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ABSTRACT: Torsion angles are the natural degrees of freedom of protein structures. The ability to determine torsional
variations corresponding to observed changes in Cartesian coordinates is highly valuable, notably to investigate the mechanisms
of functional conformational changes or to develop computational models of protein dynamics. This issue is far from trivial in
practice since the impact of modifying one torsion angle strongly depends on all other angles, and the compounding effects of
small variations in bond lengths and valence angles can completely disrupt a protein fold. We demonstrate that naive strategies,
such as directly comparing torsion angles between structures without correcting for variations in bond lengths and valence
angles or fitting torsional variations without a proper regularization scheme, fail at producing an adequate representation of
conformational changes in internal coordinates. In contrast, rescaled ridge regression, a method recently introduced to
regularize multidimensional regressions with correlated explanatory variables, is shown to consistently identify a minimal set of
torsion angles variations that closely reproduce changes in Cartesian coordinates. This torsional representation of
conformational changes is shown to be robust to the choice of experimental structures. It also provides a better agreement
with theoretical models of protein dynamics than the Cartesian representation, regarding notably the predominance of low-
frequency normal modes in functional motions and the presence, in predicted equilibrium dynamics, of hints of natural selection
for specific functional motions. The software is available at https://github.com/ugobas/tnm.

■ INTRODUCTION

The intrinsic dynamical properties of proteins often play a
fundamental role in their functional activity, notably for
catalysis,1−3 allosteric regulation,4−6 or molecular recogni-
tion.7,8 A variety of computational approaches have been
developed to study protein dynamics, ranging from detailed
models with a high computing cost, such as molecular
dynamics,9,10 to coarse-grained models that can be more easily
suited to large-scale studies.11−14 Elastic network models
(ENM) are well-known representants of the latter category.
Taking as sole input the native structure of a protein, these
models provide a global prediction of native protein dynamics
at very low computational cost, under the assumption that the
observed structure corresponds to the free-energy minimum
and is minimally frustrated.15−17

The nature and level of detail of the structural representation
is an important design choice for any computational model.18

Instead of Cartesian coordinates, the structure of a protein can

be described by its internal coordinates: the bond length,
valence angle, and torsion angle. Since bond lengths and
valence angles are strongly constrained by covalent forces,
torsion angles are often considered as the natural degrees of
freedom for describing protein structures and motions. This
representation presents advantages for computations since the
backbone conformation can essentially be described by 2
degrees of freedom per residue (the ϕ and ψ torsion angles,
except for the rare cis/trans isomerizations of the peptide
bond), instead of nine (the three-dimensional coordinates of
the N, Cα, and C atoms). Torsional descriptions have long
been part of the protein modeling scene and have been
successfully used in a variety of applications, such as structure
prediction or calculation from NMR constraints, protein−
ligand and protein−protein docking, protein dynamics, or
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protein design.19−23 The torsional network model (TNM)24

follows the same concept as the ENM, but in the space of
torsion angles, generating thus normal modes of motion that
automatically preserve the integrity of the bond geometries.
A challenging aspect of the development of computational

procedures consists in the definition of reliable approaches to
evaluate model performance. The quality of the reproduction
of thermal fluctuations around the native state is often
quantified by measuring the correlation with crystallographic
B-factors25−28 or by comparing the fluctuations of interresidue
distances in the model and in experimental structural
ensembles.29 To evaluate more specifically the description of
functional conformational changes, advantage can be taken of
the availability of proteins, for which multiple structures have
been resolved in different conformational states (e.g., open and
closed states, ligand bound, and apo form). Such functional
conformational changes have been shown to correlate well
with the low-frequency normal modes of thermal dynamics,
predicted by ENMs.30−35 This observation, which is somewhat
surprising since ENM computations are in principle only valid
for very small deviations around the equilibrium, has
tremendously boosted the recognition of the validity, and the
popularity, of this type of computational model.
In this study, we address the question of how well functional

conformational changes can be described using only torsion
angles. We present and evaluate different approaches to
determine appropriate variations in torsion angles from
observed changes in Cartesian coordinates. And we investigate
whether correlations between conformational changes and
predicted thermal dynamics are enhanced when torsion angles
are used as coordinates.
The translation of conformational changes from Cartesian to

internal coordinates is not trivial since small local variations of
torsion angles can produce large global Cartesian displace-
ments and since an approximate match of the Cartesian
coordinates can be obtained with very different values of the
torsion angles. Moreover, the complexity of the problem is
greatly increased if small variations in bond lengths and valence
angles must be considered. Yet, these questions hold significant
importance for the development and evaluation of computa-
tional models of protein dynamics and, more generally, for
decoding functional motions in proteins. Indeed, the ability to
identify a small set of residues that contribute most to a
conformational change can bring valuable insights into the
mechanisms of this functional motion and reveal new options
for the design of altered functional dynamics, either via
mutations or via small ligands targeted at critical regions.

■ RESULTS

We investigate how well a conformational change of the
backbone of a protein can be described using only 2 degrees of
freedom per residue: the ϕ and ψ torsion angles. We examine
31 pairs of PDB structures, representing the same protein
chain in two different conformations. Each structure in a pair
is, in turn, considered as the initial conformation (A), and the
other as the final conformation (B). A total of 62 conforma-
tional changes are thus analyzed. The root-mean-square
deviation RMSD(A,B) between the Cartesian coordinates ri

A

and ri
B of two structures in a pair (for every backbone atom i)

ranges from 0.35 to 34.4 Å, with a mean of 3.32 Å. The smaller
conformational changes correspond to allosteric proteins, and
the larger ones describe functional motions of molecular

machines such as chaperones, polymerases, or transporters
(see Methods).
For each conformational change, we modify the ϕ and ψ

torsion angles in A, with the objective of creating a
transformed structure A* that closely resembles B. The bond
lengths la

A and valence angles θa
A (for every backbone bond a)

are left unchanged during this transformation, which is thus
uniquely defined by the differences in torsion angles Δφa = φa

A*

− φa
A. The ω torsion angles are considered to be fixed as well

(Δφa ≡ 0 for ω torsion angles), except for the few ones that
undergo a cis/trans isomerization. We investigate different
approaches to identify adequate values of Δφa from the
observed coordinates of the two conformations and evaluate
the quality of the resulting description of the conformational
change by computing RMSD(A*,B).

Switch Torsions (ST). The most naive and straightforward
strategy consists in simply computing the differences of aligned
torsion angles, Δφa

ST = φa
B − φa

A. The ϕ and ψ torsion angles in
the transformed initial conformation A* are thus given
identical values as in the final conformation B. This approach
relies on the common assumption that differences in bond
lengths, valence angles, and ω torsion angles (barring a cis/
trans isomerization) between the two structures are small
enough to be negligible.
Such an assumption appears to be very reasonable since

those differences are indeed quite small. The RMSD between
the lengths of corresponding backbone bonds in the initial and
final structures is equal to 0.016 Å (i.e., about 1% of the bond
length). The RMSD between corresponding valence angles
and between corresponding ω torsion angles (excluding cis/
trans isomerizations) is equal to 0.047 and 0.068 radians (2.7
and 3.9°), respectively. These small differences are not
necessarily relevant to the conformational change, but can be
consequences of the structure refinement procedure. They are
indeed only slightly larger than those observed between
different bonds within the same structure (Table 1).

