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ABSTRACT: Truxene-based porous polymers synthesized through the simple “solvent knitting” 

strategy from hexamethyl or tribenzyl truxene-based monomers (TxPP1 and TxPP2), and their 

corresponding TxPP@TiO2 hybrids are used as photocatalysts for H2 production from water using 

methanol as sacrificial agent, under UV-Vis light. These polymers present higher hydrogen 

evolution rate (HER) than TiO2, and remarkable thermo- and photo-stabilities. Hybrids TxPP-TiO2 

exhibited intensely enhanced photocatalytic activity compared to TiO2 or TxPPs alone. In the 

presence of platinum (1%) as cocatalyst, HER from TxPP1@T-10 significantly boosted reaching 

values above 21000 µmol.g-1.h-1 which to the best of our knowledge, represents the highest HER 

reported for hybrids based on TiO2 and conjugated porous polymers. Interestingly, small structural 

differences of the corresponding truxene monomers result in different photocatalytic behavior.  We 

focused here on gaining insight on the charge transfer mechanism and rationalizing the different 

photocatalytic performances in order to establish clear structure-activity relationships. In fact, 

photoluminescence and transient absorption spectroscopy demonstrated that the remarkably 

enhanced photocatalytic activity of the most active hybrids (TxPP1@TiO2) can be attributed to the 

efficiently photogenerated electron-hole separation by a direct Z-scheme mechanism, while lower 
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performance of TxPP2@TiO2, is probably due to a less efficient heterojunction type II charge 

transfer mechanism. 

 

INTRODUCTION 

Photocatalytic hydrogen (H2) production from the water splitting represents one of the most 

promising and challenging strategies for resolving the global energy and environmental problems 

associated to the use of fossil fuels.1–3 Alternatively, titanium dioxide (TiO2) has been widely used 

as photocatalyst for water splitting due its environmental friendliness, low cost, long-term stability 

against photo and chemical corrosion, and favorable energy levels to promote the water-splitting 

reaction.4,5  Unfortunately, despite the advantages above mentioned, photocatalytic water-splitting 

efficiency of TiO2 under solar energy is still quite low due to the inability of this material to absorb 

visible energy and to its high electron-hole recombination rate.6 Coupling TiO2 with other light-

responsive semiconductors (such as graphitic carbon nitride, g-C3N4)7 has demonstrated to be an 

effective way to improve its photocatalytic activity by enabling the charge carrier separation and 

extending its light absorption spectrum.8,9 Recently conductive polymers10,11 and their composites 

with inorganic semiconductors have emerged as promising alternatives.12 Conjugated porous 

polymeric networks are particularly interesting because of their insoluble character and permanent 

porosity which render them very attractive for catalytic heterogeneous processes, while  their -

delocalized systems provide  the necessary  photoactivity.13–16 On the other hand, their 

optoelectronic properties can be readily tailored by the convenient choice of the monomers or by 

their rational post-functionalization in order to optimize their performance.17,18 Although several 

hybrid materials based on porous polymers and inorganic semiconductors have been reported in 

the last few years,4, 12 the fundamentals of the synergy observed in this kind of photocatalytic 

systems have been scarcely explored beyond those based on g-C3N4. 
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Until now, a great variety of -conjugated molecules have been used as monomers in the 

construction of photoactive porous polymers.17,19 Among them, we are interested in the truxene 

moiety. This highly stable trigonal molecule owns attractive photophysical and semiconducting 

properties, which are being extensively exploited by its incorporation in different light emitting 

and photovoltaic devices.20 Interestingly conductive porous polymers (CPPs) obtained by 

covalently linking of truxene-building units have been found to show high specific surface area, 

thermal and chemical stability and excellent heterogeneous photocatalytic activity in the aerobic 

oxidative self-coupling of benzylamine even under natural sunlight illumination.21,22 Inspired by 

these positive results, herein we investigate two covalently linked truxene-based porous polymers 

(starting from differently substituted truxene monomers, Scheme 1) and their corresponding 

hybrids with TiO2 to be used as photocatalysts for light-driven hydrogen production from water. 

