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Highlights  

 Oudneya africana responds to drought by increasing instantaneous and intrinsic water use 

efficiency, indicating that photosynthetic limitations could be due to stomatal closure. 

 O. africana has a high capacity to restore photosynthesis after re-watering 

 Polyphenols, flavonoids and total antioxidant capacity increased with increasing drought 

stress severity thus enabling the plant to survive under adverse environmental conditions 

 

 

Abstract 

 

Plants in arid and semi-arid regions are often exposed to adverse environmental conditions such 

as drought which can affect plant growth. In this study, we investigate the physiological 

responses of Oudneya africana to drought, using two different irrigation regimes (treatment 1: 

50% field capacity; treatment 2: 25% FC), a 10- and 20-d time course analysis and a 5-d re-
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watering period following drought. Our results show that water deficiency reduced growth 

mainly in T2 plants after 20 d of treatment, with a reduction of 26% in plant height, 64% in leaf 

numbers and of 39% in leaf area, as well as a significant decrease (50%) in the photosynthesis 

rate and chlorophyll content. While both instantaneous (A/E) and intrinsic (A/gs) water use 

efficiency were observed to increase by 96.3% and 173.20%, respectively, stomatal closure 

increased with  time and the severity of  drought, mainly in the abaxial side (50%), as evidenced 

by gs and Ci/Ca data. Polyphenols, flavonoids and total antioxidant capacity increased close to 

2-3-fold, with increasing drought stress severity. Re-watering led to a recovery in most of the 

parameters analyzed, mainly the photosynthetic parameters, while antioxidant capacity 

remained high. Given these results, the plasticity of photosynthesis and the high antioxidant 

capacity of O. africana appear to contribute to its tolerance to drought.  

 Key words: antioxidants, desert plant, drought stress, Oudneya africana, phenols, 

photosynthesis 

Abbreviations: A, photosynthesis rate; ABTS•+, 2,2′- azino-bis (3-ethylbenzothiazoline-6-

sulfonic acid) radical; Chl, chlorophyll; DPPH.-, 2,2-diphenyl-1-picrylhydrazyl; E, 

transpiration; FC, field capacity; gs, stomatal conductance; Ci/Ca, intercellular to ambient CO2 

ratio; TEAC, Trolox-equivalent antioxidant capacity; TPC, total phenolic content.  

 

1. INTRODUCTION 
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In recent years, due to climate change challenges and harsh natural environments, a series of 

problems, such as declining vegetation cover, poor plant growth and widespread water stress, 

have arisen (Li et al., 2013). In particular, drought, one of the major abiotic stresses, reduces 

plant growth by affecting various physiological and biochemical processes, such as membrane 

integrity, pigment content, osmotic adjustments, water relations, secondary metabolism 

(Marchese et al., 2010; Chiappero et al., 2019), stomatal closure and, consequently, 

photosynthetic activity (Praba et al., 2009; Ma et al., 2016; Moualeu-Ngangue et al., 2017). 

Photosynthesis, the most fundamental and intricate physiological process in green plants 

(Ashraf and Harris, 2013), is highly susceptible to many environmental factors, including 

temperature, light intensity, CO2 concentration, humidity and soil moisture (Ashraf and Harris, 

2013). The decrease in the photosynthetic rate under environmental stress conditions is mainly 

attributed to stomatal regulation, with disruption in the supply of  CO2  caused by stomatal 

closure, non-stomatal regulation, mainly associated with  reduced Rubisco activity, CO2 

availability in the chloroplast, and PSII photochemistry efficiency (Chaves et al., 2009; Xu et 

al., 2014; Wang et al., 2019). Under limited water conditions, plants undergo stomatal closure 

to prevent further water loss, which limits CO2 availability for photosynthesis, thus giving rise 

to a reduction in NADPH (Kalefetoglu and Ekmekci, 2005). Besides stomatal limitations, 

impairments in leaf photochemistry and biochemistry are additional factors that cause a 

decrease in photosynthesis during water stress (Flexas et al., 2009). However, stomatal closure 

and mesophyll conductance are the principal factors limiting photosynthesis during the 

adaptation of plants to drought stress (Flexas et al. 2009). Ashraf and Harris (2013) have 

reported that drought and high-temperature stress adversely affect the functionality of both 

photosystems and reduce electron transport, giving rise to a reduction in ATP and NADPH.  
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The relative content of chlorophyll, one of the major components of chloroplast, is positively 

related to the photosynthetic rate. Numerous studies have shown that drought stress can 

significantly decrease photosynthetic pigment content (Chl a, Chl b and Chl a + b) (Dias et al., 

2018; Semerci et al., 2016). Under drought stress conditions, the decrease in chlorophyll content 

could be considered a typical symptom of oxidative stress as a result of pigment photo-oxidation 

and chlorophyll degradation (Anjum et al., 2011; Ashraf and Harris, 2013). Drought causes 

oxidative stress through a reduction in CO2 assimilation, which induces an excess of excitation 

energy and electron flux to O2, giving rise to photo-oxidative stress and reactive oxygen species 

(ROS) overproduction (Zou et al., 2009). ROS are highly reactive species which damage 

proteins, chlorophylls, membrane lipids and nucleic acids (Halliwell and Gutteridge, 2007). 

Cells have developed an important, complex system of enzymatic and non-enzymatic 

antioxidant defenses to cope with the negative effects of ROS. Enzymatic antioxidants, 

including catalase (CAT), superoxide dismutases (SODs) and peroxidases (POXs), are among 

the most important antioxidants; ascorbic acid, glutathione, flavonoids, phenols and carotenoids 

are examples of non-enzymatic antioxidants which are more abundant in plants (Halliwell and 

Gutteridge, 2007).  

Phenolic compounds and flavonoids are among the most important and widely distributed 

secondary products in plants (Ali and Abbas, 2003). These metabolites complement the 

enzymatic antioxidant system and have a considerable potential to reduce ROS and to prevent 

cell damage (Agati and Tattini, 2010). Their biosynthesis and accumulation are generally 
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induced in response to biotic and abiotic stimuli such as drought stress in plant tissues (Naczk 

and Shahidi, 2004). Under drought conditions, flavonoids can preserve the integrity of the 

chloroplast membrane through lipid remodeling in order to prevent oxidative damage (Inoue et 

al., 2011).  