Table 1. Variability of Internal Coordinates

μa σb RMSDc

Bond Lengths (Å)
C−N 1.33 0.012 0.017
N−Cα 1.46 0.011 0.014
Cα−C 1.52 0.013 0.017
all 0.012 0.016

Valence Angles (rad)
C−N−Cα 2.12 0.034 0.043
N−Cα−C 1.94 0.059 0.060
Cα−C−N 2.03 0.027 0.034
all 0.042 0.047

Torsion Angles (rad)
ϕ: C−N−Cα−C −1.41 0.709 0.432
ψ: N−Cα-C−N −0.33 1.686 0.461
ω: Cα−C−N−Cα 3.14 0.057 0.068

aMean value of the internal coordinate, over all backbone bonds in
the proteins of our data set (but ignoring cis ω bonds). bStandard
deviation of the internal coordinate. For valence and torsion angles,
we use the angular definition of the mean and standard deviation, as
given by eq 4 (Methods). The values for “all” bond lengths and
valence angles are calculated as the RMSD from the mean, where the
mean depends on the bond type. cRMSD of the internal coordinate
between corresponding backbone bonds in each pair of structures
representing a conformational change.
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However, as illustrated in Figure 1, small differences in
internal coordinates create errors that quickly propagate and
can have a major impact on the reconstructed Cartesian
coordinates. As a result, the transformed structures A* end up
being very different from the target structures B, with
RMSD(A*,B) equal to 16.2 Å on average, and almost
systematically much larger than RMSD(A,B). Modifying the
torsion angles without any sort of compensation for the small
differences in bond lengths and valence angles yields thus a
very poor reconstruction of the conformational changes. Since
the main issue is the propagation of small errors along the
chain, the performances of this approach tend to deteriorate
when longer protein chains are considered (Figure 2 and Table
S1).
These results can obviously be improved by extending the

approach to consider more than 2 degrees of freedom. If, in
addition to ϕ and ψ, all ω torsion angles in the transformed
structure A* are also given the same values as in the target
structure B, the mean RMSD(A*,B) decreases to 14.2 Å.
Valence angles are particularly important, and including them
yields an average RMSD(A*,B) of 0.2 Å. If bond lengths are
also included, the transformed structures are virtually identical

Figure 1. Examples of the quality of the modeling of conformational changes using the Switch torsions (ST) approach. (A, B) Chain A of adenylate
kinase from Escherichia coli, in its closed (PDB: 1ank) and open conformation (PDB: 4ake). The RMSD between these two conformations is equal
to 7.1 Å, and is mostly due to the displacement of the two regions depicted in orange, while the rest of the structure remains unaltered. (C)
Conformational change modeled with ST: the backbone torsion angles in the initial conformation A were modified to match those in the final
conformation B. This reconstruction is unsuccessful, as it yields a poorly folded structure that is very different from the target: RMSD(A*,B) = 11.0
Å. (D) Conformations of a 10-residue fragment of aspartate transcarbamoylase from E. coli (initial PDB: 1d09; final PDB: 1raa). The different
conformations were aligned using the first four residues. On the scale of such a small peptide, the reconstruction can be somewhat successful in
creating a conformation closer to the target. However, the small errors due to bond lengths and valence angles quickly propagate and create
differences that are already notable a few residues down the chain.

Figure 2. Performances of the switch torsions (ST) approach. The
RMSD between the reconstructed structure A* and the target
structure B is given as a function of the number of residues in the
protein chain (filled circles). These values are almost systematically
much larger than the RMSD between the initial structure A and the
target (empty triangles), which emphasizes the poor quality of the
reconstruction. RMSD(A*,B) correlates strongly with the number of
residues (r = 0.74, p < 10−11) and slightly with the amplitude of the
conformational change, RMSD(A,B) (r = 0.39, p = 0.002). The latter
is partially explained by the correlation between RMSD(A,B) and the
number of residues (r = 0.29, p = 0.02).
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to the targets, except for numerical imprecisions, and
RMSD(A*,B) ≈ 0.01 Å.
Ordinary Least-Squares Regression (OLS). Since the

impact of small differences in bond lengths, valence angles, and
ω torsion angles cannot be neglected, modeling a conforma-
tional change using only 2 degrees of freedom per residue
requires the identification of appropriate values of the ϕ and ψ
torsion angles, which may be different from those in the target
structure.
For that purpose, we can exploit the analytical relationship

between variations in Cartesian coordinates and variations in
torsion angles, which at first order in Δφ can be written as Δri
= ∑aJiaΔφa, or Δr = JΔφ in matrix notation, where J is the
(9N × 2N) Jacobian matrix of the transformation between
internal and Cartesian coordinates, and N is the number of
residues. This relationship is underdetermined since we
consider only two internal degrees of freedom per residue (ϕ
and ψ torsion angles), while nine are necessary for the
Cartesian description of the main backbone atoms (N, Cα, and
C). The values of the torsion angles can, however, be obtained
by linear regression, minimizing the square error E = (JΔφ −
Δr)·M(JΔφ − Δr), where each atom is weighted by its mass
via the diagonal matrix M, and x·y denotes the scalar product
(see Methods).
In principle, this approach should identify the values of the

ϕ/ψ torsion angles that yield an optimal reconstruction of the
conformational change, except for the fact that it relies on a
linear approximation of the relationship between Cartesian and
internal coordinates. We denote by Alin* the artificial
reconstruction of the conformational change, obtained within
the context of this linear approximation: rAlin* = rA + JΔφ. The
RMSD(Alin* ,B) is on average equal to 0.65 Å, which indicates
that the regression is successful in minimizing the deviation
between the coordinates of the transformed starting structure
and those of the target structure.
However, because of the linear approximation, Alin* is not a

valid protein structure, as bond lengths and valence angles are
not respected. A very different picture emerges when we
compare the structure A*, properly reconstructed using the
Δφ from the linear regression, to the target structure B: the
average value of RMSD(A*,B) is equal to 9.28 Å. The OLS

approach is thus superior to the ST approach described above,
but still provides a very poor reconstruction of the conforma-
tional changes. The performances tend to depend on both the
length of the protein chain and the amplitude of the modeled
conformational change (Figure 3A). Indeed, deviations from
the linear approximation are sharper when RMSD(A,B) is large
and create errors that propagate and get amplified along the
protein chain.
Interestingly, extending the OLS approach by including the

ω torsion angles does not improve the performances. Even
though RMSD(Alin* ,B) decreases, the consequences of the
deviations from the linear approximation are amplified, and the
reconstructed structures end up even more dissimilar to the
target structures, with RMSD(A*,B) equal to 14.9 Å on
average.

