40 °C held for 2 min, then increased at 10 °C/min to 65 °C and held for 2 min, and further increased at 10 °C/min to 110°C and at 20°C/min to 285 °C and held for 15 min. The temperatures of the injector, the GC/MS transfer line, and the MS source were set to 250 °C, 280 °C, and 200 °C, respectively.

The analyzer was operated in selected reaction monitoring (SRM) mode, using nitrogen (1.5 mL/min) as the collision gas. A minimum of two SRM transitions was acquired per analyte (see Table S3). Figure S4 shows the total ion chromatogram obtained after the analysis of a standard calibration solution at a concentration of 10 μ g/mL. Mass acquisition was performed using MSD ChemStation and data analysis was done with Mass Hunter B.08 (Agilent Technologies).

Figure S4. Total ion chromatogram (TIC) obtained after GC-EI-MS/MS analysis of MilliQ water fortified with the target HAAs at a concentration of 10 μ g/L.

• Performance of target methods

The performance of the targeted methods was evaluated in terms of linearity, sensitivity, and accuracy (analyte recovery) and method repeatability. The results are summarized in Table S3.

Quantification was performed by the internal standard method. For this, calibration curves were constructed by plotting the ratio of the analyte and the internal standard peak areas obtained in the different standard calibration solutions (Milli Q water fortified at different concentration levels with the mixture of the target DBPs). A minimum of five calibration data points (exceptionally four in the case of few DBPs) in the range 0.1-50 μ g/L in the case of THMs, THALs, and HANs, and 0.05-50 μ g/L in the case of HACMs, and HAAs were used to construct these calibration curves. Quantitation of each analyte in the investigated samples was done according to the least-squares linear regression model obtained after the linear fitting of its calibration curve. The linearity range observed for each analyte and the coefficient of determination obtained for the corresponding model are summarized in Table S3.

Method sensitivity was estimated from the analyte signal observed at the lowest calibration solutions. Method reporting limits corresponded with the analyte concentration that provided a signal-to-noise ratio of 10, and concentrations below the MRL with an S/N ratio of 3 were provided as detected but could not be quantified.

Analyte absolute recoveries and method repeatability were evaluated through a recovery study. For this, LC-grade waters were fortified with the target DBPs at 0.5 μ g/L (*n*=4) or higher concentration in the case of regulated THMs, DBCM, and TBM, and the trihalo-HANs BDCAN, DBCAN and TBAN, (1 μ g/L, *n*=3) or those DBPs with MRL \geq 2.5 μ g/L (DIACM, DBCACM, BDCAA, DBCAA, and TBAA) (5 μ g/L, *n*=4) and extracted following the analytical protocols described. To calculate analyte absolute recoveries and repeatability the peak areas obtained in fortified water samples and standard solutions at equivalent concentrations were compared. The lowest recoveries were found for HACMs, which affects the sensitivity of the method for these compounds. However, analyte losses during the extraction were automatically corrected in the quantification process because calibration solutions were prepared by fortifying LC-grade water at different concentrations and processing these solutions as if they were samples.

Class	Analyta	SIM on SDM (m/r)	4	Linearity	Recovery *	
Class	Analyte	SIM OF SKM (m/z)	ι _R	Range(µg/L)	\mathbf{R}^2	% (RSD)
	DBCM	129, 127,131	3.24	0.1-25	0.9979	108 (11)
	TBM	173, 171,252	5.27	0.1-5	0.9978	124 (13)
	DCIM	83, 127,175	3.73	0.1-10	0.9951	76 (19)
тнме	BCIM	127, 129,175	5.96	0.1-25	0.9959	79 (15)
1111115	DBIM	173 ,171,127	8.10	0.1-5	0.9917	90 (19)
	CDIM	175 ,177,127	8.60	0.1-5	0.9959	70 (19)
	BDIM	219 ,127,140	10.38	0.25-5	0.9971	39 (15)
	TIM	267, 394,127	12.30	0.1-5	0.9964	76 (17)
	TCAL	82, 84,111	2.77	0.25-2.5	0.9992	62 (10)
THALs	BDCAL	83 ,111 ,128	4.81	0.25-2.5	0.9993	68 (23)
111/12.5	DBCAL	127, 129 ,157	7.49	0.25-2.5	0.9963	55 (21)
	TBAL	173 ,175,252	9.52	0.1-2.5	0.9935	70 (21)
	CAN	75, 77,48	3.74	0.25-10	0.9913	41 (21)
	BAN	119 ,121,79	6.34	0.1-2.5	0.9903	54 (15)
	IAN	167, 127,139	9.28	0.1-2.5	0.9915	54 (24)
HANs	DCAN	74 ,82, 76	3.65	0.1-10	0.9971	96 (17)
HANs	DBAN	118, 120 ,199	8.60	0.1-2.5	0.9926	90 (27)
	BDCAN	108 ,110, 154	4.02	1-10	0.9924	82 (17)
	DBCAN	154, 152,79	7.06	0.25-5	0.9905	84 (10)
	TBAN	198, 200,117	9.54	0.25-5	0.9921	78 (28)
	CACM	44,49, 93	6.56	0.5-10	0.9941	12 (9)
	BACM	44, 137 ,139	8.00	0.5-10	0.9965	17 (3)
	IACM	58,127, 185	10.24	0.5-25	0.9934	23 (8)
	BCACM	44, 173 ,93	9.50	0.25-10	0.9971	67 (8)
	DCACM	44,85,129	8.30	0.1-10	0.9919	60 (6)
	DBACM	44,217, 174	10.76	0.1-10	0.9868	68 (9)
HACMs	CIACM	44, 219 ,176	11.27	0.5-25	0.9911	32 (14)
	BIACM	138,220,263	12.38	0.25-10	0.9916	47 (8)
	DIACM	127, 184 ,311	13.97	2.5-50	0.9921	23 (7)
	TCACM	44,82,98	10.01	0.05-5	0.9944	77 (7)
	BDCACM	44,126,82	11.34	0.1-10	0.9939	42 (13)
	DBCACM	44,207,251	12.57	2.5-10	0.9641	18 (5)
	TBACM	44,172,295	13.73	0.5-25	0.9923	39 (10)
		17>49, 79>51, 108>76	4.93	0.25-25	0.9910	59 (10)
	BAA	121>93, 123>95	6.07	0.25-25	0.9971	68 (9)
		200>73, 169>141	7.80	0.05-25	0.9971	/3 (9)
	BCAA	127>92 , 129>94	/.94	1-50	0.9952	89 (13)
		83>4 7, 85>47, 111>85	0.11	0.5-25	0.9981	80 (9)
	DBAA	1/1>92 , 1/3>94 224 , 70 , 175, 49, 224, 107	10.13	0.1-25	0.9949	84 (11)
HAAs		234>17 , 173>48, 234>107 280 , 125, 278, 122, 221, 04	10.98	0.3-23	0.9952	68 (21)
	DIAA	<u>200>125, 2/8>125, 221>94</u> <u>226>171, 226>100</u>	12.4/	0.1-2.5	0.9983	51 (25)
		340>1/1 , 320>199 117, 92 , 110, 94	14.14	0.03-2.3	0.9909	<u>31 (23)</u> <u>84 (17)</u>
	BDCAA	161~82 162~92	10.05	2 5 25	0.99/1	65 (22)
		101/04, 103/02 187~150 200~129 207~129	10.03	2.3-23	0.9913	UJ (32) ND
		107/139 , 209/120, 207/128 251, 172 , 252, 172	12.13	-	-	
		431>114, 233>172 97 561, 278<123, 187<105	6.44	- 0.05-5	-	68 (10)
	DUIA	$J_1 \sim 01, 2_10 < 123, 10 / < 103$	0.44	0.05-5		00(17)

Table S3. Retention time and ions/SRM transitions monitored for GC-MS analysis of the target DBPs. The quantification ion/SRM transition is highlighted in bold.

*Average absolute recoveries observed at 0.5 μ g/L (*n*=4) and relative standard deviation (RSD). In the case of regulated THMs, DBCM, and TBM, and the trihalo-HANs BDCAN, DBCAN, and TBAN, recoveries were investigated at 1 μ g/L (*n*=3). For those analytes with MRL \geq 2.5 μ g/L (DIACM, DBCACM, BDCAA, DBCAA, and TBAA, average absolute recoveries were studied at a concentration level of 5 μ g/L (*n*=4). NR: Analyte not properly recovered (RSD>100 and absolute recovery <30). **A minimum of 5 calibration points (exceptionally four) in the range 0.1-50 μ g/L in the case of THMs, THALs, and HANs, and 0.05-50 μ g/L in the case of HACMs, and HAAs were used to construct calibration curves.

VI. Targeted halogenated DBPs in water samples

Table S4. Concentrations of target halogenated DBPs in ng/L measured in disinfected water samples (n.d.= not detected).

Class	Analyte	DWTP1	DWTP2	DWTP3	DWTP4	MRL
	DBCM	15	n.d.	n.d.	1.6	< 0.10
	TBM	2.6	n.d.	n.d.	< 0.1	< 0.10
	DCIM	0.97	n.d.	n.d.	0.37	0.10
TIM	BCIM	0.77	n.d.	n.d.	< 0.1	0.10
THMS	DBIM	0.19	n.d.	n.d.	n.d.	0.10
	CDIM	n.d.	n.d.	n.d.	n.d.	0.10
	BDIM	n.d.	n.d.	n.d.	n.d.	0.25
	TIM	n.d.	n.d.	n.d.	n.d.	0.10
THALs	TCAL	0.45	n.d.	n.d.	1.7	0.25
	BDCAL	0.41	n.d.	n.d.	0.30	0.25
	DBCAL	n.d.	n.d.	n.d.	n.d.	0.25
	TBAL	n.d.	n.d.	n.d.	n.d.	0.10
	CAN	n.d.	n.d.	n.d.	n.d.	0.25
	BAN	n.d.	n.d.	n.d.	n.d.	0.10
	IAN	n.d.	n.d.	n.d.	n.d.	0.10
IIANo	DCAN	0.88	<0.1	n.d.	1.7	0.10
HAINS	DBAN	0.71	n.d.	n.d.	n.d.	0.10
	BDCAN	n.d.	n.d.	n.d.	n.d.	0.50
	DBCAN	n.d.	n.d.	n.d.	n.d.	0.25
	TBAN	n.d.	n.d.	n.d.	n.d.	0.25
	CACM	n.d.	n.d.	n.d.	n.d.	0.25
	BACM	n.d.	n.d.	n.d.	n.d.	0.50
	IACM	n.d.	n.d.	n.d.	n.d.	0.50
	BCACM	0.39	<0.1	n.d.	0.24	0.10
	DCACM	n.d.	< 0.25	n.d.	1.1	0.25
	DBACM	n.d.	n.d.	n.d.	n.d.	0.10
HACMs	CIACM	n.d.	n.d.	n.d.	n.d.	0.50
	BIACM	n.d.	n.d.	n.d.	n.d.	0.25
	DIACM	n.d.	n.d.	n.d.	n.d.	2.5
	TCACM	n.d.	n.d.	n.d.	< 0.05	0.05
	BDCACM	n.d.	n.d.	n.d.	n.d.	0.10
	DBCACM	n.d.	n.d.	n.d.	n.d.	2.5
	TBACM	n.d.	n.d.	n.d.	n.d.	0.50
	CAA	0.39	n.d.	n.d.	0.57	0.25
	BAA	0.38	n.d.	n.d.	< 0.25	0.25
	IAA	< 0.05	n.d.	0.05	< 0.05	0.05
	BCAA	2.1	n.d.	n.d.	3.3	1.0
	DCAA	3.2	1.2	1.1	12	0.50
	DBAA	1.9	0.25	n.d.	0.49	0.10
ΗΛΛα	CIAA	0.61	n.d.	n.d.	0.62	0.05
ПАЛЬ	BIAA	0.12	n.d.	n.d.	n.d.	0.05
	DIAA	0.13	0.12	n.d.	n.d.	0.05
	TCAA	1.4	<0.1	0.30	11	0.10
	BDCAA	2.7	n.d.	n.d.	8.6	2.5
	DBCAA	n.d.	n.d.	n.d.	<10	10
	TBAA	n.d.	n.d.	n.d.	n.d.	10
	DPN	0.25	n.d.	n.d.	1.6	0.05

VII. Tranformation of DBP concentration of Cl-equivalent concentrations

To convert DBP concentrations into Cl-eq concentrations, the following formula was applied, in which the same atomic weight (35.45 Da) is assigned to all halogens present in the molecule (chlorine, bromine, and iodine) [1]:

$$\frac{\mu g \text{ of } DBP \text{ as } Cl - eq}{L} = \frac{DBP \text{ conc} \left(\frac{\mu g}{L}\right)}{DBP \text{ M.W.} \left(\frac{g}{mol}\right)} * (No. \text{ halogen atoms}) * 35.45$$

Where *DBP conc* is the concentration of the DBP in μ g/L and *DBP M.W.* is the molecular weight of the DBP (g/mol).

Reference

[1] M.J. Farré, K. Doederer, W. Gernjak, Y. Poussade, H. Weinberg, Disinfection byproducts management in high quality recycled water, Water Supply, 12 (2012) 573-579.

VIII. Further interpretation of negative ESI-FT-ICR MS data

Search constraints: TIC>3,000,000; \leq 800 Da, a mass error \pm 0.2 ppm, and Nitrogen rule: TRUE, elemental composition: ¹²C: 0–100, ¹H: 0–∞, ¹⁶O: 0–80, ¹⁴N: 0–3, ³²S: 0–2, ³⁵Cl: 0–5 and ⁷⁹Br: 0–3. Formula filter: H/C \leq 2.5;O/C \leq 1;C,H and O>0, DBE \geq 0 and N and S \leq 1.

Table S5.Nitrogen-containing formulae in the investigated samples after search and formula filtration ^a.

