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RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view
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ABSTRACT
Extensive work in model enterobacteria has evidenced that the RNA chaperone Hfq and several
endoribonucleases, such as RNase E or RNase III, serve pivotal roles in small RNA-mediated post-
transcriptional silencing of gene expression. Characterization of these protein hubs commonly provide
global functional and mechanistic insights into complex sRNA regulatory networks. The legume
endosymbiont Sinorhizobium meliloti is a non-classical model bacterium with a very complex lifestyle in
which riboregulation is expected to play important adaptive functions. Here, we discuss current
knowledge about RNA silencing in S. meliloti from the perspective of the activity of Hfq and a recently
discovered endoribonuclease (YbeY) exhibiting unprecedented catalytic versatility for the cleavage of
single- and double-stranded RNA molecules.
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Small non-coding RNAs (sRNAs) are recognized as ubiquitous
components of complex post-transcriptional regulatory net-
works controlling virtually any adaptive response of bacteria to
environmental changes.1,2 The canonical activity mechanism of
most RNA regulators involves base pairing to mRNAs, which
may affect translation and/or turnover rates of the targeted
transcripts in an either negative or positive manner.3,4 Comple-
mentarity between sRNAs and trans-encoded target mRNAs is
typically short and imperfect, and therefore, a protein serving a
chaperone function often assists these type of interactions. The
widely conserved bacterial Sm-like protein Hfq has long been
perceived as the major RNA binder fulfilling a dual role as
sRNA stabilizer and matchmaker in trans-mRNA regulation.5-7

Conversely, cis-acting antisense sRNAs (asRNAs) rely on
extensive perfect complementarity to regulate mRNAs tran-
scribed from the opposite strand and are believed to be largely
protein-independent.8 Although sRNA-mediated upregulation
of gene expression in bacteria is not unusual, target repression
is the typical outcome of sRNA activity.4,8 Most trans-acting
sRNAs interact with their targets at the translation initiation
region, thereby outcompeting ribosome binding and impairing
protein synthesis. Primary translational repression is often cou-
pled to irreversible target mRNA degradation, which is cata-
lyzed by RNases that, in some cases, can be recruited to the
sRNA-mRNA interplay by Hfq.7,9,10 As component of the
degradosome complex, the single-strand specific endoribonu-
clease RNase E is one Hfq-interacting partner in some bacterial
species, initiating mRNA decay upon base pairing with
trans-sRNAs.11,12 Alternatively, the prototypical double-strand
endoribonuclease RNase III can initiate cleavage of some of
these imperfect RNA-RNA duplexes and is a major effector of
mRNA decay initiation driven by antisense transcription.13,14

RNA-binding proteins and ribonucleases are thus pivotal ele-
ments in riboregulatory networks and their characterization

commonly provide primary functional hallmarks to complex
sRNA landscapes. These paradigms about the biological roles
and mechanistic principles of riboregulation mostly derive
from extensive pioneering research on classical model bacteria
(i.e., Escherichia coli and related enterobacteria) and clinically
relevant pathogens. However, during the last two decades the
availability of distantly related genomic sequences from bacte-
ria with widely diverse lifestyles has increased exponentially.
Comprehensive analysis of this overwhelming genomic infor-
mation and its derived transcriptomes is expected to unveil
novel insights into protein-assisted RNA regulation underlying
unique ecological specializations.

