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Abstract – Extensive research over the past decades has characterized 
multiple forms of synaptic plasticity, identifying them as key processes that 
allow the brain to operate in a dynamic manner. Within the wide variety of 
synaptic plasticity modulators, kainate receptors are receiving increasing 
attention, given their diversity of signaling mechanisms and cellular 
expression profile. Here, we summarize the experimental evidence about 
the involvement of kainate receptor signaling in the regulation of short- and 
long-term plasticity, from the perspective of the regulation of 
neurotransmitter release. In light of this evidence, we propose that kainate 
receptors may be considered homeostatic modulators of neurotransmitter 
release, able to bidirectionally regulate plasticity depending on the 
functional history of the synapse.  
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INTRODUCTION 

The identification of glutamate as a powerful proconvulsive agent (Hayashi, 1954) 

inaugurated the search for specific receptors activated upon binding of this amino 

acid. Several decades after, different putative types of receptors had been 

described thanks to the use of pharmacological tools (e.g. Curtis and Watkins, 

1960; Shinozaki and Shibuya, 1974; Krogsgaard-Larsen et al., 1980), but it was 

the advent of the cloning era that finally resulted in an unambiguous classification 

of the different proteins composing ionotropic and metabotropic glutamate 

receptors (iGluRs and mGluRs, respectively, see Traynelis et al., 2010; 
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Niswender and Conn, 2010 for reviews). Within iGluRs, α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors (AMPARs 

and NMDARs, respectively) have attracted most of the attention, given that they 

convey the vast majority of excitatory neurotransmission and constitute the main 

molecular players in most synaptic plasticity processes. On the other hand, a third 

subfamily of iGluRs, the kainate receptors (KARs) have received much less 

attention, even in spite of the prominent aspects of their biology that endow them 

with the capacity to modulate a wide variety of synaptic and cellular processes 

such as neuronal development, synaptic depolarization and intrinsic cell 

excitability (reviewed in Lerma and Marques, 2013). In this review, we will focus 

on the presynaptic actions of KARs, especially those related with the modulation 

of plasticity processes in the context of their diverse signaling mechanisms.  

 

General aspects of KARs biology 

The five members of the KARs family (named GluK1 to GluK5) are further 

classified in two subfamilies, the so-called low- and high-affinity. GluK1 to GluK3 

compose the low-affinity subunits, whose activation requires higher 

concentrations of glutamate or kainic acid (KA) and can form homomeric 

receptors, whereas GluK4 and GluK5 are the members of the high-affinity 

subfamily, can be activated by lower concentrations of agonist and require 

heteromerization with any of the low-affinity subunits for cellular membrane 

delivery. Alternative splicing of GluK1 to GluK3 and editing of GluK1 and GluK2 

mRNAs further enhance the repertoire of KARs (see Lerma et al., 2001 for a 

review). The functional diversity of these receptors is increased by the different 

combinations of subunits present in KARs at a wide variety of synapses. In the 

hippocampus, the brain area that has received most attention in the study of 

these receptors, the GluK2 and GluK5 subunits are present at the majority of 

principal cells and different types of interneurons, whereas the expression of 

other subunits varies between cell types, synapses and developmental stages 

(Paternain et al., 2000). Thus, GluK1 is widely expressed during development 

whereas, in the adulthood, it is mostly restricted to interneurons in the 

hippocampus (Paternain et al., 2000; Vesikansa et al., 2007). GluK3 is almost 

exclusively expressed in dentate gyrus (DG) granule cells (Pinheiro et al., 2007) 



and GluK4 is mainly present in DG and CA3 pyramidal neurons, showing 

consistent although reduced levels of expression in interneurons and CA1 

pyramidal cells (Arora et al., 2018). 

 

KARs, the special iGluRs 

As we stated above, KARs present prominent characteristics that make them 

interesting contributors to the modulation of a variety of processes. On one hand, 

KARs have proven to be special iGluRs regarding to their signaling capacities. 