Rescaled Ridge Regression (RRR). In the regression
problem addressed here, the explanatory variables are highly
correlated: the impact of modifying one torsion angle on the
Cartesian coordinates strongly depends on the values of the
other torsion angles. In such cases, OLS is known to be bad-
behaved and prone to overfitting, i.e., fitting too closely to a set
of data points affected by some level of noise or error, resulting
in poor generalization performances, and often unphysical
values of the parameters. Here, the noise results from the
approximate nature of the linear relationship between Δφ and
Δr, and the poor generalization performances are demon-
strated by the large differences between RMSD(Alin* ,B) and
RMSD(A*,B). A popular solution to this problem is the
Tykhonov regularization, or ridge regression (RR), which
consists in penalizing large values of the fit parameters.36 In
this framework, the function to be minimized is E +
Λ(Δφ·Δφ), where E is the error of the fit and Λ is the
Tykhonov parameter.
In the limit of large Λ, the fitted parameters Δφ tend to

zero, and the regression becomes equal to the intercept of the
fit, which is not penalized in ordinary ridge regression. In the
present case, there is no intercept since it does not make
physical sense to have nonzero Δr when the Δφ vanish. We
previously introduced a variant of the Tykhonov regularization
scheme, called rescaled ridge regression (RRR), to deal with
cases where the intercept is either absent or must be
interpreted as a physical parameter and penalized like any

Figure 3. Performances of the regression approaches. RMSD between the reconstructed structure Alin* or A*, and the target structure B, as a
function of the amplitude of the conformational change. (A) Performances of the OLS approach. RMSD(Alin* ,B) values are remarkably small, and
are strongly correlated with RMSD(A,B) (r = 0.95, p < 10−12): the error of the fit is proportional to the variation that we aim to fit, i.e., the relative
error is essentially constant. However, deviations from the linear approximation are significant, and RMSD(A*,B) values tend to be much larger.
RMSD(A*,B) correlates with RMSD(A,B) (r = 0.66, p < 10−8) as well as with the number of residues (r = 0.58, p < 10−6). (B) Performances of the
rescaled ridge regression (RRR) approach, with the Cv criterion. The regularization of the fit produces larger RMSD(Alin* ,B) values than with OLS.
However, deviations from the linear approximation are much smaller and, in most cases, RMSD(A*,B) remains practically indistinguishable from
RMSD(Alin* ,B). Both values are strongly correlated with RMSD(A,B) (r > 0.98, p < 10−12).
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other.27 In RRR, the fit parameters are rescaled by a factor that
diverges in the large Λ limit so that they tend to finite values
instead of vanishing. This is achieved by the use of a second
Lagrange multiplier, as described in Methods. The fit
parameters obtained from RRR are directly related to those
obtained from ordinary RR: ΔφRRR = ν(Λ)ΔφRR, where the
factor ν(Λ) ensures that the fit respects the scale of the
dependent variable(s).
A critical aspect is the determination of an adequate value of

Λ. While different methods have been proposed for that
purpose,37−39 there is no consensus on an optimal approach.
We previously showed that the quantity minimized in RR is
formally equivalent to a free energy, where the error of the fit
corresponds to the energy, (Δφ·Δφ) the entropy, and Λ the
temperature. The error monotonically increases with Λ, and
we can see ∂E/∂Λ as the specific heat. This interpretation
suggests two criteria for selecting an appropriate value of Λ27

1. Cv criterion: Λ is chosen so as to maximize the “specific
heat” Cv = ∂E/∂Λ since this maximum is expected to
separate the small Λ regime dominated by overfitting
from the large Λ regime dominated by the error.

2. MP criterion: Λ is chosen so as to maximize the penalty
term Λ(Δφ·Δφ), which vanishes for both Λ = 0 and Λ
→∞. In RRR, we maximize Λ((Δφ − Δφ∞)·(Δφ −
Δφ∞)), where Δφ∞ are reference parameters obtained
in the Λ → ∞ limit.

Within the context of the linear approximation, the RRR
method does, of course, produce a larger error than the OLS fit
since the error is only one term of the minimized quantity. We
find that RMSD(Alin* ,B) is on average equal to 1.84 Å with the
MP criterion, and 1.52 Å with the Cv criterion, compared to
0.67 Å with OLS. However, the regularization of the fit
drastically reduces overfitting and the occurrence of unphysical
parameter values, entailing therefore much smaller deviations
from the linear approximation. The transformed structures A*,
reconstructed using the Δφ from the regression while
respecting the bond lengths and valence angles, remain very
similar to the corresponding Alin* structures and provide a much
more accurate approximation of the target structures B. The
average value of RMSD(A*,B) is equal to 1.90 Å with RRR-
MP, and 1.70 Å with RRR-Cv, compared to 9.28 Å with OLS.
Both RMSD(Alin* ,B) and RMSD(A*,B) are strongly

correlated with RMSD(A,B), indicating that the performance
of the RRR fit is poorer in the case of large conformational
changes (Figure 3B and Table S1). Unlike OLS, including the
ω torsion angles does not worsen the quality of the fit, albeit
the improvement remains marginal: RMSD(A*,B) is reduced
to 1.88 Å with RRR-MP and to 1.68 Å with RRR-Cv.
Greedy Iterative Search (GIS). In this method, we start

from the initial conformation A and iteratively update the
torsion angles (keeping the bond lengths and valence angles
fixed) so as to reach a conformation as similar as possible to
the final conformation B.
At each step, we perform the RRR described above, but with

the scale factor ν modified in such a way that Δφa ≤ δ∀a and
that the RMSD from the previous configuration is smaller than
a certain threshold. In other words, only small variations of the
overall structure and of each individual torsion angle are
allowed at each step, to ensure that Δφ remains within the
range of validity of the linear approximation, Δr ≈ JΔφ. The
Cartesian coordinates are then reconstructed, and the move is
accepted if the RMSD from the target conformation decreases,

otherwise δ is reduced. When δ becomes smaller than a
predefined threshold, δ is reinitialized at δ = δini and a second
phase of the iterative search is triggered. At each step, the
torsion angles are changed one by one by exactly δ, and the
move that most reduces the RMSD from the target
conformation is accepted. If no such move exists, δ is further
reduced, and the procedure stops when it reaches the
predefined minimum value.
At the expense of a somewhat heavier computational

burden, this greedy minimization provides a considerable
improvement in the quality of the conformational change
modeling, with an average RMSD(A*,B) as low as 0.79 Å.
RMSD(A*,B) is correlated with the amplitude of the modeled
conformational change RMSD(A,B) (r = 0.86, p < 10−12) and,
to a lower extent, with the number of residues in the protein (r
= 0.37, p = 0.003). Yet, even for the largest conformational
change in our data set (600 residues, RMSD(A,B) = 34 Å), the
reconstructed conformation is still reasonably close to the
target, with RMSD(A*,B) = 3.2 Å, instead of ∼30 Å with ST
or OLS, or ∼20 Å with RRR (Table S1).
Besides the reconstruction of the final structure, GIS also

produces a series a dynamical snapshots of the conformational
change. Various morphing techniques have been developed to
create such trajectories between different structural states of a
protein.41,42 We do not investigate here the quality and
physical relevance of the trajectory itself, which is of course of
paramount importance in morphing applications. We can,
however, compare the final reconstructed structures to those
produced by iMODS, a morphing technique similarly built in
the space of torsion angles.40 Since the iMODS server does not
always deal with missing atoms and chain breaks, we could
only retrieve results for a fraction of the structural transitions in
our data set. When considering an extended backbone
representation (with five atoms per residue), the average
RMSD(A*,B) obtained with iMODS on 33 out of 62
transitions is equal to 1.07 Å, compared to 0.82 Å with GIS
on the same subset (Table S1).