Sample	code	No. of formulas in the 3 sample replicates	No. of verified formulas (in all replicates)	Theoretical mass (Da) [M-H] ⁻	Molecular formula [M]	DBE
DWTP1	IN	19	1	326.09725	$C_{12}H_{26}O_4BrN$	0
	OUT	24	0	-	_	-
DWTP2	IN	28	0	-	-	-
	OUT	28	3	288.02804	C ₁₁ H ₁₂ O ₆ ClN	6
				302.04369	$C_{12}H_{14}O_6ClN$	6
_				314.04369	$C_{13}H_{14}O_6ClN$	7
DWTP3	IN	24	0	-	-	-
	OUT	22	0	-	-	-
DWTP4	IN	50	3	610.14959	$C_{30}H_{40}O_3Cl_2BrN$	10
				638.21727	$C_{33}H_{48}O_2Cl_2BrN$	9
				652.19654	$C_{33}H_{46}O_3Cl_2BrN$	10
	OUT	67	5	300.02804	$C_{12}H_{12}O_6Cl_1N$	7
				302.04369	$C_{12}H_{14}O_6Cl_1N$	6
				312.02804	$C_{13}H_{12}O_6Cl_1N$	8
				314.04369	$C_{13}H_{14}O_6Cl_1N$	7
				316.05934	$C_{13}H_{16}O_6Cl_1N$	6

^a Masses with equal intensity in IN and OUT are highlighted in italics and grey.

Sample	code	No. of formulas in the 3 sample	No. of verified formulas (in	Theoretical mass (Da) [M-H] ⁻	Molecular formula [M]	DBE
	TNT	replicates	all replicates)	412.0022		1
DWIPI	IN	30	5	413.0922	$C_{17}H_{32}O_2CIBrS$	1
				425.0922	$C_{18}H_{32}O_2CIBrS$	2
				427.10787	$C_{18}H_{34}O_2ClBrS$	1
				427.14423	$C_{19}\Pi_{38}OCIDTS$	1
	OUT	20	5	433.13990	$\frac{C_{21}\Pi_{40}OCIDIS}{C \amalg OPr S}$	2
	001	30	5	<i>4</i> 0.73820	$C_5\Pi_3 ODI_3 S$	5
				427.10787	$C_{18}II_{34}O_2C_{1}DIS$	1
				427.14425 439 14425	CaoHaoOClBrS	1
				453 1500	$C_{20}H_{00}OClBrS$	1
DWTP2	IN	22	6	411 11205	$C_{21}\Pi_{40}OCIDIS$	1
D W 11 2	11 4		0	413 00222	$C_{18}H_{34}OCiDTS$	1
				413 12860	$C_{10}H_{20}OClBrS$	0
				425 09222	$C_{10}H_{20}O_{2}ClBrS$	2
				427 10787	$C_{18}H_{32}O_2CIBIS$	1
				427.14425	$C_{18}H_{34}O_2ClBrS$	0
	OUT	55	5	346 73820	C ₅ H ₂ OBr ₂ S	3
	001	55	5	411.11295	$C_{10}H_{24}OClBrS$	1
				413.09222	$C_{17}H_{32}O_2ClBrS$	1
				413.12860	$C_{18}H_{36}OClBrS$	0
				427.14425	$C_{18}H_{34}O_2ClBrS$	0
DWTP3	IN	23	5	425.09222	C ₁₈ H ₃₂ O ₂ ClBrS	2
		-	-	427.10787	$C_{18}H_{34}O_2ClBrS$	1
				427.14425	$C_{18}H_{34}O_2ClBrS$	0
				451.14425	$C_{21}H_{40}OClBrS$	2
				453.1599	$C_{21}H_{40}OClBrS$	1
	OUT	59	8	413.09222	C ₁₇ H ₃₂ O ₂ ClBrS	1
				427.10787	$C_{18}H_{34}O_2ClBrS$	1
				427.14425	$C_{18}H_{34}O_2ClBrS$	0
				439.14425	C ₂₀ H ₃₈ OClBrS	1
				451.14425	$C_{21}H_{40}OClBrS$	2
				453.1599	$C_{21}H_{40}OClBrS$	1
				477.00526	$C_{21}H_{15}O_9ClS$	14
				507.01582	$C_{22}H_{17}O_{10}ClS$	14
DWTP4	IN	18	5	413.09222	$C_{17}H_{32}O_2ClBrS$	1
				413.12860	$C_{18}H_{36}OClBrS$	0
				425.09222	$C_{18}H_{32}O_2ClBrS$	2
				427.10787	$C_{18}H_{34}O_2ClBrS$	1
				427.14425	$C_{18}H_{34}O_2ClBrS$	0
	OUT	24	4	413.09222	$C_{17}H_{32}O_2ClBrS$	1
				413.12860	$C_{18}H_{36}OClBrS$	0
				427.10787	$C_{18}H_{34}O_2ClBrS$	1
				427.14425	$C_{18}H_{34}O_2ClBrS$	0

Table S6.Sulfur-containing formulae in the investigated samples after search and formulae filtration ^a.

^a Masses with equal intensity in IN and OUT are highlighted in italics and grey.

Figure S5. Box plots showing the properties of verified formulas in IN and OUT samples, after FT-ICR MS analysis.

Figure S6. Plots showing DBE, AI_{mod}, and COS versus the number of carbon for verified DBPs (m/z ions only present in disinfected water) according to negative ESI-FT-ICR MS analysis.

Figure S7. The number of verified chlorinated and brominated DBPs (CHO-type) in the investigated DBP mixtures against the number of oxygen atoms of each DBP composition according to negative ESI-FT-ICR MS analysis.

Figure S8. Venn diagrams showing the number of molecular formulae unique and common to non-disinfected (IN) and disinfected water (OUT) in each investigated drinking water treatment plant, after non-target FT-ICR MS analysis.

Figure S9. Contribution of each group of halogenated compounds to the chemodiversity of the investigated disinfected waters, after FT-ICR MS analysis. Y-axis shows the percent of verified molecular formulae.

Figure S10. Plots showing DBE, AI_{mod} , and C_{OS} versus the number of carbon for verified DBPs (m/z ions only present in disinfected water) common to all DWTPs according to negative ESI-FT-ICR MS analysis.

Figure S11. Plots showing DBE, AI_{mod} , and C_{OS} versus the number of carbon for unique verified DBPs (m/z ions only present in disinfected water) according to negative ESI-FT-ICR MS analysis.

						_				
			Mann-Whitney U*			Kruskal-Wallis**				
			(2 indep	pendent	groups:	(various independent groups:				
		n	IN	vs OU	T)		DWTP_OUT samples)			
			Madian	II		Madian	2		Post-hoc Dunn's	
			Median	an U	p-value	Median	χ (3)	p-value	test (p<0.05)	
DWTP1	IN	8	407	555	0.088		59.1	<0.001	DWTP1 vs DWTP2	
	OUT	95	386			386			DWTP3 vs DWTP2	
DWTP2	IN	32	415	9533	<0.001				DWTP4 vs DWTP2	
	OUT	349	348			348				
DWTP3	IN	9	412	1017	0.031					
	OUT	151	372			372				
DWTP4	IN	66	387	14530	0.142					
	OUT	335	374			374				

Table S7. Statistics for comparison of the molecular mass of verified Cl and Br formulae in the investigated samples, after negative ESI-FT-ICR MS analysis.

*When p-value <0.05, the molecular mass of the Cl and Br-formulae before and after disinfection are significantly different with a significance level of 5%. Overlapping features between IN and OUT were removed.

**When p-value <0.05, the molecular mass of the Cl and Br-formulae in disinfected water of the different DWTPs are significantly different with a significance level of 5%. Pairwise comparison with a posthoc Dunn's test allows identification of the differences.

	-		Mann	-Whitne	ey U*		Kruskal-Wallis**			
			(2 indep	pendent	groups:	(v	arious	independ	ent groups:	
		n	IN	vs OU	T)		DWT	P_OUT s	amples)	
			Modian	II	U a volue	Modian	α^2	n voluo	Post-hoc Dunn's	
			Wieulali	U	p-value	Meuran	χ (3)	p-value	test (p<0.05)	
DWTP1	IN	8	1.55	706	<0.001		2.81	0.422	-	
	OUT	95	1.06			1.06				
DWTP2	IN	32	1.13	7262	0.054					
	OUT	349	1.06			1.06				
DWTP3	IN	9	1.48	1348	<0.001					
	OUT	151	1.06			1.06				
DWTP4	IN	66	1.11	16001	0.001					
	OUT	335	1.00			1.00				

Table S8. Statistics for comparison of the H/C content of verified Cl and Br formulae in the investigated samples, after negative ESI-FT-ICR MS analysis.

*When p-value <0.05, the H/C content of verified Cl and Br-formulae before and after disinfection are significantly different with a significance level of 5%. Overlapping features between IN and OUT were removed.

**When p-value <0.05, the H/C content of verified DBPs in disinfected water of the different DWTPs are significantly different with a significance level of 5%. Pairwise comparison with a posthoc Dunn's test allows identification of the differences.

			Mann-Whitney U*				Kruskal-Wallis**		
			(2 indep	endent	groups:	(various independent groups:			
		n	IN	vs OU	T)	DWTP_OUT samples)			
			Madian	II	n voluo	Madian	· ²	n voluo	Post-hoc Dunn's
		1	vieulali	U	p-value	Median	χ (3)	p-value	test (p<0.05)
DWTP1	IN	8	0.33	128	<0.001		38.9	<0.001	DWTP4 vs DWTP3
	OUT	95	0.50			0.50			DWTP1 vs DWTP3
DWTP2	IN	32	0.46	4175	0.001				DWTP2 vs DWTP3
	OUT	349	0.50			0.50			
DWTP3	IN	9	0.29	362	0.007				
	OUT	151	0.46			0.46			
DWTP4	IN	66	0.43	8145	<0.001				
	OUT	335	0.50			0.50			

Table S9. Statistics for comparison of the O/C content of verified Cl and Br formulae in the investigated samples, after negative ESI-FT-ICR MS analysis.

*When p-value <0.05, the O/C content of verified Cl and Br-formulae before and after disinfection are significantly different with a significance level of 5%. Overlapping features between IN and OUT were removed.

**When p-value <0.05, the O/C content of verified DBPs in disinfected water of the different DWTPs are significantly different with a significance level of 5%. Pairwise comparison with a posthoc Dunn's test allows identification of the differences.

Table S10. Statistics for comparison of the AImod of verified Cl and Br formulae in the investigated samples, after negative ESI-FT-ICR MS analysis.

			Mann-Whitney U*		Kruskal-Wallis**				
			(2 indep	endent	groups:	(various independent groups:			
		n	IN	vs OU	Γ)	DWTP_OUT samples)			
		-	Median	U	p-value	Median	χ ² (3)	p-value	Post-hoc Dunn's test (p<0.05)
DWTP1	IN	8	0.19	139	< 0.001		0.38	0.945	-
	OUT	95	0.38			0.38			
DWTP2	IN	32	0.36	5213	0.132				
	OUT	349	0.39			0.39			
DWTP3	IN	9	0.17	93	<0.001				
	OUT	151	0.40			0.40			
DWTP4	IN	66	0.38	12270	0.247				
	OUT	335	0.40			0.4			

*When p-value <0.05, the AImod content of verified Cl and Br-formulae before and after disinfection are significantly different with a significance level of 5%. Overlapping features between IN and OUT were removed.

**When p-value <0.05, the AImod content of verified DBPs in disinfected water of the different DWTPs are significantly different with a significance level of 5%. Pairwise comparison with a posthoc Dunn's test allows identification of the differences.

	-	Mann-Whi (2 independe n IN vs C		Whitne endent vs OU	ey U* groups: Γ)	Kruskal-Wallis** (various independent groups: DWTP_OUT samples)			llis** lent groups: samples)
			Median	U	p-value	Median	χ^2 (3)	p-value	Post-hoc Dunn's test (p<0.05)
DWTP1	IN	8	-0.80	115	<0.001		34.2	<0.001	DWTP4 vs DWTP3
	OUT	95	0			0			DWTP1 vs DWTP3
DWTP2	IN	32	-0.13	4129	<0.001				DWTP2 vs DWTP3
	OUT	349	0.13			0.13			
DWTP3	IN	9	-0.86	184	< 0.001				
	OUT	151	-0.12			-0.12			
DWTP4	IN	66	-0.15	8015	<0.001				
	OUT	335	0.12			0.12			

Table S 11. Statistics for comparison of the C_{OS} of verified Cl and Br formulae in the investigated samples, after negative ESI-FT-ICR MS analysis.

*When p-value <0.05, the C_{OS} content of verified Cl and Br-formulae before and after disinfection are significantly different with a significance level of 5%. Overlapping features between IN and OUT were removed.

**When p-value <0.05, the C_{OS} content of verified DBPs in disinfected water of the different DWTPs are significantly different with a significance level of 5%. Pairwise comparison with a posthoc Dunn's test allows identification of the differences.

Table S12. Statistics for comparison of the DBE of verified Cl and Br formulae in the investigated samples, after negative ESI-FT-ICR MS analysis.

		Mann-Whitney U*		Kruskal-Wallis**					
			(2 independent groups:		(various independent groups:				
		n	IN	vs OU	Γ)		DWT	P_OUT	samples)
			Madian	ΤŢ	n voluo	Madian	· ²	n voluo	Post-hoc Dunn's
			Median	U	p-value	Median	χ (3)	p-value	test (p<0.05)
DWTP1	IN	8	4	168	0.002		49.7	<0.001	DWTP3 vs DWTP2
	OUT	95	8			8			DWTP3 vs DWTP4
DWTP2	IN	32	8	7013	0.126				DWTP1 vs DWTP2
	OUT	349	7			7			DWTP4 vs DWTP2
DWTP3	IN	9	5	196	<0.001				
	OUT	151	8			8			
DWTP4	IN	66	7	12294	0.253				
	OUT	335	8			8			

*When p-value <0.05, the DBE content of verified Cl and Br-formulae before and after disinfection are significantly different with a significance level of 5%. Overlapping features between IN and OUT were removed.

**When p-value <0.05, the DBE content of verified DBPs in disinfected water of the different DWTPs are significantly different with a significance level of 5%. Pairwise comparison with a posthoc Dunn's test allows identification of the differences.