Rhizobia, the nitrogen-fixing endosymbionts of legume
plants, are an example of soil-dwelling microbes with complex
biology and genomic architecture. During their life cycle, these
bacteria shift from a free-living state in soil to a chronic intra-
cellular residence within root nodules elicited in the plant
host.15 To establish competitive populations in soil, rhizobia
must efficiently adapt their physiology to several abiotic and
biotic variables typical of this harsh environment, e.g., oligotro-
phy, pH and temperature oscillations, drought, hyperosmolar-
ity, native microbial populations or specific root exuded plant
compounds like flavonoids. Upon root hair infection, nodule
development and differentiation of nitrogen-fixing bacteroids
are events governed by a coordinated exchange of signaling
molecules between both symbiotic partners. Plant-derived sig-
nals in response to rhizobial infection include defensive reactive
oxygen species, cysteine-rich peptides that promote bacteroid
differentiation or microaerobiosis required by nitrogenase
functioning within nodules.15 These cues reprogram gene
expression in rhizobia, which has been assumed to rely almost
entirely on transcriptional control by protein factors, whereas
post-transcriptional RNA-dependent regulation has been sys-
tematically overlooked.
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The group of root-nodule bacteria includes species mostly
belonging to the Rhizobiales order within the larger a–subgroup
of proteobacteria. Among them, Sinorhizobium meliloti, the part-
ner of the forage legume alfalfa (Medicago sativa) and the model
plant M. truncatula, has served as main genetically tractable
model species to study riboregulation in rhizobia.16-18 The closely
related S. meliloti reference strains Rm1021 and Rm2011 have
highly syntenic composite genomes consisting of 3 megarepli-
cons; the chromosome (3.54 Mb) and the so-called symbiotic
plasmids pSymA (1.35 Mb) and pSymB (1.68 Mb), the latter
exhibiting chromosome-like features.19,20 Computational com-
parative genomics and RNAseq-based screens have uncovered a
large and heterogeneous inventory of non-coding transcripts
expressed by this bacterium.21-25 The challenge now is decipher-
ing the function and activity mechanisms of this plethora of
newly discovered S. meliloti sRNAs in the regulation of the adap-
tive responses imposed by both the saprophytic life in soil and
the symbiotic transitions. Here, we discuss insights into RNA-
based regulation in S. meliloti derived from RNA networks of
two proteins functionally linked to sRNA activity; the RNA
chaperone Hfq (henceforth SmHfq) and the novel recently dis-
covered endoribonuclease YbeY (SmYbeY).26,27

Discrete contribution of SmHfq to riboregulation

Hfq has been positioned at the core of post-transcriptional regula-
tory networks in bacteria. Accordingly, the identity of Hfq regu-
lated genes and binding transcripts typically draft major pathways
relying on sRNA-based regulation.28-30 In S. meliloti, lack of Hfq
compromises adaptation of free-living bacteria to abiotic stress and
the overall symbiotic performance on legume roots.31-34 Profiling
of the SmHfq regulon and RNA ligands by a diversity of genome-
wide screens has traced the pathways specifying this phenotypic
outcome.27,31,33-35 These independent studies converged in the
identification of nutrient uptake, energy metabolism, stress
response, biosynthesis of surface macromolecules, quorum sensing
(QS) and symbiotic nitrogen-fixation as major processes influ-
enced by Hfq in S. meliloti. Most SmHfq-associated RNA species
derive from or are full-length mRNAs, which collectively represent
»18% of the S. meliloti protein coding genes. More than third of
these genes have been reported to be differentially expressed in hfq
knockout mutants. In contrast, SmHfq binds and stabilize only
small fractions of the trans-acting and asRNAs expressed by this
bacterium (14% and 2%, respectively).27,36

Almost half of the mRNAs concurrently bound and regulated
by SmHfq encode components of ABC transport systems and
cytoplasmic metabolic enzymes.27 Remarkably, SmHfq negatively
affects the steady-state levels of a large array of mRNA partners
that encode periplasmic substrate binding proteins with affinity
for a diversity of nitrogen-containing compounds (e.g., amino
acids, peptides or polyamines), a feature common to many bacte-
rial Hfq homologs characterized to date. In enterobacteria, the
Hfq-dependent sRNA GcvB post-transcriptionally silences many
of these mRNAs, which integrate one of the largest sRNA regu-
lons described in bacteria.37 Similarly, computer predictions in S.
meliloti delivered a plethora of putative targets of the SmHfq-
dependent homologous AbcR1 and AbcR2 sRNAs within the set
of SmHfq mRNA ligands encoding proteins for the uptake of
nitrogen sources.27,31,38 Further genetic reporter assays in vivo

confirmed AbcR1/2-mediated downregulation of some of these
mRNAs, most likely by a canonical silencing mechanism involv-
ing primary occlusion of the respective ribosome binding
site.27,38 Similar regulatory roles and activity mechanisms have
been described for AbcR homologs in the related
a–proteobacteria Agrobacterium tumefaciens and Brucella abor-
tus.39,40 Rhizobial genomes encode exceptionally large inventories
of ABC transport systems (e.g., 200 in S. meliloti compared with
67 in E. coli) for the uptake of widely diverse growth limiting
nutrients in soil and specific plant-derived compounds in the
rhizosphere and endosymbiotic compartments.19,41 Selective
silencing of unnecessary simultaneous transcription of trans-
porter gene sets, which is commonly driven by analogous com-
pounds, would contribute to optimize rhizobial metabolism
throughout the symbiotic interaction.