Oudneya africana is an endemic Saharan plant of the Brassicaceae family widely found in the 

Libyan, Tunisian, Algerian and Moroccan deserts (Quezel and Santa, 1963). The principal role 

of this desert plant is to stabilize mobile dunes (Chaieb and Boukhris, 1998) and is also used 

for medicinal purposes for digestive problems, colds, flu, fever and scorpion bites (Bouhadjera 

et al., 2005). Our overall goal was to study Oudneya africana, a good model to evaluate some 

of the survival mechanisms under extreme drought conditions, by analyzing its growth and 

several photosynthetic mechanimes, total non-enzymatic antioxidant capacity under moderate 

and severe   stress conditions, as well as 10- and 20-day treatment periods. This study, which 

also analyzes the effect of plant re-watering following drought, should provide invaluable 

information to design new strategies for sustainable agriculture   and ecosystem preservation in 

arid areas. 

 

2. MATERIAL AND METHODS 

2.1. Seed collection and site description 
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Dried O. africana seeds were collected from a natural population in Ksar Ghilen in southern 

Tunisia (Fig. 1 a). The site is characterized by an arid climate, with dry and hot summers and 

cold winters. Rainfall of less than 150 mm is irregular and sometimes absent for several years. 

The soil is sandy, with dunes reaching 12m in height (Fig. 1 b). The Ksar Ghilen site is 

dominated by O. africana, Ephedra alata, Stipgrostis pungens, Retama raetam and Calligonum 

azel.  

2.2 Growth conditions and treatments 

Germination experiments were conducted in the dark in an incubator set at 18ºC. Pots (2L), 

containing dried sand and compost (2:1), with a drainage layer at the bottom of the pot, were 

weighed, and a nutritive solution was added; when the water was drained, the corresponding 

weight was estimated  at 100% FC. Three germinated seeds were transplanted to each pot and 

three pots were used for each treatment. Plants were grown under greenhouse conditions:  

day/night temperatures of 23°C/18°C, 16 h photoperiod, photon flux density of 400 μmol. 

m−2.s−1 and relative humidity of 70-75%; the plants were irrigated every two days with a 

nutritive solution containing macronutrients: 0.52 mM KH2PO4, 6.75 mM Ca(NO3)2, H2O, 1.63 

mM MgSO4.7H2O, 0.085 mM Mg(NO3)2.6H2O, 4.63 mM KNO3, 0.05 mM KOH and  SO4H2 

to adjust  pH; and micronutrients: 46.2 μM H3BO3, 10.18 μM MnSO4, 0.45 μM CuSO4.5H2O, 

1.53 μM ZnSO4.7H2O, 0.052 μM (NH4)6Mo7O24.4H2O and 80.08 g/L sequestrene 138 FeG 

100. After two months of growth, the degree of drought stress was determined according to soil 
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moisture content. Watering treatment was of three types: normal watering, with soil moisture 

content at maximum 100% water-holding field capacity (control; 350ml); medium water deficit 

stress (T1), with soil moisture content at 50% of maximum water-holding field capacity 

(foregoing water for 8 days, 170ml); and severe water deficit stress (T2), with soil moisture 

content at 25% of maximum water-holding field capacity  (foregoing water for 8 days, 85ml). 

Soil water content at field capacity was determined by weighing the pots. Overall, for the 

experiment, the nutrient solution was added to maintain the pots at 50% FC (medium stress) 

and 25% FC (severe stress) for 10 days for the first harvest and for 20 days for the second 

harvest. The third harvest was obtained after 5d of rewatering. The study was carried out using 

3 extracts (one per pot) containing a mix of leaves from three different plants per extract (total 

of 9 plants) for each treatment and two independent experiments were carried out with at least 

18 plants per treatment. Plant growth was monitored and sampled every two days over a period 

of 25 days by counting the number of green leaves and by measuring plant height, leaf 

elongation and leaf area (cm2) by scanning leaves using Mesurium pro 6 software. 

2.3. Leaf relative water content 

Leaf relative water content (RWC) was analyzed as described by Talbi et al. (2015) using the 

formula provided by Schonfeld et al. (1988): RWC = (FW-DW) / (TW-DW) X 100. Fresh 

weight (FW) of leaves was measured by weighing the leaves which were then cut into small 

pieces, placed in   glass tubes, covered with distilled water and kept at 4 ºC overnight. Turgid 
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weight (TW) was then calculated by weighing the pieces, which were then dried at 70 ºC for 

72 h, followed by measurement of their dry weight (DW).  

2.4. Chlorophyll and carotenoids 

Leaf pigment content was determined according to the method described by Lichtenthaler and 

Welburn (1983). 0.1 g of leaves was extracted with 5 ml of pure acetone using a mortar. The 

pigment extracts were centrifuged at 2,500 rpm for 9 min. The resulting extracts were assayed 

spectrophotometrically. Concentrations (µg.ml-1) of Chl a, Chl b and total carotenoids were 

determined using the following equations: 

Ca = 11.75 A662 -2.350 A645 

Cb = 18.61 A645 -3.96 A662 

Car = (1000 A470 - 2.270 Ca- 81.4 Cb) / 227 

2.5. Gas exchange parameters 

The CO2 assimilation rate was determined in the upper third fully expanded leaf of the control 

and treated plants. The photosynthesis rate (A), transpiration (E) and stomatal conductance (gs) 

were determined using a portable LI-6400 infrared gas analyzer (LI-COR Biosciences, Inc., 

Lincoln, NE, USA) by changing light intensities (light curves) with a range of 0 to 2000 quanta 

m-2s-1 or photosynthetic active radiation (PAR). The photosynthetic parameters were calculated 

using LI-6400 6.1 software. The intercellular to ambient CO2 ratio (Ci/Ca) was determined, 

with the ambient CO2 concentration being 380 µmol.mol-1. Intrinsic water use efficiency 

(WUEint) was calculated as the ratio of photosynthetic assimilation (A) to stomatal conductance 
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(gs) for water vapor, while instantaneous water use efficiency (WUEi) was calculated as the 

ratio of photosynthetic assimilation (A) to transpiration (E) (Polley, 2002). 