Table S13. List of verified formulae of the 19 DBPs common to all four disinfected water samples according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

Common to all D	WTPs
Molecular formula	Theoretical mass of the negative ion
C14 H13 O6 Cl1	311.03279
C13 H11 O7 Cl1	313.01206
C13 H13 O7 Cl1	315.02771
C13 H15 O7 Cl1	317.04336
C14 H13 O7 Cl1	327.02771
C13 H13 O8 Cl1	331.02262
C14 H11 O8 Cl1	341.00697
C14 H13 O8 Cl1	343.02262
C14 H15 O8 Cl1	345.03827
C16 H15 O7 Cl1	353.04336
C15 H13 O8 Cl1	355.02262
C16 H17 O7 Cl1	355.05901
C15 H15 O8 Cl1	357.03827
C16 H15 O8 Cl1	369.03827
C15 H13 O9 Cl1	371.01754
C18 H19 O7 Cl1	381.07466
C17 H17 O8 Cl1	383.05392
C16 H15 O9 Cl1	385.03319
C17 H17 O9 Cl1	399.04884
C18 H19 O9 Cl1	413.06449

Table S14. List of verified formulae of the 23 DBPs unique to DWTP1 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP1-unique	
Molecular formula	Theoretical mass of the negative ion
C9 H5 O6 Br1	286.91968
C15 H23 O6 Cl1	333.11104
C15 H17 O7 Cl1	343.05901
C16 H21 O6 Cl1	343.09539
C15 H19 O7 Cl1	345.07466
C15 H15 O7 Br1	384.99284
C18 H23 O7 Cl1	385.10596
C15 H17 O7 Br1	387.00849
C18 H21 O8 Cl1	399.08522
C19 H25 O7 Cl1	399.12161
C18 H25 O8 Cl1	403.11652
C19 H23 O8 Cl1	413.10087
C16 H17 O8 Br1	415.00341
C19 H25 O8 Cl1	415.11652
C20 H29 O7 Cl1	415.15291
C18 H23 O9 Cl1	417.09579
C16 H13 O9 Br1	426.96702
C17 H15 O9 Br1	440.98267
C19 H19 O10 Cl1	441.05940
C19 H19 O8 Br1	453.01906
C17 H13 O10 Br1	454.96194
C17 H14 O11 Cl2	462.98405
C19 H20 O10 Cl2	477.03608

Table S15. List of verified formulae of the 124 DBPs unique to DWTP2 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP2-unique		DW
Molecular	Theoretical	Мо
formula	mass of the	fori
		- 040
C10 H9 O5 Cl1	243.00658	C12
C11 H13 O4 Cl1	243.04296	C11
C10 H11 O5 Cl1	245.02223	C14
C11 H9 O5 Cl1	255.00658	C9
C10 H7 O6 Cl1	256.98584	C11
C11 H11 O5 Cl1	257.02223	C11
C12 H15 O4 Cl1	257.05861	C12
C10 H9 O6 Cl1	259.00149	C12
C10 H11 O6 Cl1	261.01714	C15
C11 H15 O5 Cl1	261.05353	C10
C9 H8 O5 Cl2	264.96761	C14
C12 H9 O5 Cl1	267.00658	C12
C10 H7 O7 Cl1	272.98076	C13
C13 H19 O4 Cl1	273.08991	C11
C11 H13 O6 Cl1	275.03279	C12
C12 H17 O5 Cl1	275.06918	C11
C13 H9 O5 Cl1	279.00658	C12
C12 H7 O6 Cl1	280.98584	C14
C13 H11 O5 Cl1	281.02223	C15
C14 H15 O4 Cl1	281.05861	C10
C14 H17 O4 Cl1	283.07426	C10
C11 H7 O7 Cl1	284.98076	C13
C14 H19 O4 Cl1	285.08991	C14
C10 H9 O5 Br1	286.95606	C17
C11 H9 O7 Cl1	286.99641	C12
C14 H21 O4 Cl1	287.10556	C17
C14 H23 O4 Cl1	289.12121	C12
C13 H21 O5 Cl1	291.10048	C13
C10 H8 O6 Cl2	292.96252	C17
C12 H7 O7 Cl1	296.98076	C13
C15 H19 O4 Cl1	297.08991	C11
C11 H9 O5 Br1	298.95606	C13
C15 H21 O4 Cl1	299.10556	C13
C10 H7 O6 Br1	300.93533	C15
C15 H23 O4 Cl1	301.12121	C11
C10 H9 O6 Br1	302.95098	C15
C11 H9 O8 Cl1	302.99132	C10
C15 H25 O4 Cl1	303.13686	C13
C10 H11 O6 Br1	304.96663	C15

DWTP2-unique (continued)						
Molecular	Theoretical					
formula	mass of the negative ion					
C12 H12 O5 Cl2	304.99891					
C11 H11 O8 Cl1	305.00697					
C14 H23 O5 Cl1	305.11613					
C9 H8 O5 Cl1 Br1	308.91709					
C11 H7 O6 Br1	312.93533					
C11 H9 O6 Br1	314.95098					
C12 H9 O8 Cl1	314.99132					
C12 H11 O8 Cl1	317.00697					
C15 H23 O5 Cl1	317.11613					
C10 H9 O7 Br1	318.94589					
C14 H7 O7 Cl1	320.98076					
C12 H16 O6 Cl2	325.02512					
C13 H9 O8 Cl1	326.99132					
C11 H9 O7 Br1	330.94589					
C12 H9 O9 Cl1	330.98624					
C11 H11 O7 Br1	332.96154					
C12 H11 O9 Cl1	333.00189					
C14 H21 O7 Cl1	335.09031					
C15 H25 O6 Cl1	335.12669					
C10 H8 O6 Cl1 Br1	336.91201					
C10 H10 O6 Cl1 Br1	338.92766					
C13 H9 O6 Br1	338.95098					
C14 H9 O8 Cl1	338.99132					
C17 H21 O5 Cl1	339.10048					
C12 H16 O7 Cl2	341.02004					
C17 H23 O5 Cl1	341.11613					
C12 H9 O7 Br1	342.94589					
C13 H9 O9 Cl1	342.98624					
C17 H25 O5 Cl1	343.13178					
C13 H8 O7 Cl2	344.95744					
C11 H9 O8 Br1	346.94081					
C13 H17 O6 Br1	347.01358					
C13 H13 O9 Cl1	347.01754					
C15 H21 O7 Cl1	347.09031					
C11 H10 O6 Cl1 Br1	350.92766					
C15 H9 O8 Cl1	350.99132					
C10 H10 O7 Cl1 Br1	354.92257					
C13 H9 O7 Br1	354.94589					
C15 H19 O5 Br1	357.03431					

Table S17. (cont.)

DWTP2-unique (con	tinued)
Molecular	Theoretical
formula	mass of the
	negative ion
C17 H23 O6 Cl1	357.11104
C12 H9 O8 Br1	358.94081
C15 H21 O5 Br1	359.04996
C17 H25 O6 Cl1	359.12669
C12 H11 O8 Br1	360.95646
C15 H21 O8 Cl1	363.08522
C11 H10 O7 Cl1 Br1	366.92257
C19 H25 O5 Cl1	367.13178
C14 H11 O7 Br1	368.96154
C18 H23 O6 Cl1	369.11104
C13 H11 O8 Br1	372.95646
C14 H11 O10 Cl1	372.9968
C17 H23 O7 Cl1	373.10596
C13 H13 O8 Br1	374.97211
C17 H25 O7 Cl1	375.12161
C18 H29 O6 Cl1	375.15799
C16 H23 O8 Cl1	377.10087
C17 H27 O7 Cl1	377.13726
C12 H12 O7 Cl1 Br1	380.93822
C14 H11 O8 Br1	384.95646
C15 H13 O10 Cl1	387.01245
C17 H25 O8 Cl1	391.11652
C19 H21 O7 Cl1	395.09031
C14 H11 O9 Br1	400.95137
C17 H23 O6 Br1	401.06053
C14 H13 O9 Br1	402.96702
C15 H13 O11 Cl1	403.00737
C17 H21 O9 Cl1	403.08014
C19 H31 O7 Cl1	405.16856
C18 H34 O3 Cl1 Br1	411.13071
C19 H38 O2 Cl1 Br1	411.1671
C15 H11 O9 Br1	412.95137
C15 H13 O9 Br1	414.96702
C16 H13 O11 Cl1	415.00737
C20 H31 O7 Cl1	417.16856
C17 H15 O11 Cl1	429.02302
C20 H31 O8 Cl1	433.16347
C22 H29 O7 Cl1	439.15291

DWTP2-unique (continued)			
Molecular formula	Theoretical mass of the negative ion		
C18 H19 O11 Cl1	445.05432		
C21 H25 O9 Cl1	455.11144		
C22 H29 O8 Cl1	455.14782		
C19 H19 O11 Cl1	457.05432		
C21 H27 O9 Cl1	457.12709		
C19 H21 O11 Cl1	459.06997		
C23 H33 O8 Cl1	471.17912		
C27 H37 O11 Cl1	571.19517		

Table S16. List of verified formulae of the 44 DBPs unique to DWTP3 according to
negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected
water).

DWTP3-unique	
Molecular	Theoretical
formula	mass of the
	200 06018
C14 H17 O5 CH	299.00910
C15 H13 O5 Cl1	307.03788
	317 07074
C16 H19 O5 Cl1	325 08483
C13 H13 O5 Br1	326 98736
C13 H15 O5 Br1	320.00301
C13 H15 O5 Br1	341 00301
C14 H13 O5 BH	347.00301
C13 H15 O6 Br1	342.90220
C15 H17 O5 Br1	355 01866
C14 H15 O6 Br1	356 00703
	363 02771
C16 H11 O8 CI1	365 00697
C15 H15 O6 Br1	368 99793
C17 H21 O7 Cl1	371 09031
C16 H17 O6 Br1	383.01358
C18 H21 O7 Cl1	383.09031
C16 H19 O6 Br1	385.02923
C19 H27 O6 Cl1	385.14234
C19 H19 O7 Cl1	393.07466
C15 H13 O8 Br1	398.97211
C16 H17 O7 Br1	399.00849
C19 H19 O8 Cl1	409.06957
C17 H17 O7 Br1	411.00849
C17 H19 O7 Br1	413.02414
C19 H27 O8 Cl1	417.13217
C17 H15 O8 Br1	424.98776
C16 H15 O9 Br1	428.98267
C17 H17 O9 Br1	442.99832
C18 H21 O8 Br1	443.03471
C22 H33 O7 Cl1	443.18421
C18 H17 O9 Br1	454.99832
C18 H19 O9 Br1	457.01397
C19 H17 O9 Br1	466.99832
C20 H21 O8 Br1	467.03471
C19 H19 O9 Br1	469.01397
C21 H23 O10 Cl1	469.0907

DWTP3-unique (continued)		
Molecular formula	Theoretical mass of the negative ion	
C18 H17 O10 Br1	470.99324	
C21 H25 O10 Cl1	471.10635	
C22 H29 O9 Cl1	471.14274	
C20 H21 O9 Br1	483.02962	
C21 H23 O9 Br1	497.04527	
C20 H21 O10 Br1	499.02454	

Table S17. List of verified formulae of the 121 DBPs unique to DWTP4 according to
negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected
water).

DWTP4-unique		DWTP4-unique (co	ntinued)
Molecular formula	Theoretical mass of the negative ion	<i>Molecular formula</i>	Theoretical mass of the negative ion
C13 H13 O4 Cl1	267.04296	C16 H12 O8 Cl2	400.98365
C10 H9 O7 Cl1	274.99641	C17 H16 O7 Cl2	401.02004
C10 H8 O5 Cl2	276.96761	C17 H18 O7 Cl2	403.03569
C10 H10 O5 Cl2	278.98326	C16 H19 O10 Cl1	405.05940
C9 H10 O6 Cl2	282.97817	C17 H25 O9 Cl1	407.11144
C13 H19 O5 Cl1	289.08483	C14 H12 O10 Cl2	408.97348
C11 H10 O5 Cl2	290.98326	C16 H20 O8 Cl2	409.04625
C11 H14 O5 Cl2	295.01456	C14 H14 O10 Cl2	410.98913
C12 H8 O5 Cl2	300.96761	C15 H18 O9 Cl2	411.02552
C12 H10 O5 Cl2	302.98326	C17 H15 O10 Cl1	413.02810
C12 H16 O5 Cl2	309.03021	C16 H28 O5 Cl1 Br1	413.07359
C13 H14 O5 Cl2	319.01456	C17 H14 O8 Cl2	414.99930
C13 H16 O5 Cl2	321.03021	C16 H30 O5 Cl1 Br1	415.08924
C14 H14 O5 Cl2	331.01456	C16 H12 O9 Cl2	416.97857
C14 H16 O5 Cl2	333.03021	C17 H16 O8 Cl2	417.01495
C16 H13 O6 Cl1	335.03279	C15 H10 O10 Cl2	418.95783
C14 H18 O5 Cl2	335.04586	C16 H14 O9 Cl2	418.99422
C14 H10 O6 Cl2	342.97817	C17 H18 O8 Cl2	419.03060
C14 H12 O6 Cl2	344.99382	C17 H21 O10 Cl1	419.07505
C12 H8 O8 Cl2	348.95235	C18 H25 O9 Cl1	419.11144
C14 H16 O6 Cl2	349.02512	C16 H16 O9 Cl2	421.00987
C14 H19 O8 Cl1	349.06957	C17 H20 O8 Cl2	421.04625
C13 H18 O7 Cl2	355.03569	C15 H14 O10 Cl2	422.98913
C15 H14 O6 Cl2	359.00947	C16 H18 O9 Cl2	423.02552
C12 H10 O9 Cl2	366.96292	C19 H17 O9 Cl1	423.04884
C16 H13 O8 Cl1	367.02262	C20 H21 O8 CI1	423.08522
C15 H14 O7 Cl2	375.00439	C14 H12 O11 Cl2	424.96840
C16 H18 O6 Cl2	375.04077	C15 H16 O10 Cl2	425.00478
C13 H10 O9 Cl2	378.96292	C18 H15 O10 Cl1	425.02810
C16 H11 O9 Cl1	381.00189	C16 H20 O9 Cl2	425.04117
C15 H20 O7 Cl2	381.05134	C20 H23 O8 Cl1	425.10087
C16 H14 O7 Cl2	387.00439	C14 H14 O11 Cl2	426.98405
C16 H16 O7 Cl2	389.02004	C18 H34 O4 Cl1 Br1	427.12563
C15 H15 O10 Cl1	389.02810	C19 H38 O3 Cl1 Br1	427.16201
C16 H21 O9 Cl1	391.08014	C17 H14 O9 Cl2	430.99422
C16 H20 O7 Cl2	393.05134	C18 H18 O8 Cl2	431.03060
C15 H18 O8 Cl2	395.03060	C20 H29 O8 Cl1	431.14782
C13 H12 O10 Cl2	396.97348	C21 H33 O7 Cl1	431.18421
C13 H14 O10 Cl2	398.98913	C16 H12 O10 Cl2	432.97348

Table S19. (cont).