Thus, the canonical mode of action of these receptors involves the opening of an 

ion channel pore upon agonist binding. Interestingly, in contrast to AMPARs, 

KAR-mediated currents are small in amplitude and present slow activation and 

deactivation kinetics (Castillo et al., 1997; Vignes and Collingridge, 1997; 

Frerking et al., 1998). This slow kinetics is bestowed by Neto proteins as auxiliary 

subunits of KARs (Zhang et al., 2009; Straub et al., 2011; Lerma, 2011; Palacios-

Filardo et al., 2016) and endow them with the ability to modulate short-term 

plasticity, input integration and brain rhythms (Frerking and Ohliger-Frerking, 

2002; Goldin et al., 2007; Straub et al., 2011; Sylwestrak and Ghosh, 2012). On 

the other hand, KARs can activate a so-called non-canonical signaling pathway 

through an archetypal metabotropic cascade involving a Go protein, 

phospholipase C (PLC) and protein kinase C (PKC) (Rodríguez-Moreno and 

Lerma, 1998; Cunha et al., 2000; Rozas et al., 2003). The activation of such non-

canonical pathway has been demonstrated for every family of iGluRs (see 

Valbuena and Lerma, 2016 for a review) but, whereas AMPARs and NMDARs 

perform their actions mainly through ionotropic means, metabotropic signaling by 

KARs constitutes a pivotal mechanism in part of their physiological roles 

(Rodríguez-Moreno and Lerma, 1998; Frerking et al., 2001; Melyan et al., 2004; 

Marques et al., 2013). While the non-canonical signaling functions of KARs are 

now relatively well characterized, the mechanism by which KARs activate this 

pathway is still largely obscure. The structure of iGluRs does not contain any 

known motif similar to those allowing interaction between mGluRs and G-

proteins, so it has been proposed that an adaptor protein may bridge the 

activation of KARs and Go (Rodríguez-Moreno and Lerma, 1998). However, 

different reports highlight that specific subunits of KARs may directly interact with 



G-proteins, although the binding mechanism remains unknown (Ziegra et al., 

1992; Cunha et al., 1999; Rutkowska-Wlodarczyk et al., 2015).  

A second interesting aspect of KARs biology deals with their subcellular location. 

As other iGluRs, KARs are preferentially expressed in postsynaptic regions. 

However, whereas AMPARs and NMDARs are only sporadically present at 

presynaptic compartments in specific synapses (e.g. Takago et al., 2005; Dubois 

et al., 2016), presynaptic KARs are unusually common (Rodríguez-Moreno et al., 

1997; Kamiya and Ozawa, 1998; Schmitz et al., 2001b). This fact, together with 

the rich diversity of KARs subunit combinations in different excitatory and 

inhibitory synapses (Lauri et al., 2001a; Christensen et al., 2004; Pinheiro et al., 

2007; Wyeth et al., 2017) has resulted in the description of a wide variety of 

effects caused by the action of these presynaptic receptors. Altogether, the 

combination of the multiplicity of signaling mechanisms and their widespread 

location in presynaptic compartments makes KARs ideal candidates for 

regulating plasticity mechanisms –especially at the short-term-.   

 

KAINATE RECEPTORS REGULATE SHORT-TERM PLASTICITY 

Regulation of glutamate release and plasticity in CA3  

Whereas the involvement of KARs in glutamate release from CA3 synaptic 

terminals is now well established (see below), severe discrepancies remain 

regarding the role of KARs in the control of glutamate release from mossy fibers 

(MF). These synapses constitute one of the main inputs into the hippocampus 

proper and have been widely studied due to their particular morphology and 

synaptic plasticity properties. Thus, MF-CA3 synapses present multiple release 

sites and a low probability of release, two factors that make them specially 

suitable to undergo short-term plasticity processes, that in turn confer them the 

capacity to act as “conditional detonators” which reliably generate action 

potentials in CA3 cells, but only upon high frequency burst activation (Henze et 

al., 2002). Different forms of short-term plasticity (STP) have been described in 

MF-CA3 synapses, being paired-pulse facilitation (PPF), frequency facilitation 

(FF) and post-tetanic potentiation (PTP) the most prominent ones (see Nicoll and 

Schmitz, 2005 for a review). 