From a methodological point of view, these findings provide
another proof of principle validating the atlas of Hfq-binding
transcripts as a reliable source of functional sRNA-mRNA regu-
latory pairs in bacteria. However, since most S. meliloti sRNAs
are Hfq independent, mining of this data set would render a
rather partial view of RNA regulation in this bacterium. Indeed,
it has been recently reported that the Hfq-independent trans-
RNAs RcsR1 and EcpR1 regulate other symbiotically relevant
processes such as QS or cell cycle.42,43 In line with this notion,
post-genomic research on phylogenetically distant bacterial spe-
cies increasingly suggests that the contribution of Hfq to ribore-
gulation is more limited than expected from the early studies in
classical model bacteria. Even in Salmonella, Hfq-binding sRNAs
represent only a third of the non-coding transcripts expressed by
this bacterium.44 On the other hand, almost half of bacterial spe-
cies lack an hfq gene and in others, this is fully dispensable for
riboregulation.8 These evidences have prompted searches for
alternative bacterial RNA-binding proteins fulfilling Hfq-like
roles as novel nodes of post-transcriptional regulatory networks.

SmYbeY is a novel endoribonuclease with unprecedented
metal-dependent catalytic versatility

A few years ago, it was proposed that the YbeY protein might func-
tionally replace Hfq for RNA regulation in S. meliloti.45 YbeY
belongs to the UPF0054 family of metallo-hydrolases and is almost
ubiquitous in bacteria. Indeed, its coding gene is part of the mini-
mal prokaryotic genome set, thus anticipating that it serves a fun-
damental function probably affecting a wide range of cellular
processes.46 Consequently, YbeY has been shown to be essential in
some bacterial species, whereas in others its loss-of-function leads
to severe pleiotropic phenotypes that in S. meliloti resemble those
of the hfqmutants.45,47-50 Structural modeling of SmYbeY unveiled
a positively charged cavity reminiscent of the MID domain of the
Argonaute (AGO) proteins that assist RNA silencing in eukar-
yotes.45 Further supporting a likely similar competence of bacterial
YbeY homologs for RNA binding and/or regulation, recent studies
in S. meliloti, E. coli and Vibrio cholerae have shown that lack of
YbeY misregulates subsets of sRNAs and their predicted mRNA
partners.45,50,51 In particular, SmYbeY and SmHfq co-regulate a
handful of sRNAs in a positive manner, thus suggesting that both
proteins might share a chaperone function in sRNA pathways.45

To test this hypothesis, the SmYbeY-dependent RNA network has
been recently probed by genome-wide approaches (i.e., CoIP and
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transcriptomics) and experimental setups similar to those used pre-
viously for SmHfq.26 SmYbeY CoIP-RNA was sparingly enriched
with RNA species, contrary to what was observed for SmHfq, indi-
cating either reduced competence of SmYbeY for RNA binding or
transient contacts with its partner transcripts. Further, transcrip-
tomics revealed scarce influence of SmYbeY on the expression of
the »500 trans-sRNAs probed with the microarrays. Together,
these findings argued against a major Hfq-like role of SmYbeY as
RNA stabilizer andmatchmaker in riboregulation.

The biochemical properties of YbeY were first reported for
the E. coli homolog (EcoYbeY).52 This protein behaved as a met-
allo endoribonuclease that specifically degraded in vitro synthe-
tized single-stranded RNA substrates as well as several
endogenous RNA molecules such as mRNAs and rRNA. This
catalytic activity, which is largely conferred by the histidine triad
H(X)3H(X)4DH characteristic of metallo-hydrolases, is also
required for late-stage 70S ribosome quality control and 16S
rRNA processing. Similarly, purified SmYbeY has metal-depen-
dent endoribonuclease activity on synthetic and endogenous
RNAs.26 However, it is not required for 16S rRNA maturation
and exhibits striking differences in substrate specificity with
respect to what was proposed for its E. coli counterpart. SmYbeY
is competent for cleaving both single-stranded (ssRNA) and dou-
ble-stranded RNA (dsRNA) substrates, which is an unprece-
dented ability among bacterial endoribonucleases characterized
to date. Nevertheless, in vitro assays evidenced certain preference
of SmYbeY for degrading dsRNA. Specifically, reactivity patterns
and catalytic efficiency of SmYbeY on the generic highly struc-
tured R1.1 RNA, which is typically used to assay RNase III activ-
ity, resembled cleavage of RNase III on the same substrate.
Interestingly, SmYbeY-mediated catalysis showed strong metal
co-factor dependence, with Mn2C favoring overall cleavage effi-
ciency on all substrates and Ca2C specifically blocking reactivity
on dsRNA and R1.1 RNA. This feature may have important
implications for substrate selectivity and modulation of SmYbeY
activity in vivo. In this regard, it is known that protection against
the oxidative burst elicited in the host cells upon infection
requires maintenance of Mn2C and Ca2C homeostasis in intracel-
lular mammal pathogens and plant endosymbionts.53,54