DWTP4-unique (continued)		
Molecular	Theoretical	
formula	mass of the	
	negative ion	
C18 H20 O8 Cl2	433.04625	
C16 H14 O10 Cl2	434.98913	
C17 H18 O9 Cl2	435.02552	
C18 H22 O8 Cl2	435.06190	
C16 H16 O10 Cl2	437.00478	
C17 H20 O9 Cl2	437.04117	
C20 H19 O9 Cl1	437.06449	
C21 H25 O8 Cl1	439.11652	
C22 H31 O7 Cl1	441.16856	
C18 H14 O9 Cl2	442.99422	
C18 H16 O9 Cl2	445.00987	
C19 H20 O8 Cl2	445.04625	
C18 H18 O9 Cl2	447.02552	
C17 H16 O10 Cl2	449.00478	
C16 H14 O11 Cl2	450.98405	
C17 H18 O10 Cl2	451.02043	
C18 H22 O9 Cl2	451.05682	
C17 H20 O10 Cl2	453.03608	
C20 H19 O10 Cl1	453.05940	
C20 H25 O10 Cl1	459.10635	
C21 H29 O9 Cl1	459.14274	
C18 H16 O10 Cl2	461.00478	
C19 H20 O9 Cl2	461.04117	
C20 H27 O10 Cl1	461.12200	
C18 H20 O10 Cl2	465.03608	
C21 H19 O10 Cl1	465.05940	
C20 H17 O11 Cl1	467.03867	
C22 H27 O9 Cl1	469.12709	
C20 H21 O11 Cl1	471.06997	
C19 H18 O10 Cl2	475.02043	
C20 H25 O11 Cl1	475.10127	
C18 H16 O11 Cl2	476.99970	
C19 H22 O10 Cl2	479.05173	
C19 H16 O11 Cl2	488.99970	
C22 H29 O11 Cl1	503.13257	
C21 H24 O10 Cl2	505.06738	
C21 H20 O11 Cl2	517.03100	
C18 H20 O8 Cl2	476.99970	

DWTP4-unique (continued)		
Molecular formula	Theoretical mass of the negative ion	
C22 H22 O11 Cl2	531.04665	
C22 H24 O11 Cl2	533.06230	
C21 H22 O12 Cl2	535.04156	
C24 H25 O12 Cl1	539.09618	
C25 H35 O11 Cl1	545.17952	
C22 H24 O12 Cl2	549.05721	

Table S18. List of verified formulae of the 49 DBPs common to DWTP1 and DWTP2
according to negative ESI-FT-ICR MS analysis (only present in all three replicates of
disinfected water).

DWTP1+DWTP2	
Molecular	Theoretical
formula	nass of the negative ion
C12 H9 O7 Cl1	298.99641
C13 H13 O6 Cl1	299.03279
C13 H15 O6 Cl1	301.04844
C14 H13 O6 Cl1	311.03279
C15 H17 O5 Cl1	311.06918
C13 H11 O7 Cl1	313.01206
C13 H13 O7 Cl1	315.02771
C13 H15 O7 Cl1	317.04336
C14 H13 O7 Cl1	327.02771
C13 H13 O8 Cl1	331.02262
C16 H17 O6 Cl1	339.06409
C14 H11 O8 Cl1	341.00697
C14 H13 O8 Cl1	343.02262
C14 H15 O8 Cl1	345.03827
C14 H17 O8 Cl1	347.05392
C13 H14 O7 Cl2	351.00439
C16 H15 O7 Cl1	353.04336
C15 H13 O8 Cl1	355.02262
C16 H17 O7 Cl1	355.05901
C15 H15 O8 Cl1	357.03827
C15 H17 O8 Cl1	359.05392
C14 H16 O7 Cl2	365.02004
C16 H15 O8 Cl1	369.03827
C17 H19 O7 Cl1	369.07466
C15 H13 O9 Cl1	371.01754
C15 H15 O9 Cl1	373.03319
C16 H19 O8 Cl1	373.06957
C16 H21 O8 Cl1	375.08522
C14 H12 O8 Cl2	376.98365
C18 H19 O7 Cl1	381.07466
C17 H17 O8 Cl1	383.05392
C16 H15 O9 Cl1	385.03319
C17 H19 O8 Cl1	385.06957
C16 H17 O9 Cl1	387.04884
C15 H14 O8 Cl2	390.99930
C14 H12 O9 Cl2	392.97857
C15 H16 O8 Cl2	393.01495
C14 H14 O9 Cl2	394.99422

DWTP1+DWTP2 (continued)		
Molecular formula	Theoretical mass of the negative ion	
C17 H17 O9 Cl1	399.04884	
C16 H15 O10 Cl1	401.02810	
C17 H19 O9 Cl1	401.06449	
C16 H17 O10 Cl1	403.04375	
C15 H12 O9 Cl2	404.97857	
C16 H18 O8 Cl2	407.03060	
C18 H19 O9 Cl1	413.06449	
C17 H17 O10 Cl1	415.04375	
C19 H19 O9 Cl1	425.06449	
C20 H23 O9 Cl1	441.09579	
C19 H21 O10 Cl1	443.07505	

Table S19. List of verified formulae of the 48 DBPs common to DWTP1 and DWTP3 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP1+DWTP3	
Molocular	Theoretical
formula	mass of the
	negative ion
C13 H13 O6 Cl1	299.03279
C13 H15 O6 Cl1	301.04844
C14 H13 O6 Cl1	311.03279
C15 H17 O5 Cl1	311.06918
C13 H11 O7 Cl1	313.01206
C14 H15 O6 Cl1	313.04844
C13 H13 O7 Cl1	315.02771
C13 H15 O7 Cl1	317.04336
C14 H13 O7 Cl1	327.02771
C14 H15 O7 Cl1	329.04336
C13 H13 O8 Cl1	331.02262
C14 H19 O7 Cl1	333.07466
C16 H17 O6 Cl1	339.06409
C14 H11 O8 Cl1	341.00697
C15 H15 O7 Cl1	341.04336
C14 H13 O8 Cl1	343.02262
C14 H15 O8 Cl1	345.03827
C16 H15 O7 Cl1	353.04336
C15 H13 O8 Cl1	355.02262
C16 H17 O7 Cl1	355.05901
C15 H15 O8 Cl1	357.03827
C16 H19 O7 Cl1	357.07466
C15 H17 O8 Cl1	359.05392
C16 H15 O8 Cl1	369.03827
C17 H19 O7 Cl1	369.07466
C14 H13 O7 Br1	370.97719
C15 H13 O9 Cl1	371.01754
C16 H17 O8 Cl1	371.05392
C14 H15 O7 Br1	372.99284
C16 H19 O8 Cl1	373.06957
C16 H21 O8 Cl1	375.08522
C18 H19 O7 Cl1	381.07466
C17 H17 O8 Cl1	383.05392
C16 H15 O9 Cl1	385.03319
C17 H19 O8 Cl1	385.06957
C16 H17 O9 Cl1	387.04884
C17 H17 O9 Cl1	399.04884

DWTP1+DWTP3 (continued)		
Molecular formula	Theoretical mass of the negative ion	
C15 H15 O8 Br1	400.98776	
C17 H19 O9 Cl1	401.06449	
C16 H15 O8 Br1	412.98776	
C18 H19 O9 Cl1	413.06449	
C17 H17 O8 Br1	427.00341	
C18 H17 O10 Cl1	427.04375	
C19 H23 O9 Cl1	429.09579	
C19 H25 O9 Cl1	431.11144	
C20 H23 O9 Cl1	441.09579	
C19 H21 O10 Cl1	443.07505	
C19 H23 O10 Cl1	445.09070	

Table S20. List of verified formulae of the 47 DBPs common to DWTP1 and DWTP4
according to negative ESI-FT-ICR MS analysis (only present in all three replicates of
disinfected water).

DWTP1+DWTP4	
Molecular formula	Theoretical mass of the negative ion
C12 H9 O7 Cl1	298.99641
C14 H13 O6 Cl1	311.03279
C13 H11 O7 Cl1	313.01206
C13 H13 O7 Cl1	315.02771
C13 H15 O7 Cl1	317.04336
C14 H13 O7 Cl1	327.02771
C13 H13 O8 Cl1	331.02262
C14 H11 O8 Cl1	341.00697
C16 H19 O6 Cl1	341.07974
C14 H13 O8 Cl1	343.02262
C14 H15 O8 Cl1	345.03827
C14 H17 O8 Cl1	347.05392
C13 H14 O7 Cl2	351.00439
C16 H15 O7 Cl1	353.04336
C15 H13 O8 Cl1	355.02262
C16 H17 O7 Cl1	355.05901
C15 H15 O8 Cl1	357.03827
C14 H16 O7 Cl2	365.02004
C16 H15 O8 Cl1	369.03827
C15 H13 O9 Cl1	371.01754
C16 H17 O8 Cl1	371.05392
C15 H15 O9 Cl1	373.03319
C14 H12 O8 Cl2	376.98365
C18 H19 O7 Cl1	381.07466
C16 H15 O9 Cl1	385.03319
C15 H14 O8 Cl2	390.99930
	392.97857
	393.01495
	394.99422
	399.04004
	401.02010
	403.04373
	404.97637
	400.99422
	407.03000
C18 H10 O9 Cl2	413 06110
C17 H17 O10 CI1	415 04375
C19 H19 O9 Cl1	425.06449
	120.00110

DWTP1+DWTP4 (continued)							
Molecular formula	Theoretical mass of the negative ion						
C18 H17 O10 Cl1	427.04375						
C19 H25 O9 Cl1	431.11144						
C17 H16 O9 Cl2	433.00987						
C18 H17 O11 Cl1	443.03867						
C19 H23 O10 Cl1	445.09070						
C18 H20 O9 Cl2	449.04117						
C18 H18 O10 Cl2	463.02043						
C33 H28 O6 Cl4	659.05673						

Table S21. List of verified formulae of the 80 DBPs common to DWTP2 and DWTP3 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP2+DWTP3		DWTP2+DWTP3 (continued			
Molecular formula	Theoretical mass of the negative ion	Mole form	ecular ula	Theoretical mass of the negative ion	
C12 H11 O6 Cl1	285.01714	C14	H13 O6 Br1	354.98228	
C13 H15 O5 Cl1	285.05353	C15	H13 O8 Cl1	355.02262	
C12 H13 O6 Cl1	287.03279	C16	H17 O7 Cl1	355.05901	
C14 H13 O5 Cl1	295.03788	C17	H21 O6 Cl1	355.09539	
C14 H15 O5 Cl1	297.05353	C15	H15 O8 Cl1	357.03827	
C13 H13 O6 Cl1	299.03279	C15	H17 O8 Cl1	359.05392	
C12 H11 O7 Cl1	301.01206	C15	H19 O8 Cl1	361.06957	
C13 H15 O6 Cl1	301.04844	C16	H23 O7 Cl1	361.10596	
C14 H19 O5 Cl1	301.08483	C17	H17 O7 Cl1	367.05901	
C12 H13 O7 Cl1	303.02771	C18	H21 O6 Cl1	367.09539	
C13 H19 O6 Cl1	305.07974	C16	H15 O8 Cl1	369.03827	
C14 H9 O6 Cl1	307.00149	C17	H19 O7 Cl1	369.07466	
C15 H15 O5 Cl1	309.05353	C15	H13 O9 Cl1	371.01754	
C14 H13 O6 Cl1	311.03279	C16	H19 O8 Cl1	373.06957	
C15 H17 O5 Cl1	311.06918	C16	H21 O8 CI1	375.08522	
C13 H11 O7 Cl1	313.01206	C17	H15 O8 Cl1	381.03827	
C15 H19 O5 Cl1	313.08483	C18	H19 O7 Cl1	381.07466	
C13 H13 O7 Cl1	315.02771	C17	H17 O8 Cl1	383.05392	
C13 H15 O7 Cl1	317.04336	C19	H25 O6 Cl1	383.12669	
C15 H13 O6 Cl1	323.03279	C16	H15 O9 Cl1	385.03319	
C14 H11 O7 Cl1	325.01206	C17	H19 O8 Cl1	385.06957	
C15 H15 O6 Cl1	325.04844	C16	H17 O9 Cl1	387.04884	
C14 H13 O7 Cl1	327.02771	C17	H23 O8 Cl1	389.10087	
C15 H17 O6 Cl1	327.06409	C17	H19 O6 Br1	397.02923	
C13 H11 O8 Cl1	329.00697	C18	H19 O8 Cl1	397.06957	
C16 H23 O5 Cl1	329.11613	C19	H23 O7 Cl1	397.10596	
C13 H13 O8 Cl1	331.02262	C17	H17 O9 Cl1	399.04884	
C14 H17 O7 Cl1	331.05901	C20	H29 O6 Cl1	399.15799	
C15 H11 O7 Cl1	337.01206	C17	H19 O9 Cl1	401.06449	
C16 H15 O6 Cl1	337.04844	C17	H23 O9 Cl1	405.09579	
C17 H19 O5 Cl1	337.08483	C18	H27 O8 Cl1	405.13217	
C15 H13 O7 Cl1	339.02771	C18	H19 O9 Cl1	413.06449	
C16 H17 O6 Cl1	339.06409	C18	H21 O9 Cl1	415.08014	
C14 H11 O8 Cl1	341.00697	C17	H19 O10 CI1	417.0594	
C14 H13 O8 Cl1	343.02262	C20	H21 O9 Cl1	439.08014	
C14 H15 O8 Cl1	345.03827	C18	H15 O11 Cl1	441.02302	
C16 H13 O7 Cl1	351.02771	C20	H23 O9 Cl1	441.09579	
C15 H11 O8 Cl1	353.00697	C21	H27 O8 CI1	441.13217	
C16 H15 O7 Cl1	353.04336	C19	H21 O10 Cl1	443.07505	
C17 H19 O6 Cl1	353.07974	C20	H25 O9 Cl1	443.11144	

DWTP2+DWTP4 (co	ontinued)
Molecular formula	Theoretical mass of the
C12 H13 O4 Cl1	255 04296
C5 H1 O3 Cl2 Br1	256 84134
	250.04134
	259.03700
	200.90004
	209.02223
	209.00001
	271.00149
	271.03788
C11 H11 O6 Cl1	273.01714
C12 H15 O5 Cl1	273.05353
C11 H15 O6 Cl1	277.04844
C12 H9 O6 Cl1	283.00149
C12 H11 O6 Cl1	285.01714
C12 H13 O6 Cl1	287.03279
C13 H17 O5 Cl1	287.06918
C11 H8 O5 Cl2	288.96761
C11 H11 O7 Cl1	289.01206
C12 H15 O6 Cl1	289.04844
C11 H13 O7 Cl1	291.02771
C11 H12 O5 Cl2	292.99891
C10 H10 O6 Cl2	294.97817
C13 H9 O6 Cl1	295.00149
C14 H13 O5 Cl1	295.03788
C10 H12 O6 Cl2	296.99382
C13 H11 O6 Cl1	297.01714
C12 H9 O7 Cl1	298.99641
C12 H11 O7 Cl1	301.01206
C12 H13 O7 Cl1	303.02771
C11 H8 O6 Cl2	304.96252
C12 H15 O7 Cl1	305.04336
C13 H19 O6 Cl1	305.07974
C11 H10 O6 Cl2	306.97817
C12 H14 O5 Cl2	307.01456
C10 H8 O7 Cl2	308.95744
C11 H12 O6 Cl2	308,99382
C14 H11 O6 CI1	309 01714
C15 H15 O5 Cl1	309 05353
C10 H10 O7 Cl2	310 97309
C13 H9 O7 Cl1	310 99641

Table S22. List of verified formulae of the 190 DBPs common to DWTP2 and DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

Table S24. (cont.)