Analysis of the Modeled Torsional Conformational
Changes. A comparative summary of the results obtained
with the different approaches is given in Table 2. The
RMSD(A*,B) between the reconstructed and the target
structure measures the quality of the modeling of the
conformational changes, while RMS(Δφ) and ( )φΔ
quantify, respectively, the average amplitude of the torsional

Table 2. Summary of the Properties of the Torsional
Conformational Changes

RMSD(A*,B)a RMS(Δφ)b ( )φΔ c SMP
d

ST 16.2 Å 0.41 17% 3.10
OLS 9.28 Å 0.37 27% 3.10
RRR-MP 1.90 Å 0.01 4.3% 2.31
RRR-Cv 1.70 Å 0.03 2.7% 2.32
GIS 0.79 Å 0.08 3.2% 2.25

aAverage RMSD between the reconstructed structure A* and the
target conformation B. bAverage RMS of the torsional variations Δφ
between the A and A* conformations. cAverage collectivity of the
torsional variations Δφ between A and A* (see Methods). dAverage
MolProbity score43 of the reconstructed structures A*, after
optimization of the side-chain conformations using SIDEpro.44 This
composite score evaluates the quality of the structural model (steric
clashes, unusual torsion angle values, etc.) and is normalized to
approximate the resolution at which that score would be average.
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changes (between A and A*) and the torsional collectivity, i.e.,
the effective fraction of torsion angles that are modified in the
conformational changes (see Methods).
An interesting observation is that the worst performing

methods, ST and OLS, both produce large average deviations
of the torsion angles (RMS(Δφ) = 0.41 and 0.37 radians,
respectively), spread over a large fraction of the residues
( ( )φΔ = 17 and 27%, respectively). In contrast, the
regularized fits (RRR with the MP or Cv criterion) yield
much smaller angular deviations, which is not surprising since
ridge regression penalizes large values of the fit parameters Δφ.
The torsional collectivity is also strongly reduced with the RRR
fits ( ( )φΔ = 4.3 and 2.7%, respectively), i.e., only a small
fraction of the residues contribute to the modeled conforma-
tional changes, which is consistent with the view that
functional motions in proteins are often operated by a small

number of hinge regions. In the case of conformational
changes reconstructed via the iterative strategy GIS, the
amplitude of the torsional deviations tends to be somewhat
larger than with the RRR fits, but still much smaller than with
ST or OLS.
These differences are illustrated by an example in Figure 4.

Upon binding, L-leucine-binding protein undergoes a con-
formational change from an open to a closed state. The two
domains of the protein move relatively to each other, but
mostly conserve their internal structure (Figure 4A,B). As
depicted in Figure 4C−F, all methods succeed in generating a
closed conformation by modifying the torsion angles in the
open structure. However, with ST and OLS, the large
amplitudes of the torsional changes create errors that severely
disrupt the internal structures of the individual domains. With
RRR and GIS, the deviations of the torsion angles are much

Figure 4. Example of the reconstruction of conformational changes with different approaches. (A, B) Chain A of L-leucine-binding protein from E.
coli, in its initial apo state (PDB: 1usg) and final bound state (PDB: 1usk). The RMSD between these two structures is equal to 7.0 Å, and is mostly
due to the relative motion of the two domains (in yellow and cyan), from an open to a closed conformation. (C−F) Conformational change
modeled with different approaches: the backbone torsion angles φa in the initial conformation A were modified in an attempt to reproduce the final
conformation B. A lower value of RMSD(A*,B) indicates a more successful reconstruction. For each method, we also indicate the root-mean-
square value of the variations of the torsion angles, RMS(Δφ), as well as their collectivity, ( )φΔ . The subset of residues with the highest Δφa

values, corresponding to the percentage of collectivity, is highlighted in red.
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smaller and tend to be localized in proximity of the hinge
region, resulting in a significantly improved reconstruction of
the conformational change.
The structural quality of the models created by the different

approaches was evaluated by computing the average
MolProbity score (SMP)

43 of the reconstructed structures A*,
after optimization of the side-chain conformations using
SIDEpro.44 As shown in Table 2, the RRR and GIS approaches
produce structures with fewer structural defects (SMP ≈ 2.3)
than ST and OLS (SMP ≈ 3.1). For comparison, the
MolProbity score of the 62 X-ray structures in our data set
is on average equal to 2.69 without, or 2.04 with, optimization
of the side-chain conformations.
Robustness of the Torsional Description of Con-

formational Changes. The results in Table 2 show that the
target structures can be reconstructed with good precision, by
applying Δφ modifications that are more localized, and of
much smaller amplitude, than those observed between the
initial and final structures. Therefore, when comparing two
structures representative of a conformational change, this begs
the question of how meaningful the observed differences in
internal coordinates can be considered, and whether they can
be relied on to identify important residues and hinge regions.
We illustrate this issue with the example of adenylate kinase

from E. coli, by considering five structures of the protein in its
closed form and two structures in its open form. The 10
possible closed−open structural pairs give thus 10 distinct
representations of the conformational change, which are all
very consistent in terms of Cartesian coordinates, with a small
RMSD between structures in the same form, and a large
RMSD between closed and open structures (Table 3). The

two structural states are, however, much more difficult to
differentiate in terms of internal coordinates. The small
differences in bond lengths and valence angles (RMSDl and
RMSDθ) are of similar amplitude whether the structures are in
the same form or not. Variations in torsion angles (RMSDφ)
do tend to be larger between closed and open structures than
between two closed or two open structures, but the difference
is small and not systematic.
In Figure 5A, the differences in torsion angles that

characterize the closed−open transition are given for each
position in the sequence, using two different pairs of structures
(either 1ank−4ake or 3hpq−6f7u). Although some similarities
exist between the two |Δφ| profiles, there is a clear lack of
robustness in the identification of the residues that contribute

most to the conformational change. The overlap φΔ between
the subsets of torsion angles that undergo the largest
modifications in each description of the conformational change
is as low as 38%, on average over 40 similar pairwise
comparisons (Tables 4 and S2).

In contrast, Figure 5B shows that the |Δφ| profile obtained
with RRR-Cv is almost identical for both structural pairs. This
is quite impressive considering the large differences in internal
coordinates between the two closed structures and between
the two open structures. The RRR approach manages thus to
capturein internal coordinatesthe essential motions
required to transition from the closed to the open form, in a
way that is very robust with respect to the choice of
experimental structures. Important regions can be identified

Table 3. Variability of Cartesian/Internal Coordinates
among Structures of a Protein

closed−closed open−open closed−open

RMSDr (Å)
a [0.32−0.65] 1.11 [6.33−7.25]

RMSDl (Å)
b [0.01−0.02] 0.01 [0.01−0.02]

RMSDθ (rad)
c [0.02−0.06] 0.04 [0.03−0.06]

RMSDφ (rad)d [0.14−0.37] 0.26 [0.29−0.43]
aRMSD between the Cartesian coordinates of backbone atoms in
adenylate kinase structures: interval of values obtained for 10 pairwise
comparisons between five closed structures (PDB: 1ake, 1ank, 2eck,
3hpq, 4jzk) for the comparison between two open structures (PDB:
4ake and 6f7u) and for 10 comparisons between a closed and an open
structure. bRMSD between corresponding backbone bond lengths.
cRMSD between corresponding backbone valence angles. dRMSD
between corresponding ϕ or ψ torsion angles.