2.6. Stomatal assay 

Abaxial and adaxial epidermal strips from the third, fully-expanded O. africana leaf of the 

control and treated plants were mounted on glass slides. Four images of each epidermal strip 

were taken using a Leica stereomicroscope connected to a Nikon NIS-F1 CCD camera and a 

Nikon DS-U3 controller (Nikon, Tokyo, Japan). The percentage of closed stomata (number of 

closed stomata / number of epidermic cells) x 100 and stomatal index (number of stomata / 

number of epidermal cells + number of stomata) x100 was calculated as described by Kubinova 

(1994). 

2.7. Assays of antioxidant defense systems  

2.7.1. Extraction of total phenolic contents and flavonoids 

Air-dried and powdered Oudneya africana leaves (1g) were extracted three times with MeOH 

at room temperature. The combined extracts were evaporated to dryness using a rotary 

evaporator. The precipitate was dried, dissolved in 10 ml of absolute methanol and kept at   -

20°C. 

2.7.2. Analysis of total phenolic compounds 

The amount of total phenolics was determined with Folin–Ciocalteu reagent according to the 

method described by Lister and Wilson (2001). A standard curve with gallic acid was used. 

Different concentrations of gallic acid were prepared in methanol, and absorbance was recorded 
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at 760 nm. 100 µl of diluted sample (1:10) was dissolved in 500 µl of Folin–Ciocalteu reagent 

and 1000 µl of distilled water. The solutions were mixed and incubated at room temperature 

for 1 min. After 1 min, 1500 µl of 20% sodium carbonate (Na2CO3) solution was added. The 

final mixture was shaken and then incubated for 2 h in the dark at room temperature. The 

absorbance was measured at 760 nm using a Milton Roy 601 UV–vis spectrophotometer and 

the results are expressed in mg plant dry weight of gallic acid (GEA). Analyses were carried 

out in triplicate. 

2.7.3. Estimation of total flavonoid content 

 Flavonoid content in extracts was determined spectrophotometrically according to the method 

described by Lamaison and Carnat (Quettier-Deleu et al., 2000) based on the formation of a 

flavonoid–aluminium complex, with maximum absorbance at 430 nm. Quercetine was used to 

obtain the calibration curve. 1 ml of the diluted sample (1:10) was separately mixed with 1 ml 

of 2% aluminum chloride methanolic solution. After incubation at room temperature for 15 

min, the absorbance of the reaction mixture was measured at 430 nm with a Milton Roy 601 

UV–Vis spectrophotometer and flavonoid content was expressed in mg per g of Quercetine 

equivalent (QE). All measurements were performed in triplicate. 

2.7.4.  2, 2-diphenyl-1-picrylhydrazyl radical scavenging activity 

The scavenging activity on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was determined 

spectrophotometrically according to the method reported by Okonogi et al. (2007). The 

principle of the assay was based on the color change of the DPPH solution from purple to yellow 
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as the radical was quenched by antioxidants. The leaf extracts were mixed with methanol to 

prepare a stock solution of each leaf extract (10 mg/ml). 500µl DPPH (150 µM) was dissolved 

in methanol and mixed with a 500 µl aliquot of different leaf extract dilutions. The mixture was 

shaken vigorously and left to stand for 30 min in the dark at room temperature. The absorbance 

was recorded at 517 nm to determine the concentration of the remaining DPPH. All 

measurements were performed in triplicate. The radical-scavenging activity was calculated as 

a percentage according to the equation: 

 

 

 where A0 is the absorbance of the control and A1 is the absorbance of the sample. The IC50 

value denotes the concentration of the sample required to scavenge 50% of the DPPH free 

radicals. The lower absorbance of the reaction mixture indicates a higher level of free radical 

scavenging activity.  

 

2.7.5. 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity 

The 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS.+) assay was based on the 

slightly modified method described by Re et al. (1999). The ABTS.+ radical cation was 

produced by the reaction of 7 Mm ABTS solution with 2.45 mM potassium persulphate, and  

the mixture was left to stand in the dark at room temperature before use. The ABTS.+ solution 

was diluted with ethanol to an absorbance of 0.70  0.02 at 734 nm. After adding the 25 µl 

DPPH radical-scavenging (%) =        A0- A1  

                                                                 A0      
 

 

X 100 
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sample or Trolox (used as standard) to the 2 ml diluted ABTS.+ solution, absorbance at 734 nm 

was measured after 5 min. Results were expressed as Trolox equivalent antioxidant capacity 

(TEAC). 

2.8. Imaging of phenols and carotenoids by confocal microscopy 

Handmade cross sections of O. africana leaves were placed between a slide and a cover slide. 

The distribution of carotenoids was imaged using an argon laser with excitation at 488 nmand 

emission at 500-580 nm. Chlorophyll was imaged using a He:Ne laser with 633 nm excitation 

and 650-700 nm emission. Phenols were imaged   at 405 nm excitation and 448-483 nm 

emission. 

2.9. Statistical assay 

The data were analyzed using the ANOVA test with the aid of Info-Gen software (2012). When 

F-tests were significant, the differences between treatment means were compared using 

Tukey’s multiple comparison tests at 0.05 probability. Correlation analyses of the different 

variables were performed. Significance levels were represented by * at 0.01< p < 0.05, ** at p 

< 0.01, and NS, Not significant. The data shown are mean values ± SE.  

3. RESULTS 

3.1. Effect of drought stress on plant growth  

Plants were exposed to two different irrigation regimes for 10 and 20 days and then re-watered 

(RW) for 5 days. To study the effect of drought on Oudneya growth, we analyzed plant length, 

leaf expansion and leaf number (Figs. 2 a-c). At the beginning of stress, no significant effect of 
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drought on leaf number was observed, while leaf elongation (Fig. 2) and leaf area (Table 1) 

showed a significant reduction. The differences became more significant (p<0.001) and the 

effect of drought was stronger after 20 d of T2, with the highest reduction observed in the 

number of leaves (63.99 %), followed by leaf area (39.32%) (Table 1), leaf expansion (31.45 

%) and plant length (26.45%) (Fig 2). After the re-watering period, a slight increase in leaf 

expansion was observed, while no significant change was observed in plant length or leaf 

number (Fig. 2).  