DWTP2+DWTP4	(continued)	DWTP2+DWTP4	(continued)
Molecular formula	Theoretical mass of the negative ion	Molecular formula	Theoretical mass of te negative ion
C12 H10 O7 Cl2	334.97309	C15 H16 O6 Cl2	361.02512
C13 H14 O6 Cl2	335.00947	C14 H15 O9 Cl1	361.03319
C13 H17 O8 Cl1	335.05392	C15 H19 O8 Cl1	361.06957
C12 H12 O7 Cl2	336.98874	C14 H14 O7 Cl2	363.00439
C15 H11 O7 Cl1	337.01206	C15 H18 O6 Cl2	363.04077
C13 H16 O6 Cl2	337.02512	C13 H12 O8 Cl2	364.98365
C16 H15 O6 Cl1	337.04844	C14 H16 O7 Cl2	365.02004
C11 H10 O8 Cl2	338.96800	C13 H14 O8 Cl2	366.99930
C12 H14 O7 Cl2	339.00439	C14 H18 O7 Cl2	367.03569
C15 H13 O7 Cl1	339.02771	C17 H17 O7 Cl1	367.05901
C11 H12 O8 Cl2	340.98365	C12 H12 O9 Cl2	368.97857
C14 H11 O8 Cl1	341.00697	C15 H11 O9 Cl1	369.00189
C14 H13 O8 Cl1	343.02262	C13 H16 O8 Cl2	369.01495
C13 H11 O9 Cl1	345.00189	C16 H15 O8 Cl1	369.03827
C14 H15 O8 Cl1	345.03827	C19 H27 O5 Cl1	369.14743
C17 H27 O5 Cl1	345.14743	C15 H13 O9 Cl1	371.01754
C13 H10 O7 Cl2	346.97309	C19 H29 O5 Cl1	371.16308
C14 H14 O6 Cl2	347.00947	C15 H12 O7 Cl2	372.98874
C14 H17 O8 Cl1	347.05392	C15 H15 O9 Cl1	373.03319
C13 H12 O7 Cl2	348.98874	C14 H10 O8 Cl2	374.96800
C12 H10 O8 Cl2	350.96800	C15 H17 O9 Cl1	375.04884
C13 H14 O7 Cl2	351.00439	C14 H12 O8 Cl2	376.98365
C16 H13 O7 Cl1	351.02771	C15 H16 O7 Cl2	377.02004
C14 H18 O6 Cl2	351.04077	C15 H19 O9 Cl1	377.06449
C17 H17 O6 Cl1	351.06409	C14 H14 O8 Cl2	378.99930
C12 H12 O8 Cl2	352.98365	C15 H18 O7 Cl2	379.03569
C15 H11 O8 Cl1	353.00697	C13 H12 O9 Cl2	380.97857
C13 H16 O7 Cl2	353.02004	C14 H16 O8 Cl2	381.01495
C16 H15 O7 Cl1	353.04336	C17 H15 O8 Cl1	381.03827
C12 H14 O8 Cl2	354.99930	C18 H19 O7 Cl1	381.07466
C15 H13 O8 Cl1	355.02262	C13 H14 O9 Cl2	382.99422
C16 H17 O7 Cl1	355.05901	C16 H13 O9 Cl1	383.01754
C18 H25 O5 Cl1	355.13178	C14 H18 O8 Cl2	383.03060
C14 H11 O9 Cl1	357.00189	C16 H15 O9 Cl1	385.03319
C15 H15 O8 Cl1	357.03827	C15 H12 O8 Cl2	388.98365
C18 H27 O5 Cl1	357.14743	C16 H19 O9 Cl1	389.06449
C14 H10 O7 Cl2	358.97309	C18 H27 O7 Cl1	389.13726
C14 H13 O9 Cl1	359.01754	C14 H10 O9 Cl2	390.96292
C13 H8 O8 Cl2	360.95235	C15 H14 O8 Cl2	390.99930
C14 H12 O7 Cl2	360.98874	C16 H18 O7 Cl2	391.03569

Table S24. (cont.)

DWTP2+DWTP4 (continued)							
Molecular formula	Theoretical mass of the negative ion						
C14 H12 O9 Cl2	392.97857						
C15 H16 O8 Cl2	393.01495						
C14 H14 O9 Cl2	394.99422						
C14 H16 O9 Cl2	397.00987						
C17 H15 O9 Cl1	397.03319						
C18 H19 O8 Cl1	397.06957						
C20 H27 O6 Cl1	397.14234						
C16 H13 O10 Cl1	399.01245						
C17 H17 O9 Cl1	399.04884						
C16 H15 O10 Cl1	401.02810						
C16 H32 O4 Cl1 Br1	401.10998						
C15 H10 O9 Cl2	402.96292						
C16 H14 O8 Cl2	402.99930						
C16 H17 O10 Cl1	403.04375						
C19 H29 O7 Cl1	403.15291						
C15 H12 O9 Cl2	404.97857						
C16 H16 O8 Cl2	405.01495						
C16 H18 O8 Cl2	407.03060						
C18 H19 O9 Cl1	413.06449						
C17 H17 O10 Cl1	415.04375						
C17 H19 O10 Cl1	417.05940						
C15 H12 O10 Cl2	420.97348						
C19 H19 O9 Cl1	425.06449						
C18 H19 O10 Cl1	429.05940						
C19 H27 O9 Cl1	433.12709						
C20 H21 O9 Cl1	439.08014						
C21 H27 O8 Cl1	441.13217						
C21 H31 O8 Cl1	445.16347						
C19 H25 O10 Cl1	447.10635						
C20 H21 O10 Cl1	455.07505						
C20 H23 O11 Cl1	473.08562						
C25 H31 O12 Cl1	557.14313						

Table S23. List of verified formulae of the 61 DBPs common to DWTP3 and DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP3+DWTP4		DWTP3+DWTP4			
Molecular formula	Theoretical mass of the negative ion	Molecular formula	Theoretical mass of the negative ion		
C13 H13 O5 Cl1	283.03788	C16 H15 O8 Cl1	369.03827		
C12 H11 O6 Cl1	285.01714	C15 H13 O9 Cl1	371.01754		
C12 H13 O6 Cl1	287.03279	C16 H17 O8 Cl1	371.05392		
C14 H13 O5 Cl1	295.03788	C18 H17 O7 Cl1	379.05901		
C12 H11 O7 Cl1	301.01206	C17 H15 O8 Cl1	381.03827		
C12 H13 O7 Cl1	303.02771	C18 H19 O7 Cl1	381.07466		
C13 H19 O6 Cl1	305.07974	C19 H23 O6 Cl1	381.11104		
C15 H15 O5 Cl1	309.05353	C16 H15 O9 Cl1	385.03319		
C14 H13 O6 Cl1	311.03279	C18 H17 O8 Cl1	395.05392		
C13 H11 O7 Cl1	313.01206	C18 H19 O8 Cl1	397.06957		
C15 H19 O5 Cl1	313.08483	C17 H17 O9 Cl1	399.04884		
C13 H13 O7 Cl1	315.02771	C18 H17 O9 Cl1	411.04884		
C13 H15 O7 Cl1	317.04336	C19 H21 O8 Cl1	411.08522		
C15 H13 O6 Cl1	323.03279	C18 H19 O9 Cl1	413.06449		
C14 H11 O7 Cl1	325.01206	C17 H19 O10 Cl1	417.05940		
C15 H15 O6 Cl1	325.04844	C18 H17 O10 Cl1	427.04375		
C14 H13 O7 Cl1	327.02771	C19 H21 O9 Cl1	427.08014		
C15 H17 O6 Cl1	327.06409	C20 H25 O8 Cl1	427.11652		
C13 H11 O8 Cl1	329.00697	C18 H21 O10 Cl1	431.07505		
C16 H23 O5 Cl1	329.11613	C19 H25 O9 Cl1	431.11144		
C13 H13 O8 Cl1	331.02262	C19 H17 O10 Cl1	439.04375		
C15 H11 O7 Cl1	337.01206	C20 H21 O9 Cl1	439.08014		
C16 H15 O6 Cl1	337.04844	C21 H27 O8 Cl1	441.13217		
C15 H13 O7 Cl1	339.02771	C19 H23 O10 Cl1	445.09070		
C14 H11 O8 Cl1	341.00697	C16 H17 O8 Cl1	371.05392		
C14 H13 O8 Cl1	343.02262				
C14 H15 O8 Cl1	345.03827				
C16 H13 O7 Cl1	351.02771				
C15 H11 O8 Cl1	353.00697				
C16 H15 O7 Cl1	353.04336				
C15 H13 O8 Cl1	355.02262				
C16 H17 O7 Cl1	355.05901				
C15 H15 O8 Cl1	357.03827				
C15 H19 O8 Cl1	361.06957				
C17 H15 O7 Cl1	365.04336				
C18 H19 O6 Cl1	365.07974				
C17 H17 O7 Cl1	367.05901				

Table S24. List of verified formulae of the 33 DBPs common to DWTP1, DWTP2, and DWTP3 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP1+DWTP2+DWTP3							
Molecular	Theoretical						
formula	mass of the						
	negative ion						
C13 H13 O6 Cl1	299.03279						
C13 H15 O6 Cl1	301.04844						
C14 H13 O6 Cl1	311.03279						
C15 H17 O5 Cl1	311.06918						
C13 H11 O7 Cl1	313.01206						
C13 H13 O7 Cl1	315.02771						
C13 H15 O7 Cl1	317.04336						
C14 H13 O7 Cl1	327.02771						
C13 H13 O8 Cl1	331.02262						
C16 H17 O6 Cl1	339.06409						
C14 H11 O8 Cl1	341.00697						
C14 H13 O8 Cl1	343.02262						
C14 H15 O8 Cl1	345.03827						
C16 H15 O7 Cl1	353.04336						
C15 H13 O8 Cl1	355.02262						
C16 H17 O7 Cl1	355.05901						
C15 H15 O8 Cl1	357.03827						
C15 H17 O8 Cl1	359.05392						
C16 H15 O8 Cl1	369.03827						
C17 H19 O7 Cl1	369.07466						
C15 H13 O9 Cl1	371.01754						
C16 H19 O8 Cl1	373.06957						
C16 H21 O8 Cl1	375.08522						
C18 H19 O7 Cl1	381.07466						
C17 H17 O8 Cl1	383.05392						
C16 H15 O9 Cl1	385.03319						
C17 H19 O8 Cl1	385.06957						
C16 H17 O9 Cl1	387.04884						
C17 H17 O9 Cl1	399.04884						
C17 H19 O9 Cl1	401.06449						
C18 H19 O9 Cl1	413.06449						
C20 H23 O9 Cl1	441.09579						
C19 H21 O10 Cl1	443.07505						

Table S25. List of verified formulae of the 23 DBPs common to DWTP1, DWTP3, and DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP1+DWTP3+DWTP4							
Molecular formula	Theoretical mass of the negative ion						
C14 H13 O6 Cl1	311.03279						
C13 H11 O7 Cl1	313.01206						
C13 H13 O7 Cl1	315.02771						
C13 H15 O7 Cl1	317.04336						
C14 H13 O7 Cl1	327.02771						
C13 H13 O8 Cl1	331.02262						
C14 H11 O8 Cl1	341.00697						
C14 H13 O8 Cl1	343.02262						
C14 H15 O8 Cl1	345.03827						
C16 H15 O7 Cl1	353.04336						
C15 H13 O8 Cl1	355.02262						
C16 H17 O7 Cl1	355.05901						
C15 H15 O8 Cl1	357.03827						
C16 H15 O8 Cl1	369.03827						
C15 H13 O9 Cl1	371.01754						
C16 H17 O8 Cl1	371.05392						
C18 H19 O7 Cl1	381.07466						
C16 H15 O9 Cl1	385.03319						
C17 H17 O9 Cl1	399.04884						
C18 H19 O9 Cl1	413.06449						
C18 H17 O10 Cl1	427.04375						
C19 H25 O9 Cl1	431.11144						
C19 H23 O10 Cl1	445.09070						

Table S26. List of verified formulae of the 45 DBPs common to DWTP2, DWTP3, and DWTP4 according to negative ESI-FT-ICR MS analysis (only present in all three replicates of disinfected water).

DWTP2+DWTP3+DWTP4							
Molecular	Theoretical						
formula	mass of the						
	negative ion						
C12 H11 O6 Cl1	285.01714						
C12 H13 O6 Cl1	287.03279						
C14 H13 O5 Cl1	295.03788						
C12 H11 O7 CI1	301.01206						
C12 H13 O7 CI1	303.02771						
C13 H19 O6 Cl1	305.07974						
C15 H15 O5 Cl1	309.05353						
C14 H13 O6 CI1	311.03279						
C13 H11 O7 Cl1	313.01206						
C15 H19 O5 Cl1	313.08483						
C13 H13 O7 Cl1	315.02771						
C13 H15 O7 Cl1	317.04336						
C15 H13 O6 Cl1	323.03279						
C14 H11 O7 Cl1	325.01206						
C15 H15 O6 Cl1	325.04844						
C14 H13 O7 Cl1	327.02771						
C15 H17 O6 Cl1	327.06409						
C13 H11 O8 Cl1	329.00697						
C16 H23 O5 Cl1	329.11613						
C13 H13 O8 Cl1	331.02262						
C15 H11 O7 Cl1	337.01206						
C16 H15 O6 Cl1	337.04844						
C15 H13 O7 Cl1	339.02771						
C14 H11 O8 Cl1	341.00697						
C14 H13 O8 Cl1	343.02262						
C14 H15 O8 Cl1	345.03827						
C16 H13 O7 Cl1	351.02771						
C15 H11 O8 Cl1	353.00697						
C16 H15 O7 Cl1	353.04336						
C15 H13 O8 Cl1	355.02262						
C16 H17 O7 Cl1	355.05901						
C15 H15 O8 Cl1	357.03827						
C15 H19 O8 Cl1	361.06957						
C17 H17 O7 Cl1	367.05901						
C16 H15 O8 Cl1	369.03827						
C15 H13 O9 Cl1	371.01754						
C17 H15 O8 CI1	381.03827						

DWTP2+DWTP3+DWTP4 (cont.)							
Molecular formula	Theoretical mass of the negative ion						
C18 H19 O7 Cl1	381.07466						
C16 H15 O9 Cl1	385.03319						
C18 H19 O8 Cl1	397.06957						
C17 H17 O9 Cl1	399.04884						
C18 H19 O9 Cl1	413.06449						
C17 H19 O10 Cl1	417.0594						
C20 H21 O9 Cl1	439.08014						
C21 H27 O8 Cl1	441.13217						

IX. Identification of DBPs in the investigated mixtures through LC-ESI(-)-Orbitrap MS

Figure S12. Contribution of each group of halogenated compounds to the chemodiversity of the investigated disinfected waters, after LC-ESI(-)-Orbitrap MS analysis. Y-axis shows the percent of confirmed or tentatively identified structures.