Figure 5. Torsional description of a conformational change using
different pairs of structures. The absolute value of the variation in ϕ
and ψ torsion angles between the initial closed form (A) and
reconstructed open form (A*) of adenylate kinase is given for each
sequence position, excluding five N- and C-terminal residues. Results
obtained from the PDB structures 1ank and 4ake (black) are
compared to those obtained from the structures 3hpq and 6f7u
(blue). (A) The open form A* is reconstructed using the ST method,
i.e., the plotted |Δφ| are those observed between the original PDB
structures of the closed and open forms. (B) The open form A* is
reconstructed using the RRR-Cv method.

Table 4. Robustness of the Torsional Representation

φΔ
a rΔφ

b

ST 0.38 ± 0.01 0.34 ± 0.02
OLS 0.63 ± 0.01 0.83 ± 0.01
RRR-MP 0.71 ± 0.03 0.73 ± 0.04
RRR-Cv 0.72 ± 0.02 0.79 ± 0.03
GIS 0.61 ± 0.03 0.77 ± 0.02

aOverlap between the 10% of torsion angles that undergo the largest
modifications in two different descriptions of a conformational
change. We report the mean and standard error of φΔ over 40
pairwise comparisons (20 for the closed−open, and 20 for the open−
closed transition of adenylate kinase). In each comparison, the two
descriptions are based on different PDB structures for both the open
and closed conformations, excluding the five N- and C-terminal
residues. bMean and standard error of the angular correlation between
the Δφ from different descriptions of a conformational change, over
40 pairwise comparisons.
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in a much more reliable manner, as witnessed by an average
overlap φΔ of 72% (Tables 4 and S2).
Correlation with Predicted Fluctuations. Finally, we

investigate how well the torsional descriptions of the
conformational changes, created by the different geometrical
methods described above, compare with theoretical predictions
based on physical considerations. More precisely, we use the
TNM, an elastic network model in torsion angles space (see
Methods), which provides as output the set of normal modes
of motion uα (each with its associated frequency ωα), as well as
the mean-square fluctuations of the torsion angles (Δφa

therm)2,
in the thermal equilibrium ensemble. The correlation, over all
torsion angles a, between the variations associated with the
conformational change (Δφa)

2 and those predicted in the
thermal ensemble (Δφa

therm)2 is significant but limited: rfluct ≈
0.15−0.20 for all methods (Figure 6A). This is not surprising

since the (Δφa
therm)2 values predicted by the TNM describe the

ensemble of thermal fluctuations around equilibrium, while the
(Δφa)

2 values correspond to one specific functional motion,
away from equilibrium.
However, it has been observed that low-frequency normal

modes, which contribute more to thermal dynamics, tend to
also contribute more to functional conformational changes.30

This is consistent with linear response theory. It was proposed
that the response of a protein to a generic perturbation can be
modeled as a conformational change in which the contribution
cα
2 of each normal mode α is proportional to its contribution to
thermal dynamics, i.e., the inverse of the squared mode
frequency, ωα

−2. This null model of protein response (see
Methods) was verified on a large ensemble of functional and
nonfunctional conformational changes.33 Accordingly, this
“reciprocal” correlation in the space of normal modes, rnull =
r(cα

2,ωα
−2), is observed here for all methods (Figure 6B). On

average, it is lowest with the ST method (⟨rnull⟩ = 0.50) and
largest with RRR (⟨rnull⟩ = 0.63), providing further evidence of
the superiority of the latter methodology.
The correlation rnull between the contribution of normal

modes to predicted thermal fluctuations, and to experimentally
observed conformational changes, is an important point
supporting the validity and practical usefulness of elastic
network models. In this context, our results also give the
opportunity to compare the merits of the torsional and
Cartesian representations. Indeed, it can be shown that the
mode contributions cα

2 evaluated from torsional conformational
changes fitted with OLS are identical to the mode
contributions evaluated from Cartesian conformational
changes (see Methods). The agreement with the null model
of protein response is thus improved from the perspective of
torsional degrees of freedom, with respect to the Cartesian
representation: ⟨rnull⟩ is equal to 0.63 with RRR, versus 0.51
with OLS. These results are consistent with previous studies
showing that predicted low-frequency torsional modes present
a better agreement with experimentally observed conforma-
tional changes, in comparison to predicted Cartesian modes of
motions.32,34 However, this improvement was shown to be
conditional to the translation of torsional modes into Cartesian
space via a nonlinear optimization scheme. Here, by creating a
robust description of the conformational change in torsion
angles space, adapted for small variations in bond lengths and
valence angles, we remove the need to translate torsional
modes into Cartesian space and are able to directly compare
the torsional modes to the torsional representation of the
conformational change.
The null model of protein response, cα

2 ∝ ωα
−2, holds for both

functional and nonfunctional conformational changes, simply
because of linear response theory. Deviations from this null
model may be random or due to imperfections in the
prediction scheme, but may also indicate specificities of
functional conformational changes. In particular, if the
contribution of low-frequency normal modes is larger than
expected from the null model, the free-energy barrier opposed
to the conformational change would be reduced, at least within
the harmonic approximation. Such cases can be identified by
computing the correlation rselect = r(cα

2ωα
2,ωα

−2). A positive and
significant rselect suggests that natural selection may have acted
on the dynamical properties of the equilibrium ensemble so as
to lower the energy barrier to overcome during a functional
conformational change.24,33 As shown in Figure 6C, this is
indeed the case for almost half of the considered proteins, if
the Δφa values are identified by the RRR-Cv method. This
fraction is much smaller with the other methods: as low as 14
and 0% with OLS and ST, respectively.
The reciprocal collectivity of the conformational change, i.e.,

the effective number of normal modes that contribute to it (see
Methods), is given in Figure 6D for each method. This
collectivity is significantly smaller when conformational
changes are fitted by the RRR method than when using ST
or OLS, which is consistent with the above results indicating
that the predominance of low-frequency modes is best
recovered with RRR. Note that, here again, the reciprocal
collectivity with respect to Cartesian displacements is identical
to the value obtained with torsional displacements fitted by
OLS.