3.2. Gas exchange responses during drought stress and recovery 

Drought stress caused a significant reduction in net photosynthesis (A), stomatal conductance 

(gs) and the intercellular to ambient CO2 ratio (Ci/Ca) after 10 to 20 days of drought (p<0.001) 

in T2 (Table 2). The value of A in well-watered plants, which was 21.7 μmol CO2 m
-2 s-1; after 

10 d of drought, declined by 4% and 20% in T1 and T2, respectively, and by 44,14% in T2 after 

20 d of treatment (Table 2). The light-response curve (A/Q) at ambient CO2 is shown in Fig 3 

(a-c).  Under control conditions (Fig. 3 a, b and c), plant photosynthesis reached a maximum of 

21.7 ±1.05 µmol m-2s-1, 22.2 ±1.1 µmol m-2s-1 and 23.4 ±0.55 µmol m-2s-1 at 2000 µmol m-2s-1, 

respectively. Photosynthesis decreased slightly in relation to control, when T1 plants were 

watered at 50% FC (Figs. 3 a, b and c), reaching values of 20.76 ±0.96 µmol m-2s-1 and 19.86 

±0.59 µmol m-2s-1 after 10 and 20 days at 2000 µmol m-2s-1, respectively. Re-watering 

facilitated a very slow recovery to a value similar to that of the control at 2000 µmol m-2s-1. On 

the other hand, the photosynthetic capacity of plants subjected to T2 (25% of FC) for 20 days 
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was drastically affected. At intensities of 400 to 2000 µmol m-2s-1, net photosynthesis of T2 

plants was reduced by 50%, similar to that of the well-watered plants (Fig. 3 a, b and c). 

Surprisingly, 5 days of re-watering induced a rapid recovery, reaching values similar to those 

recorded after 10 days in T2. Similarly, the transpiration rate decreased by 26 % after 

withholding water for 10 d and by 72% after 20 d in T2 (Fig. 3 d, e and f; Table1). The effect 

of T1 on E was visible after 20 days (Fig. 3 e and Table 1). The recovery in E at intensities of 

400 to 2000 µmol m-2s-1 was very slow after T1 was applied, while recovery was faster in the 

T2 plants (Fig. 3 f). Drought caused a slight reduction in stomatal conductance (gs) after 

withholding water for 10 d in T1 as compared to control plants (Table 2). However, a sharp 

reduction of 42% and 80% was observed in T1 and T2, respectively, after 20 d of treatment 

(Fig. 3 f, h and i; Table 2). At higher intensities of 750 to 1500 µmol m-2s-1, a rapid increase in 

gs was observed after 5 days of re-watering of the T2 plants, which showed values above those 

obtained after 10 days, to finally reach similar gs at 2000 µmol m-2s-1 (Fig. 3). The intercellular 

to ambient CO2 ratio (Ci/Ca) shows a similar pattern to that of   gs, with a sharp decrease of ~75% 

observed after 20 days of T1 and T2 treatment, while the reduction reached ~20% after 10 days of 

treatment (Table 2). Interestingly, after 5 days of re-watering, CO2 assimilation, E and gs 

gradually recovered, with a rapid recovery observed in Ci/Ca values to close to that recorded in 

control values (Table 1 and 2). Thus, in T2 re-watered plants, net photosynthesis was restored 

to 72.5 % of the control values, stomatal conductance to 60.8% (Table 2) and transpiration rose 
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to 68% (Table 1) of the levels recorded for the control plants. In addition, only a slight reduction 

in relative water content (RWC) was observed in T2 plants after 20 days (Table 1). 

Instantaneous water use efficiency (WUE = ACO2 / E) and intrinsic WUE (WUEi = ACO2/gs) 

showed similar patterns, with a significant increase observed in T1 and T2 plants after 20 days. 

The most significant change was detected with respect to WUEi in T2 plants, which increased 

by 173% (P < 0.01; Fig. 4). WUE also increased significantly by 97% after 20 d.  Following 

the re-watering period, WUEi and especially WUE reached values similar to those of control 

plants (Fig. 4).  

3.3. Stomatal dynamics 

The percentage of closed stomata was analyzed using stereomicroscopic images and the results 

are shown in Fig. 5. The percentage of closed stomata was similar in abaxial and adaxial leaf 

surfaces, whose values increased with the time and intensity of drought, although the largest 

changes were observed in the abaxial surface after 20 days of treatment (Figs. 5a and b).  Images 

of the epidermis showing stomata in control and T2 plants after 20 days of drought are shown 

in Fig 5 C and D. The stomatal index (Suppl Fig. 1) did not vary greatly between the abaxial 

and adaxial surfaces, although the largest increase (4.33%) under drought conditions was 

observed in T1 plants after 20d in the adaxial surface.  

3.4. Chlorophyll and carotenoid content  

Analysis of chlorophyll and carotenoid content showed a similar pattern of changes associated 

with both time and intensity of drought treatment (Fig. 6). There was a significant increase in 
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concentrations of chlorophyll a and b in control plants throughout the period of analysis, while 

a significant reduction in chlorophyll a and b was observed in T1 and T2 plants after 20 days 

of treatment, with an increase observed in T1 plants after 10 d of treatment. Carotenoids 

followed a similar pattern to that of chlorophyll b, with a significant reduction in T1 and T2 

observed only after 20 d of treatment, while re-watering did not significantly restore the values 

for chlorophyll and carotenoids (Fig. 6). Confocal microscopic imaging of carotenoids shows 

their localization in the cuticle, epidermis and vascular tissues (Figs. 7 a and b). In mesophyll 

cells, carotenoids were mainly located in chloroplasts, as shown by the overlap with the red 

emission of chlorophyll producing an orange color (Figs. 7 a-b).  

3.5. Effect of drought on total phenolic and flavonoid content 

Total phenolic content (TPC) varied with time and severity of drought treatment (Table 3), with 

values of 18.76 and 20.63 mg GAE.g-1 DW for T1 and T2, respectively, recorded after 10 days 

of treatment. However, the largest increase was associated with T2 plants after 20 days of 

treatment, with a 3.39-fold increase as compared to control plants during the same period of 

treatment (Table 3). On the other hand, re-watering considerably reduced TPC in both T1 and 

T2 plants as compared to the plants treated for 20 days (Table 3). Phenols were imaged in leaf 

cross sections by confocal microscopy at  448-483 nm emission. Most phenols were observed 

in the cuticle, epidermis and cell wall of vascular tissue, mainly in the xylem (Fig. 7 a and c). 