Figure S13. Venn diagram showing the chemodiversity of the investigated DBP mixtures according to LC-ESI(-)-Orbitrap MS analysis.

Figure S14. Molecular composition of the DBPs of each DWTP according to LC-ESI(-)-Orbitrap MS analysis, visualized by van Krevelen diagrams (left panel), mass edited H/C ratios (middle panel), and modified Kendrick mass defect plots (right panel). Only formulae present in all three replicates are shown.

Figure S15. Plots showing DBE, AI_{mod} , and C_{OS} versus the number of carbon of DBPs (*m/z* ions only present in disinfected water) according to LC-ESI(-)-Orbitrap MS analysis.

Figure S16. Molecular composition of the DBPs formed in all DWTPs according to LC-ESI(-)-Orbitrap MS analysis. van Krevelen diagrams (left panel), mass edited H/C ratios (middle panel), and modified Kendrick mass defect plots (right panel) of the compounds present in the disinfected samples. Only formulae present in the three replicates are shown.

Figure S17. Plots showing DBE, AI_{mod} , and C_{OS} versus the number of carbon for verified DBPs (*m*/*z* ions only present in disinfected water) common to all DWTPs according to LC-ESI(-)-Orbitrap MS analysis.

Figure S18. Molecular composition of unique DBPs according to LC-ESI(-)-Orbitrap MS analysis. van Krevelen diagrams (left panel), mass edited H/C ratios (middle panel), and modified Kendrick mass defect plots(right panel) of the compounds present in the disinfected samples. Only formulas present in the three replicates are shown.

Figure S19. Plots showing DBE, AI_{mod} , and C_{OS} versus the number of carbon for verified DBPs (*m*/*z* ions only present in disinfected water) in unique DBPs according to LC-ESI(-)-Orbitrap MS analysis.

Parent ion	on Presence in extracts									
Theor. mass [M- H]-	Elemental comp [M]	RDB E	Δ error (ppm)	Rt (min)	DW TP1	DW TP2	DW TP3	DW TP4	Suspect DBP (Level of confidence)	Identification evidence
92.9751	C ₂ H ₃ ClO ₂	1.5	3.438	7.95		\checkmark	Т		CI OH 2-chloroacetic acid (CL 1)	 Isotopic pattern of Cl CONFIRMED with analytical standard
126.9359	C ₂ H ₂ Cl ₂ O ₂	1.5	2.067	6.9	$\sqrt{}$	$\sqrt{\sqrt{1}}$	$\sqrt{}$	~~~	$CI \rightarrow OH$ CI	 Isotopic pattern of Cl₂ Characteristic fragments: 126.9361 (C₂HCl₂O₂) 82.9462 (CHCl₂) The highest score in MetFrag CONFIRMED with analytical standard
130.9905	C ₅ H ₅ ClO ₂	3.5	2.287	9.73	V	$\sqrt{}$	$\sqrt{}$	V	CI OH 4-chloro-2-methyl-buta-2,3- dienoic acid (CL 3)	 Isotopic pattern of Cl Characteristic fragments: 130.9908 (C₅H₄ClO₂) 113.0247 (C₅H₅O₃) 95.0140 (C₅H₃O₂) 87.0453 (C₄H₇O₂) The highest score in MetFrag
132.9698	C ₄ H ₃ ClO ₃	3.5	2.595	7.82	V	$\sqrt{\sqrt{1}}$	$\sqrt{}$	V	chloroethynyl methyl carbonate (CL 3)	- Isotopic pattern of Cl - Characteristic fragments: 132.9701 ($C_4H_2CIO_3$) 74.9643 (C_2CIO) 68.9982 (C_3H_2O) 58.9692 (C_2CI) - The highest score in MetFrag

 Table S27. DBPs identified after LC-ESI(-)MS/MS analyses with QExactive MS.

134.9413	$C_4H_2Cl_2O$	3.5	2.124	14.1	Х	Х	Х		n/a (CL5)	 Isotopic pattern of Cl₂ No MS2 available
140.9518	C ₃ H ₄ Cl ₂ O ₂	1.5	2.851	13.1	V	X	X	1	сі — Он сі Он 2,3-dichloropropanoic acid (CL 3)	 Isotopic pattern of Cl₂ Characteristic fragments: 140.9520 (C₃H₃Cl₂O₂) 104.9751 (C₃H₂ClO₂) 96.9617 (C₂H₃Cl₂) 71.0139 (C₃H₃O₂) The highest score in MetFrag
144.9698	C ₅ H ₃ ClO ₃	4.5	1.414	6.85	1	~~~	1	$\sqrt{}$	5-chlorofuran-2-yl formate (CL 3)	 Isotopic pattern of Cl Characteristic fragments: 144.9700 (C₅H₂ClO₃) 116.9799 (C₄H₂ClO₂) 100.9799 (C₄H₂ClO) 74.9643 (C₂ClO) 65.0032 (C₄HO) The highest score in MetFrag
145.0065	C ₆ H ₇ ClO ₂	3.5	2.066	11.7	Х	$\sqrt{\sqrt{1}}$		Х	4-(2-chloroethyl)-1,2-dioxine (CL 3)	 Isotopic pattern of Cl Characteristic fragments: 145.0065 (C₆H₆ClO₂) 83.0143 (C₄H₃O₂) 81.0143 (C₅H₅O) The highest score in MetFrag
146.9854	C ₅ H ₅ ClO ₃	3.5	2.483	9.5		~~~	$\sqrt{}$		OH 2-((2-chlorovinyl)oxy)acrylic acid (CL 3)	 Isotopic pattern of Cl Characteristic fragments: 146.9857 (C₅H₄ClO₃) 102.9958 (C₄H₄ClO) 67.0189 (C₄H₃O) 58.9692 (C₂Cl) The highest score in MetFrag

146.9854	C ₅ H ₅ ClO ₃	3.5	1.829	5.47	V	V	X	V	2-chloropenta-2,4-dienoic acid	 Isotopic pattern of Cl Characteristic fragments: 146.9857 (C₅H₄ClO₃) 104.9753 (C₃H₂ClO₂) 67.0189 (C₄H₃O) 58.9692 (C₂Cl)
157 0063	C-H-ClO	15	0.952	13.1	v	v	v	2	$\frac{(CL3)}{n/2(CL4)}$	- The highest score in MetFrag
137.0003		4.5	0.752	13.1	л	Λ	Λ	v		- No MS2 available
158.9857	C ₆ H ₅ ClO ₃	4.5	1.101	9.23	X	~~~	V	√ 	(5-methyl-3-furyl) carbonochloridate (CL 3)	- Isotopic pattern of Cl - Characteristic fragments: $158.9857 (C_6H_4ClO_3)$ $143.9623 (C_5HClO_3)$ $130.9544 (C_4ClO_3)$ $114.9960 (C_5H_4ClO)$ $79.0190 (C_5H_3O)$ $83.0140 (C_4H_3O_2)$ - The highest score in MetFrag
161.0012	C ₆ H ₇ ClO ₃	3.5	0.776	8.38	Т	$\sqrt{\sqrt{1}}$	N	N	2-(chloromethylene)-4-oxo- pentanoic acid (CL 3)	- Isotopic pattern of Cl - Characteristic fragments: 161.0012 ($C_6H_6ClO_3$) 118.9906 ($C_4H_4ClO_2$) 125.0245 ($C_6H_5O_3$) 83.0140 (C_4H_3O) 57.0342 (C_3H_5O) - The highest score in MetFrag

161.0012	C ₆ H ₇ ClO ₃	3.5	0.776	8.8	Т	$\sqrt{}$				- Isotopic pattern of Cl
	-0 /3								0	- Characteristic fragments:
										160.0012 (C ₆ H ₆ ClO ₃)
										$128.9751 (C_5 H_2 ClO_2)$
									CI	$110.0011 (C_5 H_2 O_3)$
									4-chlorobut-2-ynyl methyl	95.0141 (C ₅ H ₃ O ₂)
									carbonate (CL 3)	72.9930 (C ₂ HO ₃)
									(,	- The highest score in MetFrag
161.0012	C ₆ H ₇ ClO ₃	3.5	0.776	11.8	Т	$\sqrt{}$	Т	Т	n/a (CL 4)	- Isotopic pattern of Cl
										- No MS2 available
162.9032	CH ₂ Cl ₂ O ₃ S	0.5	2.067	6.24	\checkmark	Х	Х	$\sqrt{}$		- Isotopic pattern of Cl ₂
										- Characteristic fragments:
									// `он	162.9032 (CHCl ₂ O ₃ S)
									Chloro-(sulfo)3-	98.9315 (O ₂ ClS)
									chloranylidana)mathana	79.9575 (O ₃ S)
									(CL 3)	- The highest score in MetFrag
164 0517		25	0.679	<u> </u>	2	ماما	1	2	(CL 3)	Isotonic pattern of Cl
104.9317	$C_5\Pi_4CI_2O_2$	5.5	0.078	0.79	N	N N	N	N	Ĭ	- Isotopic patient of Cl ₂ Characteristic fragments:
									ОН	- Characteristic fragments. 164.9516 (C.H.CLO.)
									4	$1289751(C_{2}H_{2}C_{2}C_{2})$
									°CI CI	$929982(C_2HO_2)$
									4,4-dichlorocyclobutene-1-	96.9604 (C-H-Cl ₂)
									carboxylic acid (CL 3)	- The highest score in MetFrag
170 8854	C ₂ H ₂ BrClO ₂	15	1 621	8.05	22	222	11	222	· · · · ·	- Isotonic pattern of BrCl
170.0054		1.5	1.021	0.05	• •	• • •	• •	• • •	O II	- Characteristic fragments
									Br	$170.8855(C_2HBrClO_2)$
									T OH	126 8958(CHBrCl)
									CI	78 9189 (Br)
									2-bromo,2-chloroacetic acid	- Unique score in MetFrag
									(CL 1)	- CONFIRMED with analytical std
170.9857	C7H5ClO3	5.5	1.140	20.2	Х	Х	Х			- Isotopic pattern of Cl
	, , , , , , , , , , , , , , , , , , , ,								n/a (CL 4)	- No MS2 available

173.0011	C ₇ H ₇ ClO ₃	4.5	1.184	9.6	X		X	X	HO OH 4-chloro-3-methoxy-benzene- 1,2-diol (CL 3)	 Isotopic pattern of Cl Characteristic fragments: 173.0012(C₇H₆ClO₃) 142.9907(C₆H₄ClO₂) 111.0458 (C₆H₇O₂) 65.0032 (C₄HO) - The highest score in MetFrag
173.0011	C ₇ H ₇ ClO ₃	4.5	3.834	10.9	\checkmark	~~	X	\checkmark	2-(3-methyl-5-oxo-2H-furan-2- yl)acetyl chloride (CL 3)	 Isotopic pattern of Cl Characteristic fragments: 173.0012 (C₇H₆ClO₃) 157.9778 (C₆H₃ClO₃) 129.298 (C₆H₅O₂) 97.0297 (C₅H₅O₂) The highest score in MetFrag
174.9400	C ₅ H ₅ BrO ₂	3.5	-0.259	10.2	X	<u>الم</u>	$\sqrt{}$	X	Br OH 5-bromo-3-methyl-furan-2-ol (CL3)	 Isotopic pattern of Br Characteristic fragments: 174.9401 (C₅H₄BrO₂) 95.0141 (C₅H₃O₂) 78.9189 (Br) The highest score in MetFrag
174.9803	C ₆ H ₅ ClO ₄	4.5	-0.284	7.15	х	$\overline{\mathbf{A}}$	X		CI HO OH 2-chloro-3-hydroxy-6- (hydroxymethyl)pyran-4-one (CL 3)	- Isotopic pattern of Cl - Characteristic fragments: 174.9803 ($C_6H_4ClO_4$) 139.0037 ($C_6H_3O_4$) 111.0090 ($C_5H_3O_3$) 83.0139 ($C_4H_3O_2$) 67.0188 (C_4H_3O) - The highest score in MetFrag
175.0167	C ₇ H ₉ ClO ₃	3.5	0.256	8.90	Х	$\sqrt{\sqrt{1}}$	V			 Isotopic pattern of Cl Characteristic fragments: 173.0012 (C₇H₈ClO₃) 142.9906 (C₆H₄ClO₂)