To unravel the differences in the HER from both hybrid system we have focused our investigation 

in the establishment of structure–activity relationships by means of photoluminescence 

experiments, TEM images and time resolve transient absorption spectroscopy (TAS). 
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Scheme 1. Synthesis of truxene-based polymers. 

RESULTS AND DISCUSSION 

Synthesis of truxene-based polymers. 

We have recently reported the simple multi-gram synthesis of porous truxene-based organic 

polymer TxPP1 (see Scheme 1), by AlCl3 mediated coupling of hexamethyltruxene (TxMe) 

following what is known as a “knitting” protocol.21 By using the same synthetic approach we have 

now synthesized a new polymer TxPP2, starting from a truxene functionalized in the 5,10,15 

positions with three bulky benzyl groups in an all syn configuration (TxBn). The polymerization 

presumably occurs by Friedel-Crafts alkylation with the participation of CH2Cl2 molecules as 

electrophile providing methylene linkers. The tribenzyltruxene can be easily obtained by 
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alkylation of truxene in basic medium followed by isomerization of the syn- anti mixture to the 

most stable syn-isomer as previously reported.23,24  

After purification, the polymer was obtained as an orange powder in 90% yield. Elemental 

analysis, ICP, EDX, and TGA confirm both the yield and that no residual elements from the 

coupling reaction are left (Table S1, Supporting Information). Please, note that polymers obtained 

through Suzuki or Sonogashira C-C-couplings often contain different quantities of residual Pd 

catalyst, which can alter their photocatalytic behavior.25–27 In this case, the only possible metal 

impurity is aluminum, and its presence was discarded by EDX and ICP analysis. 

Figure 1 shows the 13C cross-polarization magnetic-angle spinning (CP/MAS) NMR, Fourier 

transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA) and N2 adsorption 

isotherms at 77K of both TxPP2 and TxPP1polymers (red and blue, respectively). 

In the 13C CP/MAS NMR spectrum the new polymers exhibit signals in the range of 120-140 ppm 

attributed to the aromatic carbons and in the range of 20-60 ppm corresponding to methylene 

carbons (benzylic and linker). FT-IR spectrum shows peaks at 3020-2920 cm-1 corresponding to 

(C-H) vibrations, a peak at 1610-1600 cm-1 corresponding to (C=C) and peaks at 1445, 1395 

and 849 cm-1 which are attributed to the vibrations of the truxene skeleton. TxPP2 shows the same 

high thermal stability under air atmosphere as TxPP1. As can be seen, decomposition starts around 

350 ºC and at 500 ºC, the polymers were totally degraded, the gain (5%) of weight about 300 ºC 

is in agreement with the easy oxidation of the methylene linkers.21 
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Figure 1. a) 13C-NMR, b) FT-IR, c) TGA and d) N2 isotherm adsorption for TxPP2 polymer 

compared with TxPP1.15  

The surface area of TxPP2 obtained by Brunauer–Emmett–Teller (BET) equation is ca. 876 

m2.g-1, significantly lower than that previously obtained for TxPP1 (ca. 1688 m2.g-1) (Table 1). 

This is probably due to higher steric hindrance introduced by the bulky benzyl substituent. 

Scanning electron microscopy (SEM) of TxPP2 shows a spherical morphology, as frequently 

observed in porous polymers (Figure S2, Supporting Information). 
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Table 1. Porous properties of truxene-PPs, bare TiO2 and hybrid materials.  

Polymer SABET (m2.g-1)a Pore volume (cm3.g-1)b Pore size (nm)c 

TxPP1 1688 1.37c 3.25c 

TxPP2 876 0.55c 2.50c 

TiO2d  117 0.45 11.5 

TxPP1@T-10 92 0.45e 17.9e 

TxPP2@T-10 96 0.36e 13.1e 

aBET surface area calculated from the nitrogen adsorption isotherm. bAt P/P0: 0.99. cby DFT 

methods. dBare TiO2 BET surface area is included for comparative proposes. e by BJH method.  