In mesophyll cells, the blue color, due to phenols, was associated with small non-identified 

organelles but was not observed in the vacuole (Figs 7 a and c).   
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Like phenols, flavonoids also increased significantly with both time and intensity of drought 

treatment. In T1 plants, flavonoid content was approximately 1.74- and 2.81-fold higher than 

in the control plants between 10d and 20d of treatment, respectively. In T2 plants, the increase 

was even higher (about 2.02- to 3.55-fold higher) than in the respective control plants at d 10 

to d 20. Recovery from drought after 5 days of re-watering showed a 2.52- to 2.69-fold decline 

for T1 and T2 plants, respectively, as compared to the stressed plants (Table 3).  

3.6. Effect of water deficit on antioxidant capacity 

The capacity of O. africana leaf extracts to scavenge DPPH+· free radicals, which has been used 

as a measure of total antioxidant capacity, is shown in Table 4. Leaf extracts from T2 plants 

after 20 d of treatment showed a greater capacity to scavenge free radicals (IC50 = 0.71 mg.ml-

1) as compared to control (IC50 = 3.3 mg.ml-1) and T1 plants (IC50=0.77 mg.ml-1). After re-

watering, the IC50 value increased as compared to stressed plants (Table 4). 

The results for Trolox equivalent antioxidant capacity (TEAC) are shown in Table 4. Drought 

stress induced an increase in TEAC associated with both length and intensity of water 

deprivation (Table 4).  The largest increase (2.5-fold) was recorded after 20d in T2 plants.  

4. DISCUSSION 

4.1. Drought affects growth and photosynthesis of Oudneya africana  

Drought, one of the most significant abiotic stresses in plants, is associated with arid and semi-

arid areas (Weltzin and Tissue, 2003; Liu and Hwang, 2015). In deserts, water plays a crucial 

Jo
ur

na
l P

re
-p

ro
of



19 

 

role in sustaining the ecosystem, mainly with regard to vegetation (Huang et al, 2016). Desert 

plants exposed to a prolonged water deficit have developed different mechanisms, including 

morphological, physiological and biochemical modifications, to withstand adverse conditions 

imposed by drought (Farooq et al., 2012; Okunlola et al., 2017). In our experiment, water deficit 

caused a significant reduction in the growth of O. africana. Similar results were reported in 

different plant species such as Okra and maize (Gao et al, 2020; Jafarnia et al. 2018). The 

reduction in weight and leaf area can be explained by disturbances in both cell division and cell 

enlargement under drought stress conditions owing to turgor loss and decreased photosynthesis 

and energy supply (Taiz and Zeiger 2010; Luo et al, 2013). As the reduction in leaf area has 

been considered a survival strategy to reduce transpiration (Correia and Nogueira, 2004; 

Baerenfaller et al., 2012), leaf area plasticity can be regarded as an important strategy for 

controlling water use efficiency in these plants. We found a significant positive correlation 

between leaf area, leaf elongation, plant length, leaf number and gas exchanges (Table 5), which 

suggests that the limitation in plant growth caused by scarce water availability could be due, in 

part, to a reduction in carbon availability, as suggested by Claeys and Inzé (2013). Interestingly, 

RWC data did not vary significantly during treatment except in T2/20d-treated plants, 

suggesting that O. africana showed a better ability to maintain favorable water balance under 

drought conditions, which is considered a useful parameter for evaluating plant tolerance to 

drought (Bayoumi et al. 2008). 
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Photosynthesis is one of the most important indicators of physiological sensitivity to abiotic 

stress (Dikšaitytė et al., 2018). Sensitivity to environmental changes in photosynthesis varies 

among plant species and stress factors (Lin et al. 2017; Wang et al., 2019). Drought stress 

induced a decrease in photosynthetic machinery function in O. africana; however, despite the 

decline observed in net photosynthesis (A), 20 d of treatment were needed under the most severe 

drought conditions (T2) to cause a drastic reduction in CO2 assimilation. Interestingly, after 5 

d of re-watering, CO2 assimilation, E, gs and Ci/Ca gradually recovered (Table 1 and 2). Thus, 

in T2 re-watered plants, net photosynthesis was restored to 72.5 % of the values for control 

plants, stomatal conductance to 60.8% and transpiration to 68% of control levels (Table 1 and 

2). This highlights the capacity of Oudneya africana to tolerate drought over a long period of 

time and to rapidly restore its photosynthesis and transpiration capacity. This exceeds the stress 

threshold, demonstrating that Oudneya africana tolerates and adapts to these adverse conditions 

and may survive under more severe drought conditions, such as those prevailing in the desert 

where this plant is located, with an increase observed in the number of closed stomata in the 

abaxial and adaxial leaf surfaces. With regard to   decreasing CO2 assimilation under drought 

stress, Farooq et al, (2009) have suggested that it could be due to a restriction in CO2 diffusion 

in the leaves and to an inhibition of ATP synthesis and Rubisco activity. The closure of stomata 

in Oudneya was correlated with a reduction in stomatal conductance (gs) which can protect 

plants against water loss and thus improve water use efficiency (Correia et al., 2018; Elferjani 

and Soolanayakanahally, 2018). However, the value of gs in most treatments exceeded 0.1 mol 
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H2O m-2 s-1 except in T2/20-d-treated plants, which, as reported by Flexas and Medrano (2002), 

is considered a  low level of stress,  while gs reached  0.045 in T2/20-d-treated plants which 

corresponds to severe drought. Sub-stomatal CO2 concentration (Ci) levels declined after 10 

days of drought treatment and even more sharply after 20 days, which implies that the Ci/Ca 

ratio decreased significantly. This decrease coincides with that in stomatal conductance (gs), 

suggesting that   stomata limited photosynthesis (A) after 20 days of treatment, as can be seen 

in Table 2  and Figure 3 (Ort et al., 1994), while Ci fully recovered after re-watering. Additional 

parameters   need to be analyzed in order to identify stomatal and non-stomatal limitations to 

photosynthesis in our experimental design (Varone et al., 2012). Interestingly, no significant 

changes were observed in the stomatal index during drought treatment. Meanwhile, Populus 

leaves grown under water-deficit conditions show lower stomatal indices than those under well-

watered conditions (Hamanishi et al., 2012). Moreover, a reduction in stomatal density has been 

reported to increase drought tolerance in barley (Hughes et al., 2017).  

