
PHYSICAL REVIEW B 99, 235123 (2019)

Fingerprints of the conformal anomaly in the thermoelectric transport in Dirac and Weyl semimetals
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The conformal anomaly, a quantum anomaly related to metric deformations in conformally invariant systems,
has been recently shown to give rise to a special contribution to the Nernst signal, which remains finite at zero
temperature and chemical potential. In this work we provide a Kubo calculation that confirms the result of this
unexpected signal in the conformal limit and extends the calculation to finite temperature and chemical potential.
As a result, we predict a distinctive experimental signature of the conformal anomaly in the form of a plateau
behavior in the thermoelectric coefficient as a function of the chemical potential in the extreme quantum limit.
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I. INTRODUCTION

According to the Noether theorem, a continuum symmetry
of a classical action gives rise to conserved currents and
charges. Energy momentum and angular momentum are as-
sociated to space-time translation and rotations, respectively,
while internal phase rotations of complex fields give rise to
electric, color, or other conserved currents and charges. A
quantum anomaly arises when a symmetry of the classical
action cannot survive quantization. Normally, these anomalies
occur in the presence of interactions and are caused by the
necessity to introduce ultraviolet cutoffs when the classical
currents are substituted by local operators [1,2]. The phys-
ical consequences of having quantum anomalies were first
explored in the construction of quantum field theory (QFT)
to describe elementary particles [1] and played an impor-
tant role in grand unification and string theory. Nowadays,
the interest on anomalies and anomaly-related transport has
shifted to emergent condensed matter systems which support
low-energy descriptions akin to their QFT partners [3,4]. In
particular, Dirac and Weyl semimetals are 3D crystals having
band crossings near the Fermi surface, whose low-energy
quasiparticles are described by a massless Dirac Hamiltonian
sharing all the properties of their high-energy partners. After
an intense and successful analysis of the consequences of the
chiral anomaly on magnetoelectric transport [5–8], the interest
has shifted to gravitational effects, especially those of the
mixed axial-gravitational anomaly [9,10]. These phenomena
involve thermoelectric measurements in magnetic field.

The way in which gravity appears in material physics can
be traced back to the problem of defining thermodynamic
equilibrium in curved backgrounds [11], which culminated
with the Luttinger theory of thermal transport [12]. The
difficulty to find a local source for thermal (energy) currents
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was solved by introducing a (perhaps fictitious) gravitational
field whose gradient plays the role of the electric field in
the electromagnetic transport. This is a very natural choice
in QFT where the stress-energy tensor is the response to
variations of the metric: T μν ∼ δS/δgμν .

Anomalies are generally due to vacuum fluctuations and
often the induced transport responses persist at zero tem-
perature and zero chemical potential. In a recent publica-
tion [13–15] a less-known quantum anomaly, the conformal
anomaly (related to metric deformations), has been shown to
give rise to a special contribution to the Nernst signal which
remains finite at zero temperature and chemical potential.

Thermoelectric transport is a topic of major interest in
technology and a very important tool to analyze the electronic
properties of materials. From the early research it was known
that semiconductors and semimetals are the best candidates to
generate large figures of merit in thermopower, with bismuth,
an almost compensated semimetal, holding the record for
metallic compounds [16]. Dirac and Weyl semimetals belong
naturally to the family of good thermoelectric materials and
their thermoelectric properties are now at the center of interest
in experimental and theoretical research [13,14,17–25]. Giant
values of the anomalous Nernst effect are been systematically
reported in the newly discovered magnetic Weyl semimetals.
Most of the works deal with the anomalous Nernst and Hall
effects (transverse transport in the absence of external applied
magnetic fields) associated to the nontrivial Berry phase of
the materials [13,19,22,25,26]. The corresponding anomalous
coefficients are normally obtained using a semiclassical Boltz-
mann approach following the work in Ref. [27].

The regime of zero temperature and chemical potential,
where the unusual prediction in [15] of a nonzero transport
coefficient lies, prevents the use of the Boltzmann approach
and the comparison with existing results. We present a Kubo
calculation of the thermoelectric coefficient of the massless
Dirac system in a magnetic field at zero chemical potential and
zero temperature. The result coincides with the one obtained
in Ref. [15] putting on firmer grounds the anomaly-related
transport phenomena [3,4] in the Dirac matter. An extension
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FIG. 1. Schematic dispersion relation of Dirac (left) and Weyl
semimetals (right).

of the analysis to finite temperature and chemical potential
confirms the robustness of the anomaly induced contribution
and provides distinctive signatures for the experimental con-
firmation of this unexpected signal. The result is independent
of the Berry curvature and hence it is common to Dirac and
Weyl semimetals in the low-T and low-μ limit.