 

Photocatalytic activity  

The photocatalytic activity of truxene polymers was evaluated in the hydrogen evolution 

reaction from water under UV-Vis irradiation (see spectrum of the irradiation source at Figure S3, 

Supporting Information) using 10 % methanol as sacrificial agent. Under these conditions, TxPP1 

and TxPP2 show hydrogen evolution rates of 285 mol.h-1.g-1 and 116 mol.h-1.g-1 respectively 

(entries 3 and 5, table 2) representing hydrogen production values 4.7 and 1.9-fold respectively 

higher than that obtained with TiO2.  

Since, it is very well known that noble metal co-catalysts, such as platinum, act as electron traps 

hindering the electron–hole recombination in artificial photosynthesis processes28–30 we opted to 

add platinum to our materials. Thus, both polymers loaded with platinum nanoparticles, 

photodeposited from H2PtCl6 (1 wt. %), show a slight increase in the hydrogen evolution rate 

(HER) (ca. 320 µmol g-1.h-1 and 134 µmol g-1.h-1, entries 4 and 6, table 2). Results, with and 

without loading of Pt, seem to be in the same order of other porous polymers described in the 

literature.15,30–32 The increase of hydrogen production by Pt loading is usually more remarkable in 

TiO2 and other inorganic semiconductors than in the organic counterparts.33 In our hands, the HER 
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by TiO2 loaded with the same amount of Pt increased up to 7620 µmol g-1.h-1, (entries 1-2, table 

2). In order to analyze possible synergies between TiO2 and polymers based on truxene, we 

prepared hybrid organic-inorganic materials. Bare TiO2 was loaded with 5, 10 and 15 wt. % of 

TxPP1 (TxPP1@T-5, TxPP1@T-10 and TxPP1@T-15, respectively). In all cases the morphology 

of the hybrid is the same, showing tiny nanocrystals of TiO2 decorating the surface of the polymers 

(Figure 2). The hybrid textural properties such as crystallinity and porosity were evaluated by 

means of powder x-ray diffraction (XRD) and N2 adsorption measurements, respectively. As 

expected, TxPPs are amorphous and hybrid materials show the diffraction pattern of anatase 

(Figure S4). On the other hand, the adsorption properties of both hybrids are dominated by the 

titania (see Table 1), showing N2 adsorption isotherms similar to bare TiO2 (see Figure S5 at 

Supporting Information). This is indicative of the core shell structure of the hybrid materials, being 

the TiO2 nanoparticles blocking the surface of both polymers. 

TxPP1@T-10 shows the highest hydrogen production rate (ca. 388 µmol g-1.h-1), 4.7-fold higher 

than the sum of the photocatalytic activities of the bare materials. Meanwhile, the same proportion 

of polymer loading with TxPP2 shows also a synergy effect (ca. 100 µmol g-1.h-1) but lower than 

in the case of TxPP1 (see theoretical HER values without synergy in Table S2). Figure 3 depicts 

the kinetic profile of the reaction catalyzed by both hybrids at 10 wt.% of polymer loading and 

bare titania. 
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Table 2. Photocatalytic H2 evolution rate (HER).  

entry Catalyst 
Co-catalyst 
added 

Sacrificial 
agent 

Light 
source 

HER 

(µmol .g-1.h-1) 
Ref(year) 

1 TiO2 -- 

10 vol.% MeOH Hg Lamp 

60 

This work 

2 TiO2 1% Pt 7620 

3 TxPP1 -- 285 

4 TxPP1 1% Pt 320 

5 TxPP2 -- 116 

6 TxPP2 1% Pt 134 

7 TxPP1@T-5 -- 86 

8 TxPP1@T-10 -- 388 

9 TxPP1@T-15 -- 232 

10 TxPP2@T-10 -- 100 

11 Pt/TxPP1@T-5 1% Pt 11460 

12 Pt/TxPP1@T-10 1% Pt 21945 

13 Pt/TxPP1@T-15 1% Pt 9600 

14 Pt/TxPP2@T-10 1% Pt   17980  

15 

TiO2@CMPBBT (6.7%) 

0.5 Pt TEOA solution 
Xe-lamp 
(λ≥420 nm) 

5933 

35(2017) TiO2 -- 

CMPBBT 333 

16 

TiO2@COP64 (10%) 