Figure 6. Correlations between conformational changes and predicted
equilibrium dynamics. The torsional conformational changes,
modeled by each of the five considered methods, are compared to
the thermal dynamics at equilibrium, as predicted by the torsional
network model (TNM). Several measures are presented, as described
in the text. In each case, the error bars correspond to the standard
error. (A) Correlation rfluct between the torsion angles variations in
the conformational change, (Δφa)

2, and the mean-square fluctuations
of the torsion angles in the equilibrium dynamics predicted by the
TNM, (Δφa

therm)2. (B) Correlation rnull between the contributions of
torsional normal modes to the conformational change, cα

2, and to
thermal dynamics, ωα

−2. This correlation reflects the agreement with
the null model of protein response. (C) Fraction of conformational
changes for which the correlation rselect (between cα

2ωα
2 and ωα

−2) is
positive and significant, indicating a lowered free-energy barrier as a
sign of natural selection. (D) Number of normal modes that
effectively participate to the conformational change (collectivity).
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■ DISCUSSION AND CONCLUSIONS

Deciphering the mechanisms that underlie functional con-
formational changes in proteins requires an understanding of
what happens both at the level of single residues and at the
level of the tertiary/quaternary structure. The former aspect is
best described with torsional angles, which are the natural
degrees of freedom of protein chains and are well suited to
evaluate how, and how much, each residue contributes to the
overall conformational change. On the other hand, Cartesian
coordinates, which are the typical output of structure
determination methods, provide a more intuitive global picture
of protein structures and conformational variations. The
translation from one set of coordinates to the other is trivial
in principle, but not in practice.
In this paper, we evaluate and compare different approaches

to identify variations in torsion angles that best reproduce the
observed variations in Cartesian coordinates, in a set of
experimentally characterized conformational change of pro-
teins. The naive strategy ST, which consists in simply
computing the differences of aligned torsion angles between
the two conformations, largely fails to provide satisfactory
results. Indeed, despite the fact that variations in bond lengths
and valence angles are very small, these variations create errors
that quickly propagate and get amplified along the chain,
completely disrupting the protein fold. Linear regression with
OLS allows in principle to retrieve the variations in torsion
angles that minimize the differences between the reconstructed
and target Cartesian coordinates, correcting for any variations
in bond lengths and valence angles. However, the large
correlations between explanatory variables lead to overfitting
issues. The minimal error ends up being achieved by forcing
large amplitude variations on a large number of torsion angles,
which breaks the linear approximation on which the fit relies,
and causes reconstructed structures to be almost as poor as
those obtained from the ST method.
A first satisfactory solution is found in rescaled ridge

regression (RRR), a variant of ridge regression that we recently
introduced,27 which is suited to the regularization of fits even
when there is no intercept, or when the intercept holds
physical meaning and must be penalized like the other fit
parameters. This method allows to modify the torsion angles in
the initial structure A and obtain a transformed structure A*
that is very similar to the target structure B, effectively
modeling the experimentally observed conformational change
in the space of torsion angles. With RRR and the Cv criterion,
RMSD(A*,B) is as low as 1.7 Å on average, compared to 16 Å
with ST and 9 Å with OLS. The reconstruction of the
conformational change with RRR is achieved by small-
amplitude variations of a limited number of torsion angles,
which is more consistent with functional motions operated by
hinge regions. The fraction of torsion angles that effectively
contribute to the conformational change is smaller than 5%, on
average with RRR, compared to 17% with ST and 27% with
OLS. We also evaluated a greedy iterative procedure based on
RRR (GIS), which yields improved results, with RMSD(A*,B)
equal to 0.8 Å on average, but at the cost of a more significant
computational burden.
Interestingly, the conformational changes fitted via the RRR

approach also provide a better agreement with the predictions
of the TNM and the null model of protein response:24,33 the
contributions of the normal modes to the conformational
changes are more strongly correlated with their contributions

to the predicted thermal fluctuations. In addition, evidence
that natural selection may have acted to reduce the energy
barrier that must be overcome during the conformation change
is observed in 47% of the cases when the RRR-Cv approach is
used. This fraction goes down to 15% if the conformational
changes are compared to Cartesian modes of motion (or
torsional modes with the OLS approach) and 0% if we
consider the changes in torsion angles directly obtained from
the two structures (with ST). Note that the improvement
achieved by the RRR method is not only due to the fact that it
reduces the amplitude of the change of torsion angles, thus
reducing the violations of the linear approximation on which
the fit is based. In fact, RRR also improves measures that do
not depend on the amplitude, such as the number of relevantly
modified angles, the correlation with the normal modes
predicted through the TNM, and the number of relevant
modes.
Since the GIS method creates a trajectory between the two

structural states of the protein, it could potentially evolve into a
proper morphing technique in torsion angles space. This would
require further research, notably concerning the addition of a
potential function to ensure that the trajectory follows low-
energy paths and avoids steric clashes. It is interesting to note
that RR is equivalent to minimizing the quantity (Δφ·TΔφ) +
Λ(Δφ·Δφ) − 2(Δφ·Δφ*), where the first two terms describe
a kind of harmonic energy associated with the conformational
change Δφ, and Δφ* = JTMΔr is the target conformational
change. However, this pseudoenergy is not sufficient for
preventing steric clashes. If this limitation is overcome, GIS
could present certain benefits as an interpolation technique.
Indeed, most current methods are built in Cartesian
coordinates, often relying on (linear or nonlinear) interpola-
tion between atomic coordinates or between interatomic
distances.41,42 Despite the advantage of preserving the integrity
of bond geometries, internal coordinates have been less
exploited in this context, in part because the interplay of soft
(torsion angles) and supposedly hard (bond lengths and
valence angles) degrees of freedom complicates any attempt at
interpolation. Another potential advantage of GIS is that the
iterative steps are guided by the RRR method, which we
showed to be very robust to the choice of experimental
structures and which correlates well with ENM-predicted low-
frequency normal modes, without being limited to a small
arbitrary number of these modes. However, like most other
interpolation schemes, RRR cannot be interpreted as a
dynamical equation, and it is therefore unclear how well the
trajectory produced by GIS coincides with the actual transition
path.
In summary, our results indicate that the comparison of

backbone torsion angle values between pairs of structures
corresponding to conformational changes may not necessarily
give a reliable picture of the mechanisms at play at the residue
level. This is due to compensations between relevant
modifications of torsion angles and small variations in bond
lengths and valence angles, which may occur in the structure
refinement process. In contrast, the RRR methodology yields a
minimal set of torsional variations that is sufficient to describe
the conformational change in a robust manner, allowing to
easily pinpoint the most important residues and presenting a
strongly improved agreement with theoretical models.
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■ METHODS
Data Set. The data set considered in this study consists of

31 pairs of protein structures determined by X-ray crystallog-
raphy, extracted from the Protein Data Bank.45 Each pair
corresponds to two distinct structures of the same protein
chain, representing a conformational change that is relevant for
the protein’s function. These include large molecular machines
that were previously studied in ref 46, allosteric proteins that
were investigated in ref 47, as well as others that were studied
in our previous work.33 The root-mean-square deviation
(RMSD) between structural pairs ranges from 0.35 to 34.4
Å. Each structure in a pair is, in turn, considered as the initial
conformation, and the other as the final conformation. A total
of 62 conformational changes are thus analyzed.
For each conformational change, we consider only aligned

atoms that are present in the two structures. Even though both
structures represent the same protein, it may happen that some
residues or atoms are unresolved (disordered) in one of the
structures, but not in the other. Small differences in protein
sequence are also possible, due to amino acid replacements,
insertions, or deletions. Breaks in the considered protein
chains, in the case of disordered regions or sequence mismatch,
are represented by pseudobonds. For these pseudobonds, we
consider all three internal coordinates as degrees of freedom,
i.e., the pseudobond lengths and angles are also adjusted in the
same way as torsion angles. Residues at the N- or C-terminal
end of the protein chain are often minimally constrained and
thus very flexible, which has little effect on the overall structure
but can induce a significant bias in some measurements.
Therefore, residues at the chain ends, with a B-factor (in the
initial structure) at least 50% larger than the average over all
residues, were not considered in the analysis of the results (e.g.,
calculation of the torsional collectivity, correlation with
predicted fluctuations).
Ordinary Least-Squares Regression. At first order in