									2-chloro-5-	109.0298 (C ₆ H ₅ O ₂)
									(dimethoxymethyl)furan (CL 3)	65.0032 (C ₄ HO)
										- The highest score in MetFrag
175.0167	C ₇ H ₉ ClO ₃	3.5	0.256	9.26	Х	$\sqrt{}$	Т	\checkmark		- Isotopic pattern of Cl
									\sim°	- Characteristic fragments:
										175.0168 (C ₇ H ₈ ClO ₃)
										139.0403 (C ₇ H ₇ O ₃)
										$111.0454 (C_6 H_7 O_2)$
									2-6-methyl-3,6-dihydro-1,2-	104.9750 (C ₃ H ₂ ClO ₂)
									dioxin-3-yl]acetyl chloride	83.0503 (C ₅ H ₇ O)
									(CL 3)	55.0185 (C ₃ H ₃ O)
										The highest score in MetFrag
178.9308	$C_5H_2Cl_2O_3$	4.5	2.668	9.5/	$\sqrt{}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{}$	$\sqrt{}$	0. 0 0	- Isotopic pattern of Cl ₂
				11.4						- Characteristic fragments:
				5						178.9311 (C ₅ HCl ₂ O ₃)
									ĊI 🖳	142.9546 (C ₅ ClO ₃)
									5-chlorofuran-2-yl	98.9646 (C ₄ ClO)
									carbonochloridate (CL 3)	70.9694 (C ₃ ClO)
	~ ~ ~ ~ ~ ~ ~						1		()	-The highest score in MetFrag
185.0014	$C_8H_7ClO_3$	5.5	1.756	7.98	Х		\checkmark	Х		- Isotopic pattern of Cl
										- Characteristic fragments:
									Ĭ o I I	$185.0015 (C_8H_6CIO_3)$
										$149.0248 (C_8H_5O_3)$
									henzylozy carbonochloridate	$105.0348 (C_7H_5O)$
									(CL 2)	81.0347 (C ₅ H ₅ O)
									(CL 3)	78.9592 (CCIO ₂)
										-The highest score in MetFrag
186.9802	$C_7H_5ClO_4$	5.5	-0.105	11.9	Х	\checkmark	\checkmark	Х	n/a (CL 4)	- Isotopic pattern of Cl
										- No MS2 available

187.0168	C ₈ H ₉ ClO ₃	4.5	0.400	9.7	Х	$\sqrt{\sqrt{1}}$	Х	Х	HO	- Isotopic pattern of Cl
										- Characteristic fragments:
									но	$187.0168 (C_8H_8ClO_3)$
										$125.0611 (C_7H_9ClO_2)$
									$\sqrt{12}$ shlare 1 hudrom	$109.0296 (C_6H_5O_2)$
									4-[2-cmoro-1-nyaroxy-	68.9981 (C ₃ HO ₂)
									ethyl]benzene-1,2-diol (CL 3)	- The highest score in MetFrag
187.0168	$C_8H_9ClO_3$	4.5	0.293	10.8	Х	$\sqrt{}$	Х			- Isotopic pattern of Cl
									ОН	- Characteristic fragments:
									сі. 🕹 он	187.0168 (C ₈ H ₈ ClO ₃)
										157.0063 (C ₇ H ₆ ClO ₂)
										154.9907 (C ₇ H ₄ ClO ₂)
									· • 0	121.0297 (C ₇ H ₅ O ₂)
									3-chloro-6-methoxy-4-methyl-	79.0190 (C ₅ H ₃ O)
									benzene-1,2-dio (CL 3)	65.0031 (C ₄ HO)
										- The highest score in MetFrag
188.9193	$C_5H_3BrO_3$	4.5	1.906	7.12		$\sqrt{}$	$\sqrt{}$	Х	0	- Isotopic pattern of Br
									ОН	- Characteristic fragments:
										188.9195 (C ₅ H ₂ BrO ₃)
									Br	87.0089 (C ₃ HO ₃)
									4-bromo-3-hydroxy-pyran-2-	78.9190 (Br)
									one (CL:3)	65.0033 (C ₄ HO)
									one (CL.3)	The highest score in MetFrag
188.9516	$C_7H_4Cl_2O_2$	5.5	1.545	19.0		Х	Х	Т	CI	- Isotopic pattern of Cl ₂
	,									- Characteristic fragments:
										188.9520 (C ₇ H ₃ Cl ₂ O ₂)
									HO	- The highest score in MetFrag
									2,4-dichloro-6-hydroxy-	-
									benzaldehyde (CL 3)	

188.9963	C ₇ H ₇ ClO ₄	4.5	0.901	8.82		$\sqrt{}$				- Isotopic pattern of Cl
									<u>∽o</u> o	- Characteristic fragments:
									\ L	188.9961 (C ₇ H ₆ ClO ₄)
									CI	158.9854 (C ₆ H ₄ ClO ₃)
										144.9698 (C ₅ H ₂ ClO ₃)
										123.0089 (C ₆ H ₃ O ₃)
									<i>3,4-dimethoxyfuran-2-carbonyl</i>	95.0141 (C ₅ H ₃ O ₂)
									chloride (CL 3)	79.0190 (C ₅ H ₃ O)
										- The highest score in MetFrag
190.9352	$C_5H_5BrO_3$	3.5	1.048	9.76	Х	$\sqrt{}$	Х	Х		- Isotopic pattern of Br
									$\sim c^0$	- Characteristic fragments:
									o Y	190.9351 (C ₅ H ₄ BrO ₃)
										146.9450 (C ₄ H ₄ BrO)
									HO \sim Br	102.9190 (C ₂ Br)
									4-bromo-o-nyaroxy-2H-pyran-	78.9190 (Br)
									3(6H)-one (CL 3)	67.0188 (C ₄ H ₃ O)
										- The highest score in MetFrag
190.9751	C ₆ H ₅ ClO ₅	4.5	-0.703	7.37	Х	$\sqrt{}$	Х	Х	ноо	- Isotopic pattern of Cl
									ŕ	- Characteristic fragments:
									×° 0	190.9751 (C ₆ H ₄ ClO ₅)
										146.9856 (C ₅ H ₄ ClO ₃)
									тон	111.0090 (C ₅ H ₃ O ₃)
									ĊI	83.0139 (C ₄ H ₃ O ₂)
									(E)-2-chloro-4-oxo-hex-2-	67.0188 (C ₄ H ₃ O)
									enedioic acid (CL 3)	- The highest score in MetFrag
192.9466	$C_6H_4Cl_2O_3$	4.5	0.245	11.1		$\sqrt{}$	Х	$\sqrt{}$		- Isotopic pattern of Cl ₂
										- Characteristic fragments:
										192.9464 (C ₆ H ₃ Cl ₂ O ₃)
										156.9698 (C ₆ H ₂ ClO ₃)
									[5 (abloromethyl) 2 fumili	128.9750 (C ₅ H ₂ ClO ₂)
									[5-(chioromethyi)-2-juryl]	93.0347 (C ₆ H ₅ O)
									carbonocnioridate (CL 3)	65.0030 (C ₄ HO)
										- The highest score in MetFrag

192.9830	C ₇ H ₈ Cl ₂ O ₂	3.5	0.527	13.1	X	$\sqrt{}$	X	X	2,2-dichloro-1-(3,4-dihydro- 2H-pyran-5-yl)ethanone (CL 3)	 Isotopic pattern of Cl₂ Characteristic fragments: 192.9830 (C₇H₇Cl₂O₂) 121.0663 (C₈H₉O) 107.0504 (C₇H₇O) 93.0347 (C₆H₅O) 65.0394 (C₅H₅) The highest score in MetFrag
204.9465	C ₇ H ₄ Cl ₂ O ₃	5.5	1.646	20.5	\checkmark	X	x	V	(2,4-dichloro-6-hydroxy- phenyl) formate (CL 3)	- Isotopic pattern of Cl_2 - Characteristic fragments: 204.9468 (C ₇ H ₃ Cl ₂ O ₃) 160.9571 (C ₆ H ₃ Cl ₂ O) 124.9803 (C ₆ H ₂ ClO) 113.0251(C ₅ H ₅ O ₃) 89.0035 (C ₆ HO) - The highest score in MetFrag
204.9911	C ₇ H ₇ ClO ₅	4.5	0.467	9.5	X	$\sqrt{}$	V	V	HO HO 5-chloro-2-methyl-4-oxo-hex- 2-enedioic acid (CL 3)	- Isotopic pattern of Cl - Characteristic fragments: 204.9910 ($C_7H_6CIO_5$) 125.0247 ($C_5H_6O_3$) 117.0115 (C_5H_6CIO) 69.0345 (C_4H_5O) - The highest score in MetFrag
204.9911	C ₇ H ₇ ClO ₅	4.5	0.467	10.8	$\overline{\mathbf{A}}$	V	$\overline{\mathbf{v}}$	V	3-(1-chloropropyl)-2,4-dioxo- oxetane-3-carboxylic acid (CL 3)	 Isotopic pattern of Cl Characteristic fragments: 204.9910 (C₇H₆ClO₅) 125.0246 (C₆H₅O₃) 169.0144 (C₇H₅O₅) 97.0298 (C₅H₅O₂) The highest score in MetFrag

212.8921	C ₅ HCl ₃ O ₃	4.5	2.997	13.5	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$	X	$\sqrt{\sqrt{\sqrt{1}}}$		 Isotopic pattern of Cl₃ Characteristic fragments: 212.8919 (C₅Cl₃O₃)
										177.9231 (C ₅ Cl ₂ O ₃)
									CI CI	$168.9021 (C_4Cl_3O)$
									3 4 5-trichlorofuran-2-	$149.9282 (C_4Cl_2O_2)$
									carboxylic acid (CL 3)	- The highest score in MetFrag
212.8921	$C_5HCl_3O_3$	4.5	0.468	14.5	Т	Х	Х	$\sqrt{}$	n/a (CL 4)	- Isotopic pattern of Cl ₃
	<i></i>			0 7 6						- No MS2 available
214.8349	$C_2H_2Br_2O_2$	1.5	1.407	9.56	$\mathcal{N}\mathcal{N}\mathcal{N}$	\sqrt{N}	\sqrt{N}	\sqrt{N}	0	- Isotopic pattern of Br_2
										- Characteristic fragments:
									Br	$1/0.8453(CHBr_2)$
									011	/8.9190) The high set source in MetErro
									Br	- The highest score in MetFrag
									2,2-dibromoacetic acid (CL 1)	standard
215.0117	C ₉ H ₉ ClO ₄	5.5	2.420	5.5	х		Х	Х		- Isotopic pattern of Cl
										- Characteristic fragments:
									HO' T TO'	215.0118 (C ₉ H ₈ ClO ₄)
										197.0013 (C ₉ H ₆ ClO ₃)
									methyl 4-chloro-3-hydroperoxy	169.0067 (C ₈ H ₆ ClO ₂)
									-2-methyl-benzoate (CL 3)	- The highest score in MetFrag
215.0117	C ₉ H ₉ ClO ₄	5.5	3.808	8.8	х		Х	Х	_	- Isotopic pattern of Cl
									o II	- Characteristic fragments:
									СІ	215.0118 (C ₉ H ₈ ClO ₄)
										171.0221 (C ₈ H ₈ ClO ₂)
									но	155.9986 (C ₇ H ₅ ClO ₂)
									3-(3-chloro-4-hydroxy-	135.0455 (C ₈ H ₇ O ₂)
									phenyl)-2-hydroxy-propanoic	127.0406 (C ₆ H ₇ O ₃)
									acid (CL 3)	91.0192 (C ₆ H ₃ O)
									• •	- The highest score in MetFrag

215.0117	C ₉ H ₉ ClO ₄	5.5	1.815	10.1	Х		Х			- Isotopic pattern of Cl
									0	- Characteristic fragments:
										215.0120 (C ₉ H ₈ ClO ₄)
										171.0224 (C ₈ H ₈ ClO ₂)
									CI	155.9982 (C ₇ H ₅ ClO ₂)
									2-[2-chloro-4-	135.0456 (C ₈ H ₇ O ₂)
									(hydroxymethyl)phenoxy]	107.0506 (C ₇ H ₇ O)
									acetic acid (CL 3)	91.0193 (C ₆ H ₃ O)
										- The highest score in MetFrag
215.0117	C ₉ H ₉ ClO ₄	5.5	3.342	13.9	Х	$\sqrt{}$	Х	х		- Isotopic pattern of Cl
									но он	- Characteristic fragments:
										215.0120 (C ₉ H ₈ ClO ₄)
										187.9884 (C ₇ H ₅ ClO ₄)
										171.0224 (C ₈ H ₈ ClO ₂)
										155.9982 (C ₇ H ₅ ClO ₂)
									2-(2-chloro-0-hydroxy-4,5-	141.9828 (C ₆ H ₃ ClO ₂)
									dihydrocyclopenta[b]furan-6-	135.0456 (C ₈ H ₇ O ₂)
									yl)acetic acid (CL 3)	109.0662 (C ₇ H ₉ O)
										- The highest score in MetFrag
216.9505	$C_7H_7BrO_3$	4.5	-0.230	11.1		$\sqrt{}$	\checkmark	\checkmark	OH I	- Isotopic pattern of Br
									Br	- Characteristic fragments:
										216.9507 (C ₇ H ₆ BrO ₃)
										137.0248 (C ₇ H ₅ O ₃)
									4-hromo-5-methoxy-henzene-	117.0115 (C ₅ H ₆ ClO)
									1 3-diol (CL 3)	78.9190 (Br)
									1,5 <i>utol</i> (CE 5)	- The highest score in MetFrag
216.9909	$C_8H_7ClO_5$	5.5	-0.066	10	Х	$\sqrt{}$	Х	\checkmark	0	- Isotopic pattern of Cl
									HO	- Characteristic fragments:
										219.9909 (C ₈ H ₆ ClO ₅)
									СІ ОН	173.0012 (C ₇ H ₆ ClO ₃)
									ÓH	137.246 $C_6H_3ClO_3$)
									methyl 4-chloro-2,3,5-	137.0246 (C ₇ H ₅ O ₃)
									trihydroxy-benzoate (CL 3)	109.02976 (C ₆ H ₅ O ₂)