3 wt. % Pt 20 vol.% MeOH Xe-lamp 

15020 

36(2017) TiO2 9200 

COP64 0 

17 

TiO2@g-C3N4 
Pt (amount 
no provided) 

20 vol.% MeOH 
Solar 
simulator 

8931 

37(2015) TiO2 7557 

g-C3N4 926.8 

18 polycathecol@TiO2
a) -- 5 vol% TEOA  Solar light 10925 38(2017) 

19 B-BT-1,4-E@TiO2
a) 

0.03% 
residual Pd 

TEOA aq 
Xe lamp 
(λ≥420 nm) 

7333 39(2018) 

20 TiO2@B-BT-1,4-E 1wt%Au 10 vol% TEOA 
Xe lamp 
(λ≥420 nm) 

26640 40(2018) 

21 BFA@TiO2
a) residual Pd TEOA aq 

Xe lamp 
(λ≥420 nm) 

3670 41(2019) 

a) Note that in these cases the polymers are coating the TiO2 nanocrystals 
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Figure 2. a) Cartoon describing the morphology of both hybrids; b) SEM image of TxPP1@T-10 

hybrid material; c) SEM image of TxPP2@T-10 hybrid material. 

With these results in hand, we decided to combine both approaches: the mixture of truxene 

polymers with TiO2 and the loading effect of Pt. Interestingly, Pt-loaded hybrid catalysts showed 

a significant synergy effect in all different composites (Pt/TxPP1@T-5, Pt/TxPP1@T-10, 

Pt/TxPP1@T-15) being the hybrid material with 10% loading, the one that showed the highest H2 

production. Pt/TxPP1@T-10 and Pt/TxPP2@T-10 samples showed an impressive increased HER 

(ca. 21945 µmol g-1 h-1 and 17980 µmol g-1 h-1) 2.9 and 2.4-fold respectively higher than Pt/TiO2. 

Figure 4 depicts the kinetic profiles of these reactions. For comparative purposes, entries 15-21 at 

table 2 depict results from literature about hybrid materials based on conjugated polymers and 

titania. Note that this topic has been reviewed recently by Liras et al.12 As far as we know, the 

hybrid material Pt/TxPP1@T-10 shows the highest HER reported up to now for hybrid materials 

based on TiO2 and conjugated porous polymers. A higher HER in related systems have been only 

found in an hybrid material composed of a linear conjugated benzothiadiazole-based polymer  (B-

BT-1,4-E, entry 20) and TiO2.40 However, note that in this case, Au NPs are employed as cocatalyst 

taking advantage of the gold surface plasmon resonance (SPR), making the comparison not 

straightforward. 
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Figure 3. a) Hydrogen production from TxPP@TiO2 hybrids loaded with 10 wt. % of polymer. b) 

Hydrogen evolution rate from TxPP@TiO2 hybrids, analyzing the effect of polymer loading. 

Results from TiO2 under the same conditions are included for comparative purposes. The estimated 

measurement error is 5 %. 

Figure 4. a) Hydrogen production and b) comparative of HER of Pt/TxPP1@TiO2 at different 

polymer loading (blue points of different intensities) and Pt/TxPP2@T-10 (red point). Results 

from Pt/TiO2 and Pt/TxPPX are included for comparative purposes. The estimated measurement 

error is 5%. 
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Noteworthy, these hybrid materials also show high photostability. The most active hybrid 

Pt/TxPP1@T-10 was continually irradiated during 21 hours showing a slightly loss of activity 

under 15 hours of irradiation (Figure S6) and intermittently during three on-off cycles of 4 hours 

each without loss of hydrogen production (Figure S7). 

 

Figure 5. a) Cyclic voltammetry of TxPPs deposited on platinum, measured in acetonitrile 

containing 0.1M TBAPF6 as supporting electrolyte. A platinum electrode acts as working electrode 

and the scan rate was 50 mVs-1. b) VB/CV energy levels of TxPPs and TiO2. Potential required 

for water splitting reaction and oxidation of methanol are included.  