The involvement of KARs in the physiology of MF-CA3 synapses has been 

profoundly studied over more than two decades. These receptors were first 

described in the postsynaptic site of MF-CA3 synapses (Castillo et al., 1997; 

Vignes and Collingridge, 1997), but shortly after it was reported a role for 

presynaptic KARs in the regulation of glutamate release in this area, as the 

application of the GluK1 specific agonist ATPA reduced the amplitude of 

excitatory postsynaptic currents (EPSCs) evoked upon MF stimulation (Vignes et 

al., 1998; Bortolotto et al., 1999). Further studies evaluated this possibility, and it 

was found that KA could decrease the Ca2+ entry in the presynaptic site of MF 

and, concomitantly, reduce the amplitude of the evoked EPSC and field  

excitatory postsynaptic potential (fEPSP, Kamiya and Ozawa, 2000). A KAR-

mediated facilitation of glutamate release from MF was also proposed, as the  

application of low KA concentrations resulted in an increase of the EPSC 

amplitude in these synapses (Schmitz et al., 2001b; Contractor et al., 2003; but 

see Pinheiro et al., 2007; Kwon and Castillo, 2008). Such bimodal action of KARs 

at low and high KA concentrations would rely on the participation of different 

subunits as the former, but not the later, was lost upon genetic ablation of the 

GluK5 encoding gene Grik5 (Contractor et al., 2003). On the other hand, both the 

KAR-dependent increase and reduction in the amplitude of EPSC in MF-CA3 

synapses may depend on GluK2 (Contractor et al., 2000). The involvement of the 

GluK1 subunit in any of these effects is still a strong point of controversy, as 

pharmacological and knock-out mice data are contradictory. The debate 

regarding the involvement of GluK1 in the regulation of glutamate from MF has 

continued over years, with data pointing to and against the participation of this 

subunit (Contractor et al., 2000; 2001; Schmitz et al., 2000; Lauri et al., 2001b). 

The obvious consequence of the KAR-mediated modifications in glutamate 

release from MF is the regulation of STP in these synapses. It has been shown 

that low concentrations of KA can reduce PPF in MF-CA3 synapses by enlarging 

the response to the first stimulus (Schmitz et al., 2001b), an effect consistent with 

the enhancement in EPSC amplitude described above. The participation of KARs 

in the modulation of PPF has also been reported in the absence of exogenous 

KAR activation. Thus, GluK2-/- mice present reduced PPF, in this case as a 

consequence of the reduction of the amplitude of the response to the second 



pulse, suggesting that this subunit may be required for the prominent PPF present 

in these synapses (Contractor et al., 2001; Schmitz et al., 2001a; Breustedt and 

Schmitz, 2004; but see Kwon and Castillo, 2008). The participation of GluK3 in 

the modulation of this process has also been reported (Pinheiro et al., 2007). On 

the other hand, KARs may modulate FF in MF-CA3 synapses. Application of the 

broad AMPAR and KAR blocker CNQX resulted in a reduction of the FF in these 

synapses (Schmitz et al., 2001b), and this form of STP is attenuated in GluK2 

and GluK3-/- mice (Contractor et al., 2001; Pinheiro et al., 2007; but see Kwon 

and Castillo, 2008). The involvement of GluK1 in PPF and FF has also been 

proposed on the basis of pharmacological data (Lauri et al., 2001b) although, 

again, these results have been challenged by the use of GluK1-/- mice (Contractor 

et al., 2001). The participation of the high affinity subunits in PPF and FF has also 

been evaluated and, whereas neither GluK4-/- nor GluK5-/- mice present deficits 

in STP, the double KO mouse presents impaired PPF but spared FF, suggesting 

that these two plasticity processes may rely on different mechanisms (Contractor 

et al., 2003; Fernandes et al., 2009).   