Overall, drought stress effects can be either direct or indirect, with a decrease in CO2 availability 

due to a reduction in stomatal aperture and mesophyll conductance being an example of a direct 

effect (Flexas et al. 2012; Zivcak et al. 2013), while indirect effects are more associated with 

changes in photosynthesis (Wang et al, 2019). Stomatal conductance (gs) was affected more 

than net photosynthesis by drought stress, while both intrinsic and instantaneous WUE 

increased when less water was available. This indicates an optimization of carbon uptake versus 

water loss, and the sharper reduction in gs shows that non-stomatal components could play an 
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important role in limiting photosynthesis when plants undergo prolonged water deficit in the 

field (Earl, 2002). It has been suggested that gs could be used as an indicator of WUE under 

water-limited conditions (Gulías et al., 2012; Liu et al., 2019). In addition, as reported by Flexas 

et al. (2014), the increase in intrinsic WUE is an adaptive strategy in Mediterranean plant 

species under drought stress conditions.  

Re-watering gives rise to a partial recovery in photosynthetic machinery (Table 2) and a total 

recovery in both WUEs, with intrinsic WUE being reported to increase under water stress 

conditions (Flexas et al., 2002).  This highlights the capacity of Oudneya africana to tolerate 

drought over a long period of time and to rapidly restore its photosynthesis and transpiration 

capacity. This capacity of   O. africana to recover from drought could be especially useful to 

develop new drought tolerance breeding programs which will require further in-depth 

biochemical and molecular analysis.  

Chlorophyll content is also a key factor in plant photosynthesis and closely reflects the 

photosynthetic capacity of plants (Takai et al., 2010). Drought stress induced a sharp increase 

in chlorophyll content after 10 d in T1 plants, although longer periods of treatment, which 

reduce the content of both chlorophyll a and b mainly under the most severe drought conditions, 

could be the main cause of inactivation of photosynthesis. Our results are consistent with those 

reported in tomato (Sánchez-Rodríguez et al., 2012) and in soybean (Wu and Zhang et al., 

2019). A significant correlation was found between Chl a and A (0.76), Chl a and E (0.84), and 

Chl a and gs (0.87) (Table 5), which confirms the role of photosynthetic pigments in carbon 
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fixation. Furthermore, the decrease in chlorophyll content is also considered to be a typical 

symptom of oxidative stress and may be the result of pigment photo-oxidation (Dias et al., 

2018; Liu et al., 2011; Semerci et al.,2016).  

Carotenoids are among the most important quenchers of singlet oxygen which causes oxidative 

damage to chlorophyll and other pigments under drought conditions (Jahns and Holzwarth, 

2012). Therefore, carotenoids can protect the photosynthetic apparatus from photooxidation by 

helping to dissipate excessive excitation energy in both PSI and PSII (Flowers and Colmer, 

2008). However, our results show that carotenoids decreased after 20d, while re-watering did 

not significantly increase carotenoid content, suggesting that these compounds do not 

contribute to the drought tolerance of O. africana. Confocal analysis of these compounds, which 

are also found in the cuticle and xylem cell wall, showed co-localization with chloroplasts. 

Carotenoids are associated with plastoglobuli and chloroplasts in algae (Solovchenko, 2010). 

4.2. Drought induces total phenolic content and antioxidant capacity in O. africana leaves. 

Under stressful conditions, plants must prevent ROS accumulation or alleviate ROS-induced 

oxidative damage such as lipid peroxidation, protein and DNA oxidation (Cao et al., 2014). To 

cope with  oxidative stress damage,  complex antioxidant defense systems are activated to 

detoxify the harmful effects of ROS ; these include non-enzymatic systems, such as  

glutathione, a-tocopherols, carotenoids and polyphenols, and enzymatic systems such as  

superoxide dismutase, glutathione peroxidase and glutathione reductase (Gill and Tuteja, 2010). 

ROS production and oxidative damage are important components of the negative effects of 
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drought on plants, which may lead to oxidative damage to the photosynthetic apparatus (Noctor 

et al., 2014; Talbi et al., 2015). In a previous study, we demonstrated that increasing drought 

gives rise to oxidative stress, characterized by increased H2O2 content and lipid peroxidation 

(Talbi et al., 2015). In O. africana, drought induced an increase in total antioxidant capacity as 

measured by  ABTS and DPPH methods which is proportional to the duration and intensity of 

water deprivation. A similar pattern was observed in the content of flavonoids and phenols, 

with a high correlation being observed with antioxidant capacity (Table 5). This agrees with the 

results reported for Chrysanthemum morifolium (Hodaei et al., 2018) and Capsicum species 

(Okunlola et al., 2017), olive leaves (Ben Abdallah et al., 2017) and Amaranthus tricolor 

(Sarker and Oba, 2018). The enhancement of phenolic compounds in plants is a common 

response to circumstances when photosynthesis is impaired by environmental constraints 

(Navarro et al., 2006), and Gao et al. (2020) reported that,  as flavonoid and phenol content 

increases under water stress, the more  plants adapt to drought.  Production of phenolic 

compounds has been reported to be one of the strategies used by certain native xerophytic plant 

species, such as Larrea divaricata and Lycium chilense in Patagonian shrublands, under adverse 

environmental conditions to prevent oxidative damage caused by drought (Varela et al, 2016).  

However, Sánchez-Rodríguez et al., (2010) have observed a negative correlation between 

drought tolerance and phenol/flavonoid content in different tomato genotypes. Other studies 

have shown that osmotic stress inhibits phenolic compound synthesis in Vitis amurensis 

(Weidner et al., 2007) and Vitis californica (Weidner et al., 2011) germinating seeds. Therefore, 
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phenol accumulation could be a specific adaptive response of plants to drought conditions. In 

fact, we observed a decrease in total phenolic content during the recovery period following 

drought stress, which correlates with a reduction in lipid peroxidation during this period (Talbi 

et al., 2015), suggesting that oxidative stress declines under re-watering. In addition to their 

antioxidant properties, phenolic compounds are considered to be anti-inflammatory, anti-

mutagenic and anti-carcinogenic and are also able to modulate certain key enzymatic functions 

in cells (Imrul et al., 2013). Some of these properties are associated with the medicinal 

properties of Oudneya in traditional North African culture due to the high concentrations of 

phenols in this plant (Bouaziz et al., 2009). With regard to phenol distribution in the leaf, 

confocal microscopy analysis showed an accumulation of phenols in the cuticle, epidermis, 

xylem cell wall and mesophyll cells (Fig. 7 a-c). The accumulation of phenolic compounds in 

the leaf cuticle, which can protect against excessive UV radiation, has been observed in 

different plant species (Solovchenko, 2010). In mesophyll cells, phenols, though detected in 

small non-identified organelles, were not present in the vacuoles. These results contrast with 

previous studies in which phenols are reported to be mainly associated with vacuoles 

(Solovchenko, 2010). In addition to phenols, a significant increase in enzymatic antioxidants, 

catalase, superoxide dismutase, peroxidases and glutathione reductase has previously been 

reported in the same species and under the same experimental conditions (Talbi et al., 2015). 