 

In order to clarify the differences in the photo-reactivity of both hybrid materials, understanding 

the electron charge mechanism operating, will be of fundamental importance. With this in mind, 

the relationship between the molecular and electronic structure of both truxene-polymers has been 

investigated. The band energy edges of TxPPs were determined by optical and electrochemical 

methods. Band gap energies were attained from the tauc plot as direct transition obtained by means 

of diffuse reflectance measurements (Figure S8 and Figure S9), the tauc plot as indirect transitions 

have also been calculated. Meanwhile, the conduction band (CB) was determined by cyclic 
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voltammetry (Figure 5a). Attending to these data, both conduction and valence band energy levels 

of CPPs based on truxene with respect to the valence and conduction band of TiO2
42

 have been 

located (Figure 5b). With these energy levels two kind of charge transfer mechanism could be 

possible (Figure 6). The first one corresponds to a type II heterojunction mechanism, where both 

polymer and TiO2 absorb light and the polymer injects electrons from its CB level to the TiO2  CB, 

being the TiO2 the responsible of the reduction pathway (Figure 6a).12 The second one is referred 

to a Z-scheme mechanism where, once a pair of excitons is generated in both materials, the 

electrons of TiO2 CB are transferred to the polymer VB, being the polymer responsible of the 

reduction pathway (Figure 6b). In principle, a Z-Scheme charge transfer mechanism offers higher 

overall H2 production than Type II heterojunction mechanism as it provides a higher energy gap 

between the reduction and oxidation pathway. Note that both mechanisms are valid for H2 

production and for the photoreduction of platinum. Platinum (0) nanoparticles will be deposited 

either over TiO2 (Type II) or over the polymer surface (Z-Scheme) depending of the mechanism 

and it is over the Pt NPs where the reduction reaction takes place.  

 

Figure 6. Plausible electron transfer mechanisms: a) type II heterojunction; b) Z-Scheme. 
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In order to gain insight in the electron transfer mechanism, photoluminescence and transient 

absorption experiments have been carried out. TiO2 and TxPP1 show fluorescence emission 

properties in the solid state (Figure 7). When TxPP1@T-10 is analyzed under steady state 

conditions, the fluorescence emission of the TiO2 is quenched (Figure 7a), whereas the 

fluorescence attributed to the polymer is enhanced. In order to discard a filter effect, due to 

absorption by the polymer fluorescence, we have performed time resolved fluorescence 

experiments. The quenching of the fluorescence emission of the TiO2 is confirmed by a decrease 

in the TiO2 average lifetime when it is forming part of the hybrid material (Figure 7b), while the 

TxPP1 fluorescence lifetime does not change (Figure 7c). This observation suggests that (in a Z-

scheme electron transfer mechanism): the electron’s population in the TiO2 valence band decreases 

while conduction band’s population of TxPP1 increases. However, the same experiment with 

TxPP2@T-10 show no change in the lifetime of TiO2, (Figure 8) leading to conclude that in this 

case a type II charge transfer mechanism should be the responsible of the synergy between both 

materials. Note that in this case TxPP2 does not show fluorescence.  

 

Figure 7. a) Steady state fluorescence emission of TiO2 (blue line), TxPP1 (red line) and 

TxPP1@T-10 (orange line) in the same measurement conditions (solid state, exc=300 nm, with a 
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cut off filter at 390 nm). b) Fluorescence lifetime of TiO2 (blue) and TxPP1@T-10 (orange) 

exciting at exc= 372 nm, 67 ps of laser pulse with a 425-475 nm band pass filter. c) Fluorescence 

lifetime of TxPP1 (red) and TxPP1@T-10 (orange) exciting at exc=372 nm, 67ps of laser pulse 

with a 525-575 nm band pass filter. 

 

Figure 8. a) Steady state fluorescence emission of TiO2 (blue line) and TxPP2@T-10 (dark cyan) 

in the same measurement conditions (solid state, exc= 300 nm, with a cut off filter at 390 nm). 

Note that TxPP2 does not show fluorescence emission; B) Fluorescence lifetime of TiO2 (blue) 

TxPP2@T-10 (dark cyan) exciting at exc= 372 nm, 67ps of laser pulse with a 425-475 nm band 

pass filter. 