From a mechanistic perspective, it has been proposed that both the facilitation 

and the depression of glutamate release from MF rely on the activation of KARs 

ionotropic pathway. This hypothesis was postulated upon the evaluation of the 

effects that low and high concentrations of KAR agonists have in the fiber volley 

recorded upon MF stimulation (Kamiya and Ozawa, 2000; Schmitz et al., 2000; 

Schmitz et al., 2001b). Thus, low concentrations of KAR agonists would 

depolarize the terminal by Na+ or Ca2+ permeation facilitating glutamate release, 

whereas high concentrations would further depolarize the terminal inactivating 

voltage-dependent Na+ and/or Ca2+ channels and, therefore, depressing 

glutamate release (Schmitz et al., 2001b). Overall, even though important 

controversies hamper definitive conclusions, it is conceivable that KARs may act 

as gatekeepers at MF-CA3 synapses, being their effect on release dependent on 

the concentration of glutamate –i.e. in a synapse-autonomous manner.  

 

Regulation of glutamate release and plasticity in CA1 



The first description of a KAR effect in glutamate release was its KA-mediated 

reduction in the CA1 area (Chittajallu et al., 1996). Chittajallu and colleagues 

reported a role of KA in the depression of glutamate release evoked by 4-AP and 

K+ in hippocampal synaptosomes. Then they evaluated the action of KA in CA3-

CA1 synapses, finding a similar effect upon exposure to high concentrations of 

KA. Thus, high concentrations of this agonist depressed NMDAR EPSCs in the 

presence of adenosine and GABAB receptors antagonists. The effect was spared 

in the presence of BAPTA in the recording pipette, excluding the participation of 

postsynaptic Ca2+, and was mimicked by domoic acid (DA), another KAR agonist, 

but not AMPA. Finally, the effect was blocked by previous application of the KAR 

antagonist NS-102. Interestingly, low concentrations of KA evoked an opposite 

effect (similar to that presented above in the CA3 area), enhancing the CA3-CA1 

NMDAR EPSC. 

Subsequent studies have further characterized the inhibitory action of KARs on 

the release of glutamate at CA3-CA1 synapses. Thus, it has been reported that 

1 µM KA can reversibly depress the fEPSP recorded at the CA1 stratum radiatum. 

Such effect was accompanied by a reduction in the Ca2+ entry at the presynaptic 

compartment and could be mimicked by DA. Again, there was an increase in the 

PPF (in this case of the fEPSP). Both the AMPAR-mediated and the NMDAR-

mediated EPSCs were affected although, intriguingly, the effect was more 

prominent over the AMPAR component (Kamiya and Ozawa, 1998). The effect 

has been ascribed to the GluK1 subunit of the KAR receptor, as it has been 

shown that the GluK1-specific agonist ATPA was enough to reduce the slope of 

the fEPSP. Furthermore, the effect of this agonist was prevented by the 

application of the GluK1-specific antagonist LY382884 (Vignes et al., 1998). 

Finally, in a beautiful paper, Frerking and colleagues showed that KARs effect 

was not mediated by ionotropic but metabotropic signaling, as it was blocked by 

pertussis toxin, a G-protein inhibitor (Frerking et al., 2001). Furthermore, the 

authors showed that the effect was likely due to the direct interaction of bg 

subunits of G-protein, as the protein kinase inhibitor H-7 did not have an effect 

on the KAR agonists-mediated reduction in EPSC. Similar results were obtained 

in a different study, which also showed that the effects of ATPA and DA on 

glutamate release from Schaffer collaterals (the axons of CA3 pyramidal cells) 



may be exerted by KARs composed by different subunits, as UBP302, an inhibitor 

presenting selectivity over GluK1-containing KARs, was able to block the effect 

of the former, but not the later, agonist (Partovi and Frerking, 2006). This study 

showed, furthermore, that the signaling mechanisms used by KARs to reduce 

glutamate release from Schaffer collateral terminals were shared with adenosine 

and GABAB receptors, as agonists for these receptors occluded the posterior 

effect of KAR agonists.  