Glutathione and ascorbic acid have also been reported to contribute to O. africana’s tolerance 

to drought (Talbi et al., 2015). Therefore, the tolerance to drought stress in O. africana could 
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be due in part to its antioxidant capacity which in turn could protect photosynthesis. In fact, 

Flexas et al (2006) have reported that the photosynthetic rates of plants presenting higher 

antioxidant capacity recover to the fullest extent more rapidly. An example of this is the case 

of Mediterranean plants which are well equipped with photoprotection mechanisms, that are 

further enhanced during the summer drought period with mechanisms including xanthophyll 

cycle pigments (Galmés et al., 2007; Peguero-Pina et al., 2008) and an integrated antioxidant 

defense network (Peñuelas et al., 2004; Munné-Bosch and Lalueza, 2007). 

5. CONCLUSION 

In summary, increasing drought stress leads to a decrease in plant growth and produces 

disturbances in photosynthetic machinery. However, O. africana responds to these stressful 

conditions by increasing instantaneous and intrinsic water use efficiency, which indicates that 

photosynthetic limitations could be due to stomatal closure, although a non-stomatal 

dependence mechanism cannot be ruled out. It is worth highlighting   the high capacity of O. 

africana to restore photosynthesis after re-watering, which could play an important role in the 

development of new strategies for sustainable agriculture and ecosystem preservation in arid 

zones. Another mechanism used by O. africana  to withstand drought is to increase phenol and 

flavonoid content and hence total antioxidant capacity, thus enabling the plant to survive under 

adverse environmental conditions. In addition, high phenol and flavonoid content could add 

important pharmacological properties to this species. 
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FIG.1 Oudneya africana collection site. a, map of Tunisia showing  the location of Ksar Ghilen. b, picture 

showing plants growing in Ksar Ghilen. Insert: picture of Oudneya plant 
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FIG. 2 Plant growth (leaf elongation, plant length and leaf number) of Oudneya africana under drought 

stress conditions; control (C ), medium stress (T1) and severe stress (T2) at day 10  and 20  of drought 

stress and after 5 days of re-watering (RW). Values represent the mean of nine plants ± SE. 

 

FIG. 3 Photosynthetic capacity of the plant species  Oudeyna after 10 (a, d and g) and 20 days (b, e and 

h) of drought treatment and re-watering for 5 days (c, f and i). C: control, T1: medium stress, and T2: 
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severe stress. Photosynthetic carbon fixation rates were determined in the same leaf position as a 

function of increasing irradiance (a, b and c) at saturating CO2 (400 μ mol mol-1 ; A/Q response curve). 

Transpiration, E (d, e and f) and stomatal conductance, gs, (g, h and i) were determined in the same 

leaves. Values represent the mean of five plants ± SE.  

 

FIG.4 Intrinsic WUE (A/gs) and  instantaneous WUE (A/E)  under drought stress conditions; C: control, 

T1: medium stress and T2: severe stress at day 10 and 20 of treatment  and after 5 days of re-watering. 

Data are the mean ± SE of six replicates. Means followed by different letters indicate statistically 

significant difference (Tukey test; p < 0.05).  

 

FIG.5 Percentage of closed stomata in abaxial (a) and adaxial (b) leaf surface of Oudneya africana under 

drought stress condition; c: control; T1: medium stress and T2: severe stress at day 10 and 20 of 

treatment. Data are the mean ± SE of three leaves per plant and three replicates. Means followed by 

different letters indicate statistically significant difference (Tukey test; p < 0.05). Picture of epidermic 
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stomata in abaxial (C ) and adaxial (d)  leaf surface under control (C) and severe stress (SS) conditions 

after 20 days of drought stress. Bars indicate 50 µm magnification.  

 

FIG.6 Chlorophyll a (Chla), Chlorophyll b (Chl b) and carotenoids (Caro) under drought stress 

conditions; C: control, T1: medium stress and T2: severe stress at day 10 and 20 of treatment and after 

5 days of re-watering. Data are the mean ± SE of six replicates. Means followed by different letters 

indicate statistically significant difference (Tukey test; p < 0.05).  

 

FIG. 7 Imaging of pigments and phenols in cross sections of Oudneya africana leaves. Images are 

projections of several optical sections collected by confocal microscopy showing the merging of 

chlorophyll  (ex 543 and em 650-700, red colour, a-d) and carotenoids  (ex 488 and em 500-580, green 

colour, a and b), and chlorohyll and phenols (ex 405 and em 448-483, blue colour, c and d). C: cuticle, 
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mc: mesophyll cells, t: trakeids, x: xylem vessels. Bars indicate 50 µm magnification in upper  panels 

and 20µm  in lower panels.  

 

Suppl FIG. 1. Stomatal index (percentage) in abaxial (a) and adaxial (b) leaf surface of Oudneya africana 

under drought stress condition; c: control; T1: medium stress and T2: severe stress at  day 10 and 20  

and after 5 days of re-watering (RW). Data are the mean ± SE of three different leaves per plant and 

three replicates. Means followed by different letters indicate statistically significant difference (Tukey 

test; p < 0.05).  
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TABLE 1. Leaf area (LA, cm2) ; E: transpiration, (mmol H2O m-2 s-1), and WRC (%) under drought stress conditions; C: control, T1: medium stress and T2: 

severe stress at 10 days, 20 days and after 5 days of re-watering. Analyze of variance for different parameter and interaction between time and treatment.  