 

A complementary approach to investigate and confirm the photophysical behavior of TxPP-TiO2 

hybrids was based on laser flash photolysis (LFP) experiments. Transient absorption experiments 

(TAS) are effective spectroscopy methods to detect the transients species generated by photon 

absorption.37,38. As a control, the decay trace for TiO2 alone was measured, showing after excitation 

with a laser source on 355 nm, two major populations with a first shortest lifetime ( = 47.50 ns) 

in the nanosecond scale and a second longer lifetime in the microsecond scale ( = >1 µs) (Figure 

9, black traces). On other hand, when TxPP2 or TxPP1 were submitted to LFP, no significant 
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signal was observed (Figure S10 Supporting Information); however, noticeable differences were 

detected for the TiO2 signals in the presence both polymers (10%) depending on whether a polymer 

or other was monitored. 

Interestingly, although both polymers show different behavior, in both cases a remarkable 

lifetime enhancement is observed when compared to TiO2 alone. Thus, for TxPP2@T-10 polymer, 

an increase in the transient absorption was detected during the first nanoseconds after the laser 

pulse (Figure 9a, right side), accompanied with a small but significant delay in the lifetime profile. 

In addition, an enhancement in the shortest lifetime ( = 56.35 ns, major population) is also 

observed, followed by an electron-hole recombination in the same time scale than that obtained 

for TiO2. This result suggests that an electron transfer from the polymer to TiO2 excited state is 

occurring (Figure 9c, red traces). 

 

 

Figure 9. a) Transient absorption spectra obtained at different delay times after the laser pulse 

for TiO2 (black), TxPP1@T-10 (blue) and TxPP2@T-10 (red) in aqueous suspension solutions 

under inert atmosphere. b) Decay traces at 460 nm (exc = 355 nm) monitored at long time scale 

ca. 700 ns and c) monitored at short time scale ca. 100 ns. 

 

On the other hand, TxPP1@T-10 shows no change in the shortest lifetime of the excited state’s 

absorption ( = 46.80 ns) and a longer lifetime in the microsecond scale up to 6 µs (Figure 9b, blue 
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traces and Figure S11 Supporting Information) when compared to bare TiO2 or TxPP2@T-10. 

This outcome means that the photogenerated charge can migrate further before it decays back to 

the ground state leading to a more efficient electron–hole separation. This result is in accordance 

with data reported in literature, where for other semiconductors the presence of an electron 

acceptor (TxPP1 in our case), increases its TAS signal in the microsecond scale.45  In summary, 

TAS studies combined with fluorescence results (Figures 7 and Figure 8), confirm a heterojunction 

type Z-scheme for TxPP1@T-10, and a heterojunction type II for TxPP2@T-10 and explain the 

higher photocatalytic activity of TxPP1@T-10 (Figure 3b). Both charge transfer mechanism can 

be understood considering the differences in the molecular structure of the constituent monomeric 

units in the polymers. Stacking interaction between neighboring units are expected to be more 

favorable in TxPP1 (with truxenes functionalized with less bulky methyl substituents), than in 

TxPP2 (with truxenes functionalized with sterically demanding benzyl groups), providing a more 

efficient pathway for charge migration.24 This effect could lead to a better charge separation and 

more efficient interface with the TiO2.  

As we explained above, if the charge transfer mechanism runs by a Z-Scheme, the reduction 

pathway is located in the polymer surface while the oxidation pathway occurs in the titania surface. 

To confirm this point, a transmission electron microscopy (TEM) image of the hybrid TxPP1@T-

10 loaded with Pt has been recorded (Figure 10a). As the platinum nanoparticles are deposited by 

photoreduction of a platinum precursor in a Z-Scheme mechanism, they should be deposited in the 

polymer surface. Figures 10b shows the same image field but recorded by scanning transmission 

electron microscopy (STEM) in high-angle annular dark field (HAADF) mode where the brilliant 

points presumably correspond to the platinum nanoparticles. Meanwhile, Figures 10d-10g depict 

a mapping analysis for Ti, O, C and Pt elements by means of energy-dispersive X-ray (EDX) 
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analysis, which confirms the presence of platinum nanoparticles mostly in the polymer surface. 