Δφ, the analytical relationship between variations in Cartesian
coordinates and variations in torsion angles can be written as
Δri = ∑aJiaΔφa, or Δr = JΔφ in matrix notation, where J is the
(9N × 2N) Jacobian matrix of the transformation between
internal and Cartesian coordinates, with Jia = ∂ri/∂φa, and N is
the number of residues.
An estimation of the variations of torsion angles Δφ

corresponding to the observed variations in Cartesian
coordinates Δr can be obtained by linear regression. We
minimize the square error E = (JΔφ − Δr)·M(JΔφ − Δr),
where each atom is weighted by its mass via the diagonal
matrix M and x·y denotes the scalar product. The quantity to
be minimized can be rewritten as

F J MJ M r J

T J M r

( ) 2( )

( ) 2( )T

φ φ φ

φ φ φ

= Δ · Δ − Δ · Δ

= Δ · Δ − Δ ·Δ (1)

where JT is the transpose of the Jacobian matrix and T = JTMJ
is the kinetic energy matrix, which plays the role of the
correlation matrix of explanatory variables. The solution of this
minimization problem is given by ΔφOLS = T−1 (JTMΔr).
Rescaled Ridge Regression. Ordinary least-square

regression with correlated explanatory variables (like the
components of the Jacobian matrix in this problem) is
known to be bad-behaved and to lead to overfitting problems
and unphysical parameters unless the fit is regularized. One of
the most widely used regularization schemes, the Tykhonov
regularization or ridge regression (RR), consists in penalizing

large values of the fit parameters.36 In this framework, the
function to be minimized is

F E

T J M r

( )

( ) 2( ) ( )T

φ φ

φ φ φ φ φ

= + Λ Δ ·Δ

= Δ · Δ − Δ ·Δ + Λ Δ ·Δ (2)

where E is the error of the fit, as defined above, and Λ is the
Tykhonov parameter. The solution of this minimization
problem is given by ΔφRR = (T + ΛI)−1(JTMΔr). In the
limit of large Λ, the fitted parameters Δφ tend to zero and the
regression sets the dependent variable equal to the intercept of
the fit, which is not penalized in ordinary ridge regression.
Rescaled ridge regression (RRR) allows to deal with

situations where the intercept is either absent or must be
interpreted as a physical parameter and penalized like any
other. To avoid the vanishing fit parameters that RR would
yield in such cases, the fit parameters are rescaled by a factor
that diverges in the large Λ limit so that they tend to a finite
limit.27 This is achieved via a second Lagrange multiplier μ
ensuring the respect of the scaling condition (JTMΔr·Δφ) −
(Δφ·TΔφ) = 0. The function to be minimized in RRR
becomes then

F E J M r
T

T J M r

(1 ) ( ) (( )
( ))

( ) 2 ( ) ( )

T

T

μ φ φ μ φ
φ φ

φ φ ν φ φ φ

= + − Λ Δ ·Δ + Δ ·Δ
− Δ · Δ

= Δ · Δ − Δ ·Δ + Λ Δ ·Δ
(3)

where ν = (1 − μ/2)/(1 − μ). The optimal fit parameters of
the RRR are a rescaled version of the parameters of ordinary
ridge regression, i.e., ΔφRRR = νΔφRR. The factor ν, which
depends on Λ, ensures the proper scaling of the fit parameters
Δφ. It is given by ν(Λ) = (ΔφRR·JTMΔr)/(ΔφRR·TΔφRR).

Torsional Network Model. To compare the experimen-
tally observed conformational changes with the thermal
dynamics at equilibrium, we rely on the predictions of the
torsional network model (TNM), an ENM in torsion angle
space that preserves the bond lengths and valence angles of the
protein.24

The main degrees of freedom of the TNM are the ϕ and ψ
torsion angles of the protein backbone. In this study, we also
include the ω torsion angles corresponding to cis/trans
isomerizations observed in the conformational changes. It is
possible to further extend the model and consider all ω angles,
as well as the torsion angles of the side chains. The kinetic
energy is computed here from the atoms of the extended
backbone (N, Cα, Cβ, C, and O) since we focus on
conformational changes of the protein backbone and do not
consider side chain rotamers. Native interactions between pair
of residues are identified by considering the smallest spatial
distance between any pair of heavy atoms belonging to the two
residues. If that distance is smaller than a predefined cutoff C =
4.5 Å, the corresponding atoms are joined by a spring of
stiffness κ(r) = κ0(r0/r)

E, where r is the equilibrium distance
between the two atoms, r0 = 3.5 Å, is a reference distance, E =
6, and κ0 is the force constant obtained from the fit of B-
factors. In addition, a harmonic potential was also associated
with the rotation around each torsion angle in the protein, with
a uniform value of the torsional force constant κφ = 0.1. The
values of these parameters, which define the TNM force field,
were previously determined as optimal for reproducing
experimentally observed individual and pairwise residue
fluctuations.
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The TNM provides as output the normal modes of motion
uα of the molecule, along the internal coordinates correspond-
ing to the ϕ and ψ torsion angles. These modes describe the
dynamic behavior of the protein around equilibrium and can
be used to evaluate the mean-square fluctuations of the torsion
angles in the thermal ensemble: (Δφa

therm)2 = ∑αωα
−2uαa

2 . The
torsional modes can also easily be converted into Cartesian
modes of motion xα = Juα.
We define the contribution cα

2 of each normal mode to a
given conformational change as the normalized squared mass-
weighted projection of the conformational change onto the
normal mode, that is, cα

2 = pα
2/∑βpβ

2 with pα = (T1/2Δφ·T1/2uα)
= (Δφ·Tuα). Note that, when the OLS method is used to
determine the Δφ values, i.e., ΔφOLS = T−1JTMΔr, the
projections pα are exactly equal to the mass-weighted
projections of the Cartesian conformational change onto the
Cartesian normal mode Juα, i.e., (Δr·MJuα) = (JTMΔr·uα) =
(ΔφOLS·Tuα).
Null Model of Protein Response. The contribution of

each normal mode uα (or xα in Cartesian coordinates) to the
thermal fluctuations around equilibrium is inversely propor-
tional to the squared mode frequency ωα

2. It has been observed
that the low-frequency normal modes, which contribute more
to thermal dynamics, also tend to contribute more to
functional conformational changes.30 This behavior is con-
sistent with linear response theory.
One of us and co-workers have recently proposed that the

response of a protein to a generic perturbation can be modeled
as a conformational change, in which the contribution of each
normal mode is proportional to its contribution to thermal
dynamics, i.e., cα