 

Regulation of GABA release  

KAR-mediated control of neurotransmitter release and plasticity is not restricted 

to the glutamatergic system. Whereas the expression profile of some subunits, 

such as GluK2 and GluK5 is widespread, the expression of GluK1 is almost 

completelly restricted to interneurons in the adult hippocampus (Paternain et al., 

2000). Over the past decades, different studies have evaluated the expression of 

functional KARs in inhibitory cells, finding that these receptors can be expressed 

both at the somatodendritic and the axonal/presynaptic compartments (Cossart 

et al., 1998; Frerking et al., 1998; Cunha et al., 2000). As in the case of glutamate 

release, presynaptic KARs have been shown to bidirectionally modulate the 

release of GABA. Thus, it has been reported that high concentrations of KA can 

reduce the release of this neurotransmitter from hippocampal synaptosomes 

(Cunha et al., 1997). At the same time, a KAR-mediated reduction in GABA 

release over CA1 pyramidal neurons was described (Rodríguez-Moreno et al., 

1997). Such reduction has been repeatedly reported afterwards (Frerking et al., 

1998; Bureau et al., 1999; Cunha et al., 2000) and depends on the activation of 

the non-canonical signaling pathway of KARs (Rodríguez-Moreno and Lerma, 

1998; Cunha et al., 2000). A role for endocannabinoids and GABAB receptors in 

this effect has also been postulated (Lourenço et al., 2010; 2011), although it 

contradicts data from different studies which have reported that KA effect is 

maintained in the presence of antagonists of these receptors (Cunha et al., 2000; 

Rodríguez-Moreno et al., 2000; Daw et al., 2010). Although this controversy is 

still not resolved, it is likely that, at least to a great extent, KA-mediated reduction 

in GABA release relies on the metabotropic activation of KARs. Interestingly, a 

KAR-dependent facilitation of GABA release has also been reported upon 



activation with low concentrations of agonist (Jiang et al., 2001). Such 

bidirectional modulation of GABA release at low and high agonist concentrations 

has also been found in the supraoptic nucleus of the hypothalamus and the 

amygdala (Braga et al., 2003; Bonfardin et al., 2010) and seems to constitute a 

hallmark of KAR modulation of neurotransmitter release and plasticity (see 

below). Over the last years, these receptors have been shown to positively or 

negatively alter GABA release in a wide variety of regions, including the 

neocortex, the globus pallidus or the dorsal horn of the spinal cord (Ali et al., 

2001; Kerchner et al., 2001; Jin and Smith, 2007).  

Even though the plasticity-related consequences of such presynaptic GABA 

release modulation are still not clear, it has been shown that it may be result in 

temporal reductions of inhibitory drive over pyramidal cells upon strong excitatory 

input activation (Min et al., 1999). In turn, this modulation of GABA release may 

affect pyramidal cell output (Rodríguez-Moreno et al., 1997), adding a complexity 

level to the regulation of computations in circuits where KARs are present. 

 

Regulation of neurotransmitter release during development 

As we stated above, KARs expression peaks during development (Bahn et al., 

1994). This temporally increased expression has been related to the modulation 

of important developmental processes, such as axonal growth (Tashiro et al., 

2003; Marques et al., 2013), intrinsic cell excitability (Segerstråle et al., 2010) and 

synapse number and differentiation (Vesikansa et al., 2007; Sakha et al., 2016). 

Moreover, it has been repeatedly reported that KARs can control 

neurotransmitter release during development, further affecting circuit maturation 

(reviewed in Lauri and Taira, 2011). Thus, in the CA3 region, presynaptic GluK1-

containing KARs differentially regulate glutamate release over pyramidal cells 

and interneurons. Whereas the application of the GluK1 agonist ATPA reduces 

mEPSC frequency in pyramidal cells, the effect is opposite in CA3 interneurons 

(Lauri et al., 2005). KAR action of glutamate release over CA3 cells is tonic and 

disappears before the second week of age. Similarly, presynaptic KARs control, 

in a tonic manner, the release of glutamate in a subset of CA3-CA1 synapses 

(Lauri et al., 2006). Again, the tonic effect is lost in juvenile animals and, whereas 



KAR activation still controls glutamate release in these synapses in the adulthood 

(see above), the mechanism appears to be different. While both pertussis toxin 

and bisindolylmaleimide block KARs effect in development, pointing to a classic 

metabotropic action of KARs involving the activation of Go and PKC (Sallert et al., 