However, TEM image of Pt/TxPP2@T-10 shows the absence of platinum in the polymer surface, 

corroborating the charge transfer mechanism type II (Figure S12b at supporting information). 

 

Figure 10. a) TEM image; b) High-angle annular dark field (HAADF) image by STEM; d)-g) 

element mapping by EDX of Ti, O, C and Pt, respectively; h) Overlapping of HAADF Image and 

EDX images. All of them regarding to Pt/TxPP1@T-10 (loading Pt by photoreduction) sample. 

  

CONCLUSIONS 
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This work shows the ability of porous organic polymers based on truxene moieties (TxPP1 and 

TxPP2) and their corresponding TxPP@TiO2 hybrids to photocatalytically produce hydrogen from 

water under UV-Vis irradiation using methanol as sacrificial agent. A clear synergic effect 

between the polymers and titania is observed in the hydrogen production, which is enhanced when 

Pt nanoparticles are used as co-catalyst. Differences in the truxene scaffold lead to different charge 

transfer mechanism (between polymer and TiO2), that was elucidated by photoluminescence and 

transient absorption experiments, being Z-scheme for the most active composite (TxPP1@T-10) 

and type II heterojunction for the less active (TxPP2@T-10). In particular, Pt/TxPP1@T-10 

showed the highest HER (21000 µmol.g-1.h-1) reported so far for hybrid materials based on porous 

polymers and TiO2. 

In conclusion, in this manuscript we have established useful structure-activity relationships of 

great interest in the development of new hybrid materials with highly efficient photocatalytic 

properties with the aim of optimizing the hydrogen production from water, one of the most 

currently needed challenge to stop relying on fossil fuels. 

EXPERIMENTAL  

Synthesis of Truxene-based porous organic polymers.  

In a typical reaction, under inert atmosphere, substituted truxene (0.5 mmol) was dissolved in 

15 mL anhydrous dichloromethane, then, 1 g of anhydrous aluminum chloride was added under 

N2 atmosphere with stirring and heated at 40 ºC for 24-48 h. The resulting black solid was filtered 

and thoroughly washed with CH2Cl2, HCl (2 mL HCl/ 50 mL H2O), THF and refluxing methanol, 

to obtain the corresponding yellow-orange solid (>90 % yield).  

Preparation of hybrids polymer@TiO2.  

TiO2 was previously calcined in air at 400 °C for 4 hours in order to remove all the possible 

organic impurities. Both TiO2 and truxene-polymer (1, 5, 10 or 15 wt. %) were dispersed in a 
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mixture of water/acetonitrile (1:1 v/v) and sonicated for 15 min; afterward, the solvents were 

removed using a rotary evaporator at 50 ºC and the mixture was crushed in a mortar. Catalysts are 

labelled as polymer@T-x, where x refers to the polymer loading (1, 5, 10 or 15 wt. %).  

Photocatalytic activity test.  

Photocatalytic hydrogen production experiments were carried out in semi-batch mode in a 

tightly closed Pyrex glass reactor containing 1 L of a 10 vol. % methanol aqueous solution and 

100 mg of catalyst. The reactor was irradiated with a medium-pressure Hg immersion lamp kept 

at 20 °C by means of a water circulation chiller (Huber Minichiller NR). Ar was bubbled through 

the solution at a flowrate of 60 sccm in order to remove air and carry the product gases for analysis 

in a dual-channel Agilent micro-GC 450 equipped with MS5A PLOT and PoraPLOT U columns 

and TCD detectors. 

The platinum nanoparticles where deposited by photoreduction of H2PtCl6 precursor. Thus, 100 

mg of polymer@T-x hybrid was dispersed on 1 L of a mixture water: MeOH 9:1 v/v (same 

configuration vide infra). The dispersion was deaerated under an Argon current of 60 mL cm-3 and 

finally, 236 µL of a 4.25 gL-1 solution of H2PtCl6 were added and then UV irradiated. Note, that 

this experiment is used directly to measure the hydrogen production. 