2 ∝ ωα
−2. This null model of protein response

was verified in an exhaustive data set of experimental
conformational changes.33 Note that this “reciprocal” correla-
tion in the space of normal modes, r(cα

2,ωα
−2), may be large

even if the direct correlation between the conformational
change, (Δφa)

2, and the thermal fluctuations, (Δφa
therm)2, is

small. Indeed, a large reciprocal correlation requires a good
prediction of the amplitude (ωα

−2) of the contribution of each
normal mode, but not of the direction of the motion along
each normal mode. In the mean-square thermal fluctuations
(Δφa

therm)2, the amplitude of the contributions of each mode is
also proportional to ωα

−2, but motions along each mode are
averaged over both directions.
The null model holds for both functional and nonfunctional

conformational changes, such as those observed between
structures of the same protein in different experimental
conditions. However, functional conformational changes
often exhibit systematic deviations from the null model,
attested by a positive correlation between (cαωα)

2 and
ωα

−2.24,33 Such a correlation indicates that low-frequency
normal modes contribute to the conformational change more
than expected based on linear response theory. This has the
effect of reducing the free energy barrier that must be
overcome during the conformational change, as computed
within the harmonic approximation and can therefore be seen
as a sign of natural adaptation favoring specific functional
motions.
Collectivity of Conformational Changes. The collectiv-

ity ( )φΔ of a conformational change measures the number of
torsional degrees of freedom that significantly contribute to it.
We evaluate the fractional contribution of each torsion angle
φa as pa

φ = (Δφa)
2/∑b(Δφb)

2 and the Shannon entropy of pa
φ,

which is given by p p( ) loga a aφΔ = −∑ φ φ. The collectivity is

defined as the exponential of the Shannon entropy, normalized
by the total number of torsional degrees of freedom Nφ, i.e.,

N( ) exp( ( ))/φ φΔ = Δ φ. For example, ( ) 0.3φΔ =
means that the effective fraction of torsion angles modified
during the conformational change is equal to 30%, or more
precisely that the Shannon entropy of pa

φ is equivalent to a case,
where Δφa is equal to a constant value for 30% of the torsion
angles and null for the remaining 70%.
The reciprocal collectivity u( ) of a conformational change

measures the number of normal modes that significantly
contribute to it, and is defined in a similar way to the torsional
collectivity. The fractional contribution of each normal mode
uα is given by the normalized squared projection cα

2, as defined
a b o v e . A n d u u( ) exp( ( ))= , w h e r e

c cu( ) log2 2= −∑α α α . Note that we did not normalize the
reciprocal collectivity by the number of degrees of freedom
since no notable correlation was observed between uexp( ( ))
and Nφ.

Angular Statistics. In case of angular data, the mean μφ
and standard deviation σφ are calculated as follows48
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The correlation between two sets of angles, φ1 and φ2, is
defined as49

r
sin( )sin( )

sin ( ) sin ( )

a
N

a a

a
N

a a
N

a

1 1 2

1
2

1 1
2

2

1 2

1 2

φ μ φ μ

φ μ φ μ
=

∑ − −

∑ − ∑ −
φ

φ φ

φ φ

=

= = (5)

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.9b00627.

Quality of the reconstruction of the conformational
changes (Table S1); robustness of the torsional
representation of the conformational changes (Table
S2) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: ubastolla@cbm.csic.es (U.B.).
*E-mail: ydehouck@cbm.csic.es (Y.D.).
ORCID
Ugo Bastolla: 0000-0001-9342-4678
Yves Dehouck: 0000-0002-7401-104X
Notes
The authors declare no competing financial interest.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00627
J. Chem. Inf. Model. 2019, 59, 4929−4941

4939

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00627
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00627/suppl_file/ci9b00627_si_001.pdf
mailto:ubastolla@cbm.csic.es
mailto:ydehouck@cbm.csic.es
http://orcid.org/0000-0001-9342-4678
http://orcid.org/0000-0002-7401-104X
http://dx.doi.org/10.1021/acs.jcim.9b00627


■ ACKNOWLEDGMENTS

U.B. acknowledges financial support from the Spanish
Ministery of Economy, grant BIO2016-79043-P. Research at
the CBMSO is facilitated by the Fundacion Ramon Areces.

■ REFERENCES
(1) Eisenmesser, E. Z.; Millet, O.; Labeikovsky, W.; Korzhnev, D.
M.; Wolf-Watz, M.; Bosco, D. A.; Skalicky, J. J.; Kay, L. E.; Kern, D.
Intrinsic Dynamics of an Enzyme Underlies Catalysis. Nature 2005,
438, 117−121.
(2) Callender, R.; Dyer, R. B. The Dynamical Nature of Enzymatic
Catalysis. Acc. Chem. Res. 2015, 48, 407−413.
(3) Petrovic,́ D.; Risso, V. A.; Kamerlin, S. C. L.; Sanchez-Ruiz, J. M.
Conformational Dynamics and Enzyme Evolution. J. R. Soc. Interface
2018, 15, No. 20180330.
(4) Goodey, N. M.; Benkovic, S. J. Allosteric Regulation and
Catalysis Emerge via a Common Route. Nat. Chem. Biol. 2008, 4,
474−482.
(5) Motlagh, H. N.; Wrabl, J. O.; Li, J.; Hilser, V. J. The Ensemble
Nature of Allostery. Nature 2014, 508, 331−339.
(6) DuBay, K. H.; Bowman, G. R.; Geissler, P. L. Fluctuations within
Folded Proteins: Implications for Thermodynamic and Allosteric
Regulation. Acc. Chem. Res. 2015, 48, 1098−1105.
(7) Boehr, D. D.; Nussinov, R.; Wright, P. E. The Role of Dynamic
Conformational Ensembles in Biomolecular Recognition. Nat. Chem.
Biol. 2009, 5, 789−796.
(8) Gibbs, A. C. Elements and Modulation of Functional Dynamics.
J. Med. Chem. 2014, 57, 7819−7837.
(9) Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics
Method for Protein Folding. Chem. Phys. Lett. 1999, 314, 141−151.
(10) Nymeyer, H.; Gnanakaran, S.; Garcia, A. E. Atomic Simulations
of Protein Folding, Using the Replica Exchange Algorithm. Methods
Enzymol. 2004, 383, 119−149.
(11) Li, W.; Wolynes, P. G.; Takada, S. Frustration, Specific
Sequence Dependence, and Nonlinearity in Large-Amplitude
Fluctuations of Allosteric Proteins. Proc. Natl. Acad. Sci. U.S.A.
2011, 108, 3504−3509.
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Characterizing Conformation Changes in Proteins Through the
Torsional Elastic Response. Biochim. Biophys. Acta, Proteins Proteomics
2013, 1834, 836−846.
(34) Frezza, E.; Lavery, R. Internal Coordinate Normal Mode
Analysis: a Strategy to Predict Protein Conformational Transitions. J.
Phys. Chem. B 2019, 123, 1294−1301.
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