2007) the effect in the adulthood is only sensitive to Go blockers, suggesting a 

functional interaction of this G-protein with presynaptic Ca2+ channels (Frerking 

et al., 2001). Even though the maturation mechanism  involved in the loss of these 

tonic effects of KAR activation is not known, it has been suggested that the 

increases in network activity that naturally occur at the end of development may 

play an important role in this process (Lauri et al., 2006). Interestingly, LTP 

induction can conceal developmental KAR effects, and a switch in the expression 

of specific splice variants of GluK1 takes place at the time by which KARs effect 

is lost (Vesikansa et al., 2012). 

As in the case of glutamate, the control of GABA release by KARs during 

development has also been described. In the CA1 region, ATPA depresses the 

amplitude of eIPSCs over pyramidal neurons, an effect independent of the 

activation of GABAB receptors (Maingret et al., 2005). Furthermore, KARs 

regulate the release of GABA from MF. It has been reported that these synapses 

co-release GABA during development (Beltrán and Gutiérrez, 2012; reviewed in 

Münster-Wandowski et al., 2013), and KARs tonically block postsynaptic currents 

caused by MF GABA release in a metabotropic-dependent manner (Caiati et al., 

2010).  

 

KAINATE RECEPTORS REGULATE LONG-TERM PLASTICITY 

While STP processes are well suited to provide dynamic responses to transient 

requirements of circuit function, long-term synaptic plasticity –in the form of long-

term potentiation (LTP) or depression (LTD)- are considered a physiological 

substrate for learning and memory (reviewed in Malenka and Bear, 2004). A wide 

variety of LTP and LTD processes and mechanism are now known, involving 

multiple mechanisms within the presynaptic, postsynaptic and glial compartments 

of the synapse. As in the case of STP, the participation of KARs in such LTP and 



LTD processes has been repeatedly reported and, again, important controversies 

preclude obtaining strong conclusions in some cases.  

In the hippocampus, the first instance of a role of KAR in LTP processes was 

described in the MF, where a novel inhibitor of the GluK1 subunit was shown to 

block the presynaptic form of LTP characteristic of these synapses (Bortolotto et 

al., 1999). This result was later confirmed by different reports (Lauri et al., 2001a; 

Dargan et al., 2009), and it has been shown that MF-CA3 LTP may require the 

activation of Ca2+-permeable KARs, which in turn would activate Ca2+-induced 

Ca2+ release (Lauri et al., 2003). As in the case of the involvement of GluK1 in 

MF-CA3 STP, evidence from different laboratories contradicts these 

pharmacological results, as GluK1-/- mice presented unaltered LTP in these 

synapses (Contractor et al., 2001). Furthermore, a different study was unable to 

replicate the pharmacological evidence described above in favor of GluK1 

involvement in MF-CA3 LTP (Breustedt and Schmitz, 2004). The involvement of 

GluK3, but not GluK5, has also been proposed (Contractor et al., 2003; Pinheiro 

et al., 2007). The discrepancy between pharmacological and KO data is still 

maintained, although it has been postulated that the participation of GluK1 may 

depend on the orientation of the hippocampal slices. Thus, MF-CA3 LTP would 

depend on GluK1 in parasagittal but not transversal slices (Sherwood et al., 

2012). On the other hand, KARs have also been shown to regulate LTP in 

between CA3 and CA1 cells. In contrary to MF-CA3, these synapses present a 

postsynaptic form of LTP, mainly triggered by NMDARs (e.g. reviewed in 

Volianskis et al., 2015). However, it has recently been shown that postsynaptic 

KARs may trigger a small NMDAR-independent component of LTP in CA3-CA1 

synapses. In this occasion, KARs would signal through the activation of their 

metabotropic pathway, promoting the membrane insertion of AMPARs (Petrovic 

et al., 2017).  