This recent discovery extends the repertoire of RNases pre-
dicted to be encoded by the S. meliloti genome, which includes
homologs of the known silencing endoribonucleases RNase E
and RNase III, as well as the 3’-5’ exoribonuclease polynucleo-
tide phosphorylase (PNPase), all of which have been shown to
degrade the free pool of sRNAs in enterobacteria.19,55 It has
been shown that S. meliloti RNase E promotes degradation of
sinI and dnaA mRNAs upon base-pairing with EcpR1 and
RcsR1 sRNAs in an Hfq-independent manner.42,43 RNase J is a
ribonuclease functionally related to RNase E in the control of
quorum sensing and S-adenosyl methionine (SAM) homeosta-
sis in S. meliloti.56 However, the contribution of these enzymes
to RNA turnover and regulation in the group of plant symbiotic
bacteria remains mostly unexplored.

SmYbeY influences decay of bulk and sRNA-regulated
mRNAs

Transcriptomics uncovered a large SmYbeY-dependent RNA
network integrated by more than 650 mRNAs (»11% of the S.

meliloti protein-coding genes) and hardly 35 trans-sRNAs (less
than 6% of those identified in this bacterium).26 Two-thirds of
these transcripts, including most of trans-sRNAs, most likely
are secondary molecular targets of SmYbeY, i.e., their steady-
state levels are positively influenced by the endoribonuclease
activity of SmYbeY. This set of mRNAs encodes fundamental
cellular functions related to energy metabolism, RNA turnover
and translation, whose downregulation would explain the
pleiotropic phenotype associated to a SmYbeY loss-of-function.
Comparison of the SmYbeY- and SmHfq-dependent gene sets
revealed a rather discrete overlap, suggesting that despite of
their commonalities, the free-living and symbiotic phenotypes
of S. meliloti hfq and ybeY mutants rely on the alteration of
largely different pathways.

Notwithstanding this major divergence in their RNA net-
works, several putative SmYbeY substrates can be foreseen
among the known SmHfq-binding mRNAs whose intracellular
concentration increases in the absence of SmYbeY. The fix clus-
ter (fixN1O1Q1P1GHI1S1) and the nifAmRNA, encoding cyto-
chromes associated with the nitrogenase complex and a master
regulator of nitrogen fixation, respectively, are all downregu-
lated in S. meliloti hfq mutants and recovered in their entire
lengths by CoIP with SmHfq (Fig. 1; upper and middle panels).
These findings suggest that SmHfq interacts with these mRNAs

Figure 1. SmYbeY influences turnover of bulk and sRNA-regulated mRNAs. Shown
are enrichment patterns of putative SmYbeY mRNA substrates in SmHfq CoIP-
RNA.27 The vertical axis indicate fold enrichment with respect to a control CoIP-
RNA. Relevant genomic information for each mRNA is provided in the schematics
below the plots. Numbering denotes coordinates in the S. meliloti Rm1021
genome. SmYbeY-mediated silencing of nifA and prbA mRNAs is likely triggered by
base-pairing with the trans-sRNA AbcR2 and the asRNA265, respectively. See text
for further details.
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in a protective mode, thus impairing their degradation by SmY-
beY. Therefore, SmYbeY would fulfil a role in bulk mRNA
turnover in rhizobia that in enterobacteria has been largely
attributed to RNase E.12 Nonetheless, silencing of the nifA
mRNA could be driven by the yet uncharacterized asRNA265
(Fig. 1; middle panel). In this particular case, SmYbeY would
serve an RNase III-like role promoting degradation of the nifA
mRNA by a primary cleavage at the RNA duplex. Recent RNA-
seq surveys have shown pervasive antisense transcription in S.
meliloti, which is strikingly biased toward nodulation and
nitrogen fixation genes within the pSymA megaplasmid.25,57

Despite of S. meliloti chromosome almost triples pSymA in size
and gene content, transcriptomics revealed that SmYbeY has
similar relative impact on gene expression in both replicons.26

It is therefore tempting to speculate on a major role of SmYbeY
in the antisense control of mRNA levels from symbiotic genes
clustered in pSymA.