										- The highest score in MetFrag
222.8805	$C_5H_2BrClO_3$	4.5	1.716	10.3/	$\sqrt{}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{}$	$\sqrt{}$		- Isotopic pattern of BrCl
									0, 0, 0,	- Characteristic fragments:
									Ŷ Ţ →Br	$222.8803 (C_5 HBrClO_3)$
									ċı 🗸	$147.9571 (C_4HCIO_4)$
									5-bromofuran-2-vl	$143.9622 (C_5HCIO_3)$
									carbonochloridate (CL 3)	98.9645 (C_4 CIO) 78.0100 (D_{rr})
										78.9190 (BF) The highest score in MotErce
		15	2 200	11 7		V	V			- The highest score in Metriag
		4.5	2.299	11./	N	Λ	Λ	N	n/a (CL 4)	- Isolopic pattern of BICI Equal fragmentation pattern than
									H/a (CL 4)	the one eluting at 10.3
228 9232	C.H.Cl.O.	35	1 541	11.9	J	22	X	22		- Isotonic pattern of Cla
220.7232	C6115C13O3	5.5	1.571	11.7	v	• •	Δ	* *	но-Д Усі	- Characteristic fragments:
) <u> </u>	$192.9468 (C_6H_2Cl_2O_2)$
									\prec	177.9234 (C ₅ Cl ₂ O ₃)
										$149.9283 (C_4Cl_2O_2)$
									(E)-2-acetyl-4,4,4-trichloro-	67.0189 (C ₄ H ₃ O)
_									but-2-enoic acid (CL 3)	- The highest score in MetFrag
228.9465	$C_9H_3Cl_2O_3$	7.5	0.119	19.3		$\sqrt{}$			0 0	- Isotopic pattern of Cl ₂
										- Characteristic fragments:
										228.9465 (C ₉ H ₂ Cl ₂ O ₃)
									$\frac{1}{3}$ (2 chlore 2 oro	193.9778 (C ₉ H ₃ ClO ₃)
									acetyl)barzovi chlorida (CL 2)	$165.9829 (C_8H_3CIO_2)$
			0.005	10.0	-				aceryr)benzoyr chionae (CL 3)	- The highest score in MetFrag
231.0066	$C_9H_9ClO_5$	5.5	-0.235	10.2	Т	$\mathcal{N}\mathcal{N}$	\mathcal{N}	Т		- Isotopic pattern of Cl
										- Characteristic fragments:
									HO	$231.0005 (C_9H_8CIO_5)$ 108.0804 (C_H_CIO_)
									II O	$198.9804 (C_8 \Pi_4 C I O_4)$ 187.0166 (C H CIO)
									3,4-dihydroxy-5-(2-	$170.9855(C-H,C1O_2)$
									hydroxyethoxy)benzoyl	$154,9906(C_{2}H_{4}C_{1}O_{3})$
									chloride (CL 3)	134.9900 (C/114C1C2)

										67.0187 (C ₄ H ₃ O)
										- The highest score in MetFrag
231.0066	C ₉ H ₉ ClO ₅	5.5	0.068	14.0	Т	$\sqrt{}$	Х	Х	HO	- Isotopic pattern of Cl
									Ϋ́Υ Ϋ́	- Characteristic fragments:
									но	231.0065 (C ₉ H ₈ ClO ₅)
										187.0166 (C ₈ H ₈ ClO ₃)
									2-(2-chloro-3 4-dihydrory-6-	170.9855 (C ₇ H ₄ ClO ₃)
									methyl phonyl) 2 hydrory	154.9908 (C ₇ H ₄ ClO ₂)
									methyl-phenyl)-2-hydroxy-	$121.0298 (C_7 H_5 O_2)$
									acetic acia (CL 3)	79.0190 (C ₅ H ₃ O)
										- The highest score in MetFrag
236.8959	$C_6H_4BrClO_3$	4.5	0.939	11.7	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	Br I	- Isotopic pattern of BrCl
									НО ОН	- Characteristic fragments:
										236.8960 (C ₆ H ₃ BrClO ₃)
										$200.9194 (C_6H_2BrO_3)$
									OH 2 huana 4 ahlana hanzan	$156.9701 (C_6H_2ClO_3)$
									2-bromo-4-chioro-benzen-	78.9189 (Br)
									1,2,5-triol (CL 3)	-The highest score in MetFrag
236.8959	$C_6H_4BrClO_3$	4.5	0.939	11.9	$\sqrt{}$	\sqrt{N}	\checkmark	$\sqrt{}$		- Isotopic pattern of BrCl
										- Characteristic fragments:
									ОН	156.9701 (C ₆ H ₂ ClO ₃)
										78.9189 (Br)
									2-bromo-6(chloromthyl)-	- The highest score in MetFrag
									2-bromo-o(chiorominyi)-	
									Snyaroxy-pyran-4-one (CL 3)	
243.0063	$C_{10}H_9ClO_5$	6.5	-1.047	12.4/	Х	$\sqrt{}$	х			- Isotopic pattern of Cl
	10 9 0			10.7					n/a (CL 4)	- No MS2 available
245 0217	C H CIO	55	1 242	127	X.	المال	v	N/		Isotopic pattern of Cl
243.0217	$C_{10}H_{11}CIO_5$	5.5	-1.242	12.7	Х	NN	Х	Х	n/a (CL 4)	- Isotopic pattern of CI
247.0014		55	0.400	0.0	X/	ماما	v			Isotopic pattern of Cl
247.0014	C9H9CIU6	5.5	0.409	7.7	Х	NN	Х	N	n/a (CL 4)	- No MS2 available
										-10010102 available

248.8960	C ₇ H ₄ BrClO ₃	5.5	0.211	20.9	$\sqrt{}$	Х	Х	$\sqrt{}$	Br O	- Isotopic pattern of BrCl
										- Characteristic fragments:
									СІ ОН	248.8960 (C ₇ H ₃ BrClO ₃)
										204.9062 (C ₆ H ₃ BrClO)
									ОН	168.9298 (C ₆ H ₂ BrO)
									2-bromo-3-chloro-6-bydrory-	124.9802 (C ₆ H ₂ ClO)
									henzoia acid (CL 2)	78.9189 (Br)
									benzoic acia (CL 3)	- The highest score in MetFrag
255.0431	$C_{12}H_{13}ClO_4$	6.5	0.471	14.2	х	$\sqrt{}$	Х	Х		- Isotopic pattern of Cl
									Ö	- Characteristic fragments:
										255.0428 (C ₁₂ H ₁₂ ClO ₄)
										211.0974 (C ₁₁ H ₁₅ O ₄)
										193.08707 (C ₄ Cl ₂ O ₄)
										$167.1078 (C_{10}H_{15}O_2)$
									O CI	149.0971 (C ₁₀ Cl ₁₃ O)
									methyl 2-(2-chlorocarbonyl-5-	109.0659 (C ₇ H ₉ O)
									methoxy-phenyl)propanoate	58.9692 (C ₂ Cl)
									(CL 3)	59.0135 (C ₂ H ₃ O ₂)
									(013)	- The highest score in MetFrag
256.8413	C ₅ HBrCl ₂ O ₃	4.5	1.130	13.6	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	Х	$\sqrt{\sqrt{\sqrt{1}}}$		- Isotopic pattern of BrCl ₂
										- Characteristic fragments:
										256.8414 (C ₅ BrCl ₂ O ₃)
										181.9181 (C ₄ Cl ₂ O ₄)
									Cl	177.9231 (C ₅ Cl ₂ O ₃)
									о́н	149.9282 (C ₄ Cl ₂ O ₂)
									3-bromo-5.6-dichloro-4-	98.9645 (C ₄ ClO)
									hydroxy-pyran-2-one (CL 3)	78.9189 (Br)
									nyaroxy pyran 2 one (CL 5)	58.9692 (C ₂ Cl)
										- The highest score in MetFrag

259.0015	$C_{10}H_9ClO_6$	6.5	-0.845	9.7/	Х	$\sqrt{}$	Х	Х	0	- Isotopic pattern of Cl
				9.1					Ĭ	- Characteristic fragments:
									но сі	259.0012 (C ₁₀ H ₈ ClO ₆)
										215.0120 (C ₉ H ₈ ClO ₄)
										187.9877 (C ₇ H ₅ ClO ₄)
									ll	171.0220 (C ₇ H ₅ ClO ₂)
										155.9983 (C ₈ H ₉ O ₃)
									2-[4-(carboxymethoxy)]	135.0451 (C ₈ H ₇ O ₂)
									phenoryl-2-chloro-acetic acid	107.0505 (C ₇ H ₇ O)
									(CL 3)	93.0348 (C ₆ H ₅ O)
									(CL 3)	- The highest score in MetFrag
259.9520	$C_9H_5Cl_2O_4N$	7.5	-2.063	19.5	$\sqrt{}$	Х	Х	$\sqrt{}$	ноо	- Isotopic pattern of Cl ₂
										- Characteristic fragments:
										259.9517 (C ₉ H ₄ Cl ₂ O ₄ N)
										215.9624 (C ₈ H ₄ Cl ₂ O ₂ N)
										171.9728 (C ₇ H ₄ Cl ₂ N)
									6,7-dichloro-3-oxo-4H-1,4-	135.9961 (C ₇ H ₃ ClN)
									benzoxazine-8-carboxylic acid	100.0195 (C ₇ H ₂ N)
									(CL 3)	- The highest score in MetFrag
260.9406	C ₈ H ₇ BrO ₅	5.5	-0687	9.88		$\sqrt{}$	Т	Х	Br	- Isotopic pattern of Br
	• • •								HO J	- Characteristic fragments:
										260.9406 (C ₈ H ₆ BrO ₅)
										216.9506 (C ₇ H ₆ BrO ₃)
										181.0508 (C ₉ H ₉ O ₄)
									UH 2 (2 hnome 15 dihudaaaa	109.0297 (C ₆ H ₅ O ₂)
									2-(3-bromo-4, 3-ainyaroxy-1)	137.0246 (C ₇ H ₅ O ₃)
									phenyl)-2-hydroxy-acetic acid	78.9189 (Br)
									(CL 3)	- The highest score in MetFrag

266.8296	C ₅ H ₂ Br ₂ O ₃	4.5	-0.646	10.6	11	11	Τ	X	Br bromo-3-bromofuran-2-	 Isotopic pattern of Br₂ Characteristic fragments: 266.8297 (C₅HBr₂O₃) 187.9119 (C₅HBrO₃) 142.9138 (C₄BrO) 78.9190 (Br)
276.8505	C ₇ H ₄ Br ₂ O ₂	5.5	1.669	19.2	V	X	X	X	<i>Earboxytale</i> (CL 3) HO Br Br 2,3-dibromo-4-hydroxy- benzaldehyde (CL 3)	 The highest score in Metrrag Isotopic pattern of Br₂ Characteristic fragments: 276.8505 (C₇H₃Br₂O₂) 78.9190 (Br) The highest score in MetFrag
280.8454	C ₆ H ₄ Br ₂ O ₃	4.5	-0.436	12.5	$\sqrt{}$	$\sqrt{}$		Х	HO Br OH 2,4-dibromobenzene-1,3,5-triol (CL 3)	 Isotopic pattern of Br₂ Characteristic fragments: 280.8455 (C₆H₃Br₂O₃) 200.9194 (C₆H₂BrO₃) 113.0247 (C₅H₅O₃) 78.9190 (Br) The highest score in MetFrag
286.9196	C ₉ H ₅ BrO ₆	7.5	1.486	16.0	$\sqrt{}$	Х	X	\checkmark	он он OH Br 2-(6-bromo-5-hydroxy-1,3- benzodioxol-4-yl)-2-oxo-acetic acid (CL 3)	- Isotopic pattern of Br - Characteristic fragments: 242.9305 ($C_8H_4BrO_4$) 214.9351 ($C_7H_4BrO_3$) 170.9453 (C_6H_4BrO) 78.9190 (Br) 65.0032 (C_4HO) - The highest score in MetFrag
286.9520	$C_{11}H_6Cl_2O_5$	8.5	0.063	18.9	Х	$\sqrt{\sqrt{1}}$			n/a (CL 4)	 Isotopic pattern of Cl₂ No MS2 available

292.8454	$C_7H_4Br_2O_3$	5.5	1.187	21.9	$\sqrt{}$	Х	Х	Х	он о I II	- Isotopic pattern of Br ₂
									Br	- Characteristic fragments: 202.8454 (C H Br O)
										$292.8434 (C_7 \Pi_3 \Pi_2 O_3)$ 248 8556 (C_H_3 Br_3 O)
									Br	$168.9296 (C_6H_3Br_2O)$
									3,4-dibromo-2-hydroxy-	78.9189 (Br)
_									<i>benzoic acid</i> (CL 3)	- The highest score in MetFrag
300.7908	C ₅ HBr ₂ ClO ₃	4.5	0.565	14.1	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	Х	Х	Br O O	- Isotopic pattern of Br ₂ Cl
										- Characteristic fragments:
										300.7909 (C ₅ Br ₂ ClO ₃)
									Br	$225.8674(C_4BrClO_4)$
										$221.8/25(C_5BrClO_3)$
									3-chloro-5 6-dibromo-4-	$195.8775 (C_4 BICIO_2)$ $08.9645 (C_4 CIO)$
									hydroxy-pyran-2-one (CL 3)	78,9045 (C4CIO) 78,9189 (Br)
318,9412	$C_{11}H_6Cl_2O_7$	8.5	2.442	15.0	$\sqrt{}$	$\sqrt{}$		$\sqrt{\sqrt{1}}$		- Isotopic pattern of Cl ₂
01000112	01111001207	0.0		1010					n/a (CL 4)	- No MS2 available
320.8404	$C_8H_4Br_2O_4$	6.5	0.695	19.0	$\sqrt{\sqrt{1}}$	Х	Х	Х	O Br	- Isotopic pattern of Br ₂
	· · · ·									- Characteristic fragments:
									HO'	276.85054 (C ₇ H ₃ Br ₂ O ₂)
										248.8555 (C ₆ H ₃ Br ₂ O)
										$168.9295 (C_6H_2BrO)$
									2 5-dibromo-4-formylory-	78.9189 (Br)
									benzoic acid (CL 3)	- The highest score in MetFrag
324.8353	$C_7H_4Br_2O_5$	5.5	-0.190	12.0	$\sqrt{}$	$\sqrt{}$	Т	Х	он	- Isotopic pattern of Br ₂
									HOBr	- Characteristic fragments:
										244.9086 (C ₇ H ₂ BrO ₅)
									HO Y Y	$200.9194 (C_6H_2BrO_3)$
									Br ÓH	/8.9189 (Br)
									2,5-dibromotrihydroxy-benozic	- The highest score in MetFrag
									acid (CL 3)	

344.7403	C ₅ HBr ₃ O ₃	4.5	1.030	13.8	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\lambda}}$	Х	Х		- Isotopic pattern of Br ₃
	5 5 5								Brs 0 .0	- Characteristic fragments:
										344.7405 (C ₅ Br ₃ O ₃)
										269.8173 (C ₄ Br ₂ O ₄)
									Br Br	265.8221 (C ₅ Br ₂ O ₃)
										237.8271 (C ₄ Br ₂ O ₂)
									OH 256 tuikuoma 1 kuduomu	186.9039 (C ₅ BrO ₃)
									3,3,0-iribromo-4-nyaroxy-	142.9141 (C ₄ BrO)
									pyran-2-one (CL 3)	78.9190 (Br)

*X presence not confirmed, $\sqrt{\sqrt{\sqrt{peak}}}$ area>10e⁸, $\sqrt{\sqrt{peak}}$ peak area>10e⁷, \sqrt{peak} area>10e⁶, T: Trace amounts.