The activation of KARs has also been shown to promote different forms of LTP 

out of the hippocampus. In the lateral region of the amygdala (LA), KARs have 

been reported to participate in a presynaptic form of LTP that takes place at 

thalamocortical synapses impinging in this region (Shin et al., 2010). In a different 

study, a role for KARs in the regulation of presynaptic LTP of cortical input to LA 

was also reported (Shin et al., 2013). Interestingly, such presynaptic modulation 



can be abolished by nitric oxide, a phenomenon which has not been described 

for KARs in other parts of the brain. It has also been reported that KARs 

participate in the regulation of spike timing-dependent plasticity in LA (Cho et al., 

2012). Apart from the amygdala, KARs may also modulate LTP in the anterior 

cingulate cortex, in this case through the participation of GluK1 but not GluK2 

(Koga et al., 2015). 

As in the case of LTP, the participation of KARs in LTD has been widely reported. 

In the hippocampal CA1 region, KARs participate in a form of homosynaptic LTD 

induced by low frequency activation of entorhinal inputs, which impinge onto the 

distal region of the CA1 pyramidal cells somato-dendritic axis (Wöhrl et al., 2007). 

Another form of presynaptic, KAR-mediated, form of LTD has been described in 

the cerebellum, where parallel fiber (PF) synapses onto Purkinje cells (PC) can 

undergo synaptic depression upon repetitive low frequency stimulation. 

Intriguingly, GluK2 was found to be required for PF-PC LTD when PF stimulation 

was paired to PC depolarization, but not when PF stimulation was paired to 

climbing fiber stimulation (Crépel, 2009), although the functional relevance of this 

difference is still not clear. Interestingly, a role of KARs in the regulation of their 

own contribution to postsynaptic currents has also been described in that 

repetitive activation of KARs can lead to a rundown of their currents, caused by 

the activation of the metabotropic pathway (Rivera et al., 2007). This form of KAR 

LTD is complemented by a KAR-dependent mechanism of KAR internalization, 

which is also activated by repetitive receptor activation and involves the 

interaction between the GluK5 subunit and the synaptosomal protein SNAP25 

(Selak et al., 2009). Finally, a different activity-dependent form of KAR LTD has 

been shown in the layer II-III of the perirhinal cortex, in this case through the 

activation of the ionotropic pathway of these receptors (Park et al., 2006). 

Altogether, KARs have been shown to participate in potentiation and depression 

processes involving a wide variety of mechanisms in the pre- and postsynaptic 

compartments.  

 

CONCLUSION 



Synaptic plasticity constitutes one of the crucial dynamic processes providing 

flexibility in neuronal inputs and outputs. Such plasticity, which takes place 

through an impressive variety of mechanisms, is mainly mediated by the 

regulation of transmitter release and its postsynaptic responses, and provides 

with a level of complexity that enables brain circuits to provide meaningful outputs 

to the ever-changing environmental conditions. Within the multiple regulators of 

synaptic plasticity, KARs stand out because of the outstanding characteristics of 

their biology. In contrast to other iGluRs, which are predominantly present in the 

postsynaptic compartment and signal through the ionotropic pathway (see 

Valbuena and Lerma, 2016 for a review), the subcellular location of KARs is often 

presynaptic (Darstein et al., 2003), whereas their canonical and non-canonical 

signaling capacities are more balanced (Rodríguez-Moreno et al., 2000; 

Bonfardin et al., 2010). These two factors allow presynaptic KARs to modulate 

transmitter release –and, therefore, plasticity- in a wide variety of synapses, brain 

regions and developmental stages, while postsynaptic KARs can, in some 

occasions, regulate synaptic strength at the long term (Selak et al., 2009; Petrovic 

et al., 2017). 