The set of SmYbeY and SmHfq co-regulated mRNAs
includes several from amino acid transporter genes, whose
expression is negatively influenced by both proteins.26,33 Inter-
estingly, known targets of the SmHfq-dependent AbcR1/2
sRNAs were found among these mRNAs (e.g., livK or
prbA).27,38 The enrichment patterns of these transcripts in
SmHfq CoIP-RNA are compatible with their ribonucleolytic
degradation upon SmHfq-assisted base pairing with AbcR1/2
at their 5’-UTR regions (Fig. 1; bottom panel). In vivo reporter
and in vitro assays using the AbcR2-prbA interaction as a proof
of principle further supported SmYbeY-mediated cleavage of
this imperfect RNA duplex.26 Existing in silico and experimen-
tal evidences suggest that the homologous AbcR1 and AbcR2
mRNAs govern a large regulon of transporter genes in S. meli-
loti, similar to that of GcvB in enterobacteria.27,38,58 More
recently, another S. meliloti trans-sRNA called NfeR1 has been
shown to contribute to the Hfq-independent post-transcrip-
tional silencing of ABC transporter mRNAs in response to
external hyperosmolarity and during symbiosis.59 Therefore, it
is likely these 3 sRNAs and their suites of mRNA targets shape
a dense overlapping regulon controlling nutrient uptake in
response to different external cues, i.e., they show rather differ-
ent expression profiles.38,59 Competition for shared regulatory
sRNAs can promote mRNA cross-regulation via target mRNA-
derived sponges that base-pair with and destabilize the sRNA,
thereby relieving repression of the entire regulon.60 In the
GcvB network, RNase E catalyzes both biogenesis of the RNA
sponge (i.e., SroC) and GcvB degradation.37 It is therefore plau-
sible that SmYbeY may be an active player in this layer of regu-
lation of the particularly large network of S. meliloti ABC
transporters.

Concluding remarks and future perspectives

As hubs in RNA networks, RNA-binding proteins and ribonu-
cleases are global markers of sRNA function and activity mecha-
nisms. In the a-rhizobia S. meliloti, the RNA chaperone SmHfq
has a major role in riboregulation of nutrient uptake, but interacts
with scarcely 14% of trans-sRNAs uncovered by RNAseq. This
finding suggests that other yet unknown proteins may probably
serve an Hfq-like function in S. meliloti. A recent screen of ribo-
nucleoprotein complexes fractionated on a glycerol gradient

(Grad-seq) identified ProQ as a new RNA-binding protein in
S. enteria.44 However, ProQ is not as ubiquitous as Hfq and,
among a-rhizobia, only Rhizobium leguminosarum bv. viceae
encodes a recognizable homolog of this protein.61 Therefore, the
search for new RNA-binding proteins assisting riboregulation in
plant symbiotic bacteria remains opened.

Recent biochemical and genetic characterization of SmYbeY
revealed that it behaves as a metal-dependent endoribonuclease
rather than as an Hfq-like chaperone, as suggested by previous
structural predictions and phenotypic evidences. SmYbeY
indistinctly cleaves ssRNA and dsRNA, which is a unique fea-
ture among known bacterial endoribonucleases. The crystal
structure, mutagenesis analysis and genome-wide mapping of
SmYbeY cleavage sites will shed light about the molecular bases
of this catalytic versatility and its regulation by different metal
co-factors. SmYbeY influences turnover of bulk and sRNA-reg-
ulated mRNAs. The discrete contribution of SmYbeY to the dif-
ferent levels of RNA regulation, i.e., sRNA turnover and target
mRNA decay, as well as the identity of its protein partners
must be further explored in the near future. In particular, the
role of SmYbeY in mRNA silencing driven by antisense tran-
scription will be key to understand post-transcriptional regula-
tion of genuine symbiotic genes.
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