GEOCHEMICAL BEHAVIOR OF RARE EARTH ELEMENTS IN ACID DRAINAGES: MODELING ACHIEVEMENTS AND LIMITATIONS

Alba Lozano^a, Carlos Ayora^a, Francisco Macías^{a,b}, Rafael León^b, María José Gimeno^c, Luis Auqué^c

^a Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain

^bDepartment of Earth Sciences & Research Centre on Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, Campus "El Carmen", E-21071, Huelva, Spain ^cGeochemical Modelling Group. Petrology and Geochemistry Area, Earth Science Department, University of Zaragoza, Spain C/ Pedro Cerbuna 12, 50009, Zaragoza

Corresponding author:

Alba Lozano (alba.lozano@idaea.csic.es)

Annex

Table S1. Aqueous speciation constants for Sc, Y and lanthanides (M) with different ligands (L). References: a: Klugness & Byrne, 2000 ; b: Lee & Byrne, 92; c: Luo & Byrne, 2004;d: Millero, 92; e: Luo & Millero, 2004; f: Schijf & Byrne, 2004; g: Luo & Byrne, 2001; h: Wood and Samson, 2006 (for Sc speciation).

Reaction	log _L β _n	Sc	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ref
M^{+3} + $H_2O = M(OH)^{+2}$ +	llog _{OH} β [*] 1	-4.31	-7.8	-8.81	-8.34	-8.32	-8.18	-7.84	-7.76	-7.83	-7.64	-7.59	-7.56	-7.52	-7.39	-7.45	-7.27	а
$M^{+3} + 2H_2O = M(OH)_2^+ +$	log _{OH} β [*] ₂	-9.7	-16.4	-18.14	-17.6	-17.27	-17.04	-16.51	-16.37	-16.37	-16.18	-16.1	-16.07	-15.96	-15.88	-15.74	-15.67	b, h
$M^{+3} + 3H_2O = M(OH)_3 + 3$	log _{OH} β [*] ₃	-16.1	-25.99	-27.9	-27.23	-26.63	-26.4	-25.91	-25.41	-25.28	-25.08	-24.83	-24.56	-24.35	-24.18	-23.85	-23.85	b, h
$M^{+3} + CO_3^{-2} = MCO_3^{+1}$	$\log_{CO3}\beta_1$	-	7.48	6.73	7.06	7.23	7.28	7.46	7.48	7.39	7.46	7.56	7.55	7.61	7.68	7.81	7.75	с
$M^{+3} + HCO_3^{-} = MHCO_3^{+3}$	log _{HCO3} β ₁	-	2.32	2.34	2.31	2.25	2.28	2.34	2.47	2.36	2.46	2.5	2.46	2.49	2.52	2.53	2.49	с
$M^{+3} + 2CO_3^{-2} = M(CO3)_2^{-1}$	$\log_{CO3}\beta_2$	-	12.63	11.3	11.76	12.08	12.17	12.53	12.63	12.48	12.78	12.91	13	13.12	13.27	13.3	13.37	с
$Ln^{+3} + NO_3^{-} = LnNO_3^{+2}$	$\log_{NO3}\beta_1$	-	-	0.58	0.69	0.69	0.79	0.78	0.83	0.47	0.51	0.15	0.25	0.15	0.2	0.25	0.56	d
M ⁺³ + F ⁻ = MF ⁺²	log _F β1	-	3.97	3.11	3.29	3.35	3.29	3.61	3.72	3.71	3.83	3.88	3.78	3.77	3.77	3.84	3.74	e
$M^{+3} + 2F^{-} = MF_{2}^{+}$	$\log_{F}\beta_2$	-	6.35	5.16	5.48	5.66	5.66	5.99	6.11	6.07	6.24	6.29	5.98	5.96	6.09	6.31	6.31	e
$Ln^{+3} + SO_4^{-2} = LnSO_4^{+1}$	$\log_{so4}\beta_1$	4.18	3.5	3.61	3.61	3.62	3.6	3.63	3.64	3.61	3.59	3.57	3.54	3.51	3.48	3.46	3.44	f,h
M ⁺³ + Cl ⁻ = MCl ⁺²	$\log_{Cl}\beta_1$	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	g

Table S2. Equilibrium constants for the REE surface complexation reactions onto basaluminite (Lozano et al., 2019a).

Flomont	Surface	log K				
Element	Complex	LUG K				
Sc	(XO) ₂ ScSO ₄	-5.19				
	XOSc(OH) ₂	-5.81				
Υ	XOYSO ₄	-2.48				
La	XOLa SO ₄	-2.95				
Ce	XOCe SO ₄	-2.81				
Pr	XOPrSO ₄	-2.69				
Nd	$XONdSO_4$	-2.60				
Sm	XOSmSO ₄	-2.48				
Eu	XOEuSO ₄	-2.50				
Gd	XOGdSO ₄	-2.50				
Tb	XOTbSO ₄	-2.48				
Dy	XODySO ₄	-2.37				
Но	XOHoSO ₄	-2.40				
Er	XOErSO ₄	-2.40				
Tm	XOTmSO ₄	-2.27				
Yb	XOYbSO ₄	-2.13				
Lu	XOLuSO ₄	-2.19				