Given the extreme complexity of the presynaptic compartment and the 

specialized machinery dedicated to the regulation of transmitter release, the 

obvious question arises as to why a neurotransmitter receptor is required to 

further modulate this process. A plausible answer is that presynaptic receptors, 

 



especially those acting in an homosynaptic manner, may constitute a reliable and 

autonomous mechanism for online measurement of transmitter release. On the 

other hand, heterosynaptic modulation of release through presynaptic receptors 

provides with a mechanism by which a given neurotransmitter system can alter 

signaling of a different one. Multiple examples of receptors providing such 

modulation have been described over decades (e.g. reviewed in Miller, 1998; 

Schicker et al., 2008). In the case of KARs, it has been shown that they can either 

promote or reduce glutamate and GABA release in different synapses and, 

interestingly, such modulation is bidirectional in a specific subset of them 

(Contractor et al., 2003; Bonfardin et al., 2010). This fact raises interesting 

questions about the function of this bidirectional modulation. Thus, it has been 

shown that low concentrations of KARs agonists, acting through their ionotropic 

mechanism –either by depolarizing the presynaptic terminal or by directly 

permeating Ca2+-, can promote glutamate release from MF synapses (Schmitz et 

al., 2001b; Contractor et al., 2003). The consequences of this increase in 

glutamate release at the level of STP are pivotal, as MF-CA3 synapses of GluK2-

/- and GluK3-/- mice present impaired PPF and FF (Contractor et al., 2001; 

Pinheiro et al., 2007) On the other hand, in the same synapses strong KAR 

activation leads to a reduction in the release of glutamate (Vignes et al., 1998; 

Bortolotto et al., 1999; Kamiya and Ozawa, 2000), likely through an excessive 

depolarization of the synaptic terminal (Schmitz et al., 2000). A similar 

bidirectional mechanism operates at different inhibitory synapses, although here 

the depressive effect of intense KAR activation takes place through the activation 

of the metabotropic pathway (Rodríguez-Moreno and Lerma, 1998; Cunha et al., 

2000). Given these data, it is tempting to speculate that, under low levels of 

activity, KARs would facilitate neurotransmitter release, positively affecting STP. 

Under strong input to the presynaptic site, in contrast, KARs may negatively affect 

transmitter release and STP. The combination of these regulatory capacities 

endows KARs to act as conditional or homeostatic gatekeepers of transmitter 

release and STP in the synapses where they are present (Fig. 1). Future 

experiments may be designed in order to shed light onto this possibility. First, an 

undoubtful determination of the involvement of KARs and their subunits in the 

regulation of transmitter release and plasticity at particular synapses is absolutely 

required (Lauri et al., 2001b; Contractor et al., 2003; Kwon and Castillo, 2008; 



Fernandes et al., 2009). Then, it would be interesting to evaluate the functional 

consequences of the abolishment of either the facilitatory or the inhibitory actions 

of KARs. This goal may be accomplished by developing approaches specifically 

ablating ionotropic and metabotropic actions of the receptor (in synapses where 

these pathways underlie opposing KAR effects) or by shifting receptor activation 

from light to strong or vice-versa (in synapses where only ionotropic mechanisms 

account for both facilitation and depression effects). Assessing the synaptic, 

circuit and behavioral consequences of such interventional approaches would 

shed light onto the interplay between ionotropic and metabotropic signaling 

pathways and their associated increases and decreases in synaptic gain. The 

importance of such gain modulations has been repeatedly reported, and may play 

important roles in the pathological states, such autism-spectrum disorders and 

Down syndrome or intellectual disability (Lanore et al., 2012; Aller et al., 2015; 

Arora et al., 2018; Valbuena et al., 2019). Finally, given that most of the 

descriptions of KARs roles in the regulation of transmitter release and synaptic 

plasticity derive from work in the hippocampus, it would be interesting to further 

explore the participation of these receptors in plasticity processes in other brain 

regions.  

Since their discovery and along their problematic characterization, KARs have 

become a form of “outsider” subfamily of iGluRs. The complexity of their biology, 

especially regarding their signaling capacities and subcellular location, makes 

them capable of fine tuning a wide variety of processes. Within them, there is a 

growing perception regarding the important participation of KARs in the regulation 

of transmitter release and, subsequently, synaptic plasticity. The ability of these 

receptors to bidirectionally modulate these processes makes them ideal 

candidates to act as synaptic buffers, positively or negatively modulating plasticity 

depending on the short-term functional history of the synapse. We are only 

beginning to understand the functional consequences that this modulation may 

have at the level of circuit computations and brain dysfunction, pivotal points that 

must be evaluated in order to definitely understand these enigmatic receptors.  
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