Characterization techniques 

Ultraviolet–visible diffuse reflectance spectra (UV– Vis DRS). Ultraviolet–visible diffuse 

reflectance spectra (UV– Vis DRS) of the solid powdered samples were obtained by a Perkin 

Elmer Lambda 1050 UV/Vis/NIR spectrometer and the reflectance spectra were plotted as the 

Kubelka Munk function (Equation 1): 

F R ………………….Equation 1 
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To measure the optical band gap tauc plot as direct (F(R)*h)2 vs. h) and indirect (F(R)*h)1/2 

vs. h) transition have been depicted. 

Fluorescence emission spectra. Experiments for solid powdered samples were carried out with 

a Fluorescence Spectrometer Perkin Elmer LS 55, with an excitation wavelength of 300 nm and 

using a cut-off filter at 390 nm in front-face mode. Lifetime measurements were carried out by 

Time Correlated Single Photon Counting (TCSPC) with a Mini- equipment from Edinburgh 

Instruments. A excitation source we used a laser diode (model EPL375) at 372 nm, with a pulse 

width of 61.2 ps at a repetition rate of 1 MHz in the presence of two kind of band pass filter 425-

475 nm and 525-575 nm, respectively. 

Laser Flash Photolysis (LFP). Experiments for aqueous samples were performed with a LP980 

from Edinburgh Co (LP980-K) instrument. The system includes as a pump source an optical 

parametric oscillator (OPO) pumped by the third harmonic of a Nd: YAG laser from EKSPLA. 

The measurements were monitored at 355 nm as excitation wavelength with single low energy 

pulses of 1 mJ/pulse of ca. 5 ns duration and 10 Hz as repetition rate. The white probe light is 

provided by a pulsed xenon flash lamp (150 W) with a duration of the probe of 250 us. This probe 

light goes through the sample and then a monochromator (TMS302-A, grating 150 lines/mm) that 

disperses the probe light before to reach a PMT detector (Hamamatsu Photonics) to obtain the 

transient picture. Before the acquisitions, the samples were diluted in aqueous solutions and 

sonicated to disperse the polymers. The samples were bubbled with N2 for 15 minutes and 

measured with an absorbance of ∼0.3 at λexc = 355 nm. All transient spectra and decay traces were 

recorded at room temperature using 10 x 10 mm2 quartz cells. 

Cyclic voltamperometry and photovoltage measurements. A three-electrode cell configuration 

was used. Current and voltage signals were measured through an Autolab PGSTAT204 
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potentiostat/galvanostat station. A paste was prepared mixing 5 mg of each Truxene-CPPs with 

45µL of Nafion perflorinated resin solution (5% wt. in mixture of lower aliphatic alcohols and 

water, 45%) and 450 µL of isopropanol. After that, this paste was deposited and dried on the 

platinum working electrode. A platinum wire was used as the counter electrode and an Ag wire 

electrode as the pseudo-reference (calibrated with ferrocene). 0.1 M TBAPF6 in acetonitrile was 

utilized as electrolyte.  

Scanning Electron Microscopy (SEM). The images were taken with a TM-1000 tabletop 

microscope (HITACHI). The samples were sprinkle on a carbon double-sided tape without further 

metalation. 

Transmission electron microscopy (TEM). Experiment for the TxPP1@TiO2 10% loaded with 

1wt% Pt were carried out with a FEG S/TEM (Talos F200X, FEI) equipment provided with a 

chemical analysis system via energy-dispersive X-ray spectroscopy (EDS), a digital CMOS 

camera able to acquire images with a maximum resolution of 4×4 k. The equipment offers a TEM 

point resolution ≤ 0.25 nm at 200 kV, information threshold ≤ 0.12 nm at 200 kV, and a STEM-

HAADF at 200 kV ≤ 0.16 nm. On the other hand, the image for TxPP2@TiO2 10% loaded with 

1wt. % Pt was carried out with a JEOL JEM 2100 equipment with chemical analysis system via 

energy-dispersive X-ray spectroscopy (EDS), a camera CCD ORIUS SC1000 (Model 832) with a 

TEM point resolution ≤ 0.25 nm. 
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