Parameter 10 days stress 20 days stress 5 days re-watering 

C T1 T2 C T1 T2 C T1 T2 

LA 2.45±0.38bc 1.67±0.21de 1.47±0.04e 2.74±0.29ab 2.09±0.07bcd 1.66±0.24de 3.33±0.15a 2.71±0.22b 1.84±0.2cde 

E 4.61±0,21ab 4.15±0.15b 3.39±0,15c 4.87±0.14a 2.82±0,19d 1.38±0. 04e 5.04±0.11a 4.25±0.33b 3.43±0.17c 

RWC 80.35±1.12abc 79.11±0.48abcd 75.93±0.48cd 83.2±2.45ab 78.19±1.36bcd 72.14±1.68d 85.53±1.12a 81.53±1.42abc 80.91±0.98abc 

Source of variance LA              A     E gs             WRC  

Treatment ** ** ** **               ** 

Time ** ** ** ** ** 

Treatment x Time ns ** ** ** ns 

 **, Significant at  P < 0.01. ns: non-significant. 
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TABLE 2. A: net photosynthesis, (µmol CO2 m-2 s-1); gs: stomatal conductance, (mol H2O m-2 s-1) and Ci/Ca: intercellular to ambient CO2 ratio under drought 

stress conditions; C: control, T1: medium stress and T2: severe stress at 10 days, 20 days and after 5 days of re-watering. Analyze of variance for different 

parameter and interaction between time and treatment.  

 

 

 

Parameter 10 days stress 20 days stress 5 days re-watering 

C T1 T2 C T1 T2 C T1 T2 

A  21.7±1.05abc 20.76±0.96bc 17.15±0.15d 22.2±1.11ab 19.86±0.59c 12.4±1.05e 23.4±0.55a 20.56±1.06bc 16.95±0.11d 

gs 0.21±0.009ab 0.189±0.01bc 0.14±0.007ef 0.225±0.007ab 0.15±0.01de 0.045±0.005g 0.23±0.006a 0.17±0.008cd 0.14±0.01fg 

Ci/Ca 0.50±0.016cd 0.44±0.014bc 0.42±0.024b 0.52±0.06de 0.13±0.011a 0.14±0.011a 0.58±0.016e 0.58±0.019e 0.57±0.016de 

Source of variance A gs Ci/Ca 

Treatment ** **              ** 

Time ** **               ** 

Treatment x Time ** **               ** 
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TABLE 3. Effect of drought stress on total polyphenol content (TPC, expressed as mg gallic acid equivalent. g-1 DW) and flavonoids (expressed as mg quercetin 

equivalent. g-1 DW) of Oudneya africana under drought stress conditions; C: control, T1: medium stress and T2: severe stress at 10 days, 20 days and after 5 

days of re-watering. Data are the mean of six replicates±SE. Means followed by different letters indicate statistically significant differences (Tukey test; p < 

0.01) 

 

 

 TPC (mg GAE.g-1 DW) Flavonoids (mg QE.g-1 DW) 

 C T1 T2 C T1 T2 

10 days 7.05±0.04e 18.76±0.70d 20.63±0.55c 6.88±0.53f 11.98±0.36e 13.92±0.5d 

20 days 8.09±0.26e 22.91±0.27b 27.51±1.1a 7.23±0.11f 20.38±0.39b 25.49±0.59a 

5 RW 8.82±0.06e 19.41±0.97cd 23.07±0.75b 7.46±0.3f 18.78±0.95c 20.06±0.72bc 

 

 

 

                                 **, Significant at P < 0.01  

Source of variation TPC Flav 

Treatment ** ** 

Time ** ** 

Treatment*Time ** ** 
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TABLE 4. Effect of drought stress on total polyphenol content (TPC, expressed as mg gallic acid equivalent. g-1 DW) and flavonoids (expressed as mg quercetin 

equivalent. g-1 DW) of Oudneya africana under drought stress conditions; C: control, T1: medium stress and T2: severe stress at 10 days, 20 days and after 5 

days of re-watering. Data are the mean of six replicates±SE. Means followed by different letters indicate statistically significant differences (Tukey test; p < 

0.01) 

 

 

 TPC (mg GAE.g-1 DW) Flavonoids (mg QE.g-1 DW) 

 C T1 T2 C T1 T2 

10 days 7.05±0.04e 18.76±0.70d 20.63±0.55c 6.88±0.53f 11.98±0.36e 13.92±0.5d 

20 days 8.09±0.26e 22.91±0.27b 27.51±1.1a 7.23±0.11f 20.38±0.39b 25.49±0.59a 

5 RW 8.82±0.06e 19.41±0.97cd 23.07±0.75b 7.46±0.3f 18.78±0.95c 20.06±0.72bc 

 

 

 

                                 **, Significant at P < 0.01  

Source of variation TPC Flav 

Treatment ** ** 

Time ** ** 

Treatment*Time ** ** 
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TABLE 5.  Matrix of correlations and statistical significances between growth parameters, photosynthesis and chlorophyll pigments under drought 

and rehydration conditions over the time. *, **: statistically significant at P<0.05; and P<0.01, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 PL LN LE LA Chla Chlb carot A E gs A/E A/gs 

PL 1            

LN 0,92** 1           

LE 0,86** 0,86** 1          

LA 0,89** 0,85** 0,81** 1         

Chla 0,45** 0,51** 0,23 0,57** 1        

Chlb 0,45** 0,5** 0,27 0,58** 0,92** 1       

Carot 0,49** 0,5** 0,43* 0,53** 0,65** 0,65** 1      

A 0,63** 0,64** 0,48* 0,7** 0,76** 0,72** 0,83** 1     

E 0,59** 0,61** 0,4* 0,61** 0,84** 0,78** 0,81** 0,91** 1    

gs 0,61** 0,66** 0,43* 0,69** 0,87** 0,84** 0,77** 0,92** 0,9** 1   

A/E -0,38* -0,38* -0,22 -0,36 -0,71** -0,61** -0,74** -0,7** -0,91** -0,69** 1  

A/gs -0,43* -0,45* -0,31 -0,47* -0,81** -0,72** -0,83** -0,79** -0,91** -0,84** 0,91** 1 Jo
ur
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                                           TABLE 6. Matrix of correlation and statistic significations between total phenolic contents, flavonoids and 

                                                   ABTS under drought stress conditions and rewatering.  . 

 

 

 

 

 

                                              **, Significant at P < 0.01. 

 

 

 

 TPC FLAV ABTS IC50 

TPC 1    

FLAV 0.94** 1   

ABTS 0.93** 0.98**        1  

IC50 -0.86** -0.94** -0.93** 1 
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