II. DIRAC AND WEYL SEMIMETALS

The low-energy excitations around a nontrivial band cross-
ing of a Dirac semimetal are described by the massless Dirac
equation in three space dimensions. In the Weyl basis for
the Dirac matrices, the Hamiltonian splits into two Weyl
nodes (two-dimensional spinors) of definite chirality. The
low-energy Hamiltonian around the Dirac point can be written
as H (k) = s�σ · �k, where s = ± is the chirality. Each chirality
acts as a monopole of Berry curvature of charge s. In the
material realizations, discrete symmetries associated to the
crystal lattice plus standard inversion I and time reversal
T play a crucial role. Depending of the symmetry of the
crystal—and on the spin-orbit coupling–we find Dirac or Weyl
semimetals schematically shown in Fig. 1. In the first class,
the two chiralities are superimposed in momentum space and
a mass term can arise mixing the two chiralities, unless the
band crossing is protected by crystal symmetries. Examples
of symmetry protected Dirac semimetals are Cd3As2, Na3Bi
[28]. In these materials time-reversal symmetry is unbroken
and the Hall conductivity is zero. In Weyl semimetals, the two
chiralities are separated either in momentum or energy (see
Fig. 1). This separation necessarily breaks either T or I and
the Berry monopole makes the Weyl points very robust against
perturbations. A gap in the spectrum can be opened only by
merging the two chiralities.

Details of the material realizations can be found in many
good reviews [28–30]. What is important for our work is
to realize that the conformal invariance of the classical sys-
tem implies that no dimension-full parameter enters into the

description of the system. Our model will generically be that
of a massless Dirac semimetal, as used in Ref. [15]. We will
perform the calculation for each Weyl fermion and ensure
that no cancellation occurs due to the contribution of opposite
chiralities. Once this is confirmed, the result will equally
apply to Weyl semimetals which, eventually, can receive ad-
ditional contributions from the separation of the Weyl points
(a dimension-full parameter).

III. THERMOELECTRIC TRANSPORT:
KUBO CALCULATION

The response of an electronic system to a background
electric field E and temperature gradient ∇T is parametrized
as

Ji = e2Li j
11Ej + eLi j

12∇ jT

Ji
ε = eLi j

21Ej + Li j
22∇ jT, (1)

where the coefficients Li j
ab are related to the standard thermo-

electric conductivities,

Ji = σ i jE j + αi j (−∇ jT ), (2)

by σ i j = e2Li j
11 (electrical conductivity) and αi j = −eLi j

12
(thermoelectric coefficient).

The current obtained in Ref. [15] for a single Dirac cone
from the conformal anomaly (using the geometry Bz, ∇yT )
was

Jx = e2vF B

18π2h̄

(∇yT

T

)
, (3)

from where we extract the coefficient

χ xy = e2vF B

18π2h̄
. (4)

This response is related with the standard definition in Eq. (1)
by αi j = χ i j/T . In what follows we will present a standard
Kubo formula calculation of this thermoelectric response. The
calculation is straightforward but lengthy. We will sketch the
main aspects and provide extensive information and details in
Secs. III A and III B.

A. Kubo formula for the thermoelectric tensor

In linear response theory [31], when the action of a system
is perturbed by a local source F (t ) which couples to an
observable B as HF (t ) = F (t )B, the change in the expectation
value of any operator A is assumed to be linear in the perturb-
ing source: δ〈Ai(t )〉 = ∫

dt ′χ i j (t, t ′)Fj (t ′), and the response
function χ i j is given by the Kubo formula:

χ i j (t, t ′) = − i

h̄

∫ ∞

−∞
dt ′ 	(t − t ′)〈[Âi(t ), B̂ j (t ′)]〉0, (5)

where Â is the the operator in the interaction picture represen-
tation and 	(x) is the Heaviside function.

The problem of using a statistical variable (such as the tem-
perature) as a (local) source coupling to an energy current was
solved by Luttinger in Ref. [12]. Based on previous analyses
by Tolman and Ehrenfest trying to define thermal equilibrium
in a curved space [11], he proposed the gravitational potential
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 as the local source of thermal (energy) current Ji
ε . Phys-

ically, the observation in Ref. [11] was that a temperature
perturbation which moves a system out of equilibrium can be
compensated by a variation in the gravitational potential such
that, in equilibrium (we take the speed of light c = 1),

∇
 + ∇T

T
= 0. (6)

For small deviations from flat space the gravitational potential
is proportional to the zero-zero component of the metric 
 ∼
g00, which couples to the energy density T 00. The perturbative
Hamiltonian to be used in the linear response formalism is

Hpert(t ) = T 00(t )g00(t ), (7)

where it is assumed that the perturbation is switched on
adiabatically. Using Eq. (5), the electric current generated by
this perturbation is

〈Ji〉(t, r) =
∫ ∞

−∞
dt ′dr′

{−i

h̄
	(t − t ′)〈[Ji(t, r), T 00(t ′, r′)]〉

}

× g00(t ′, r′). (8)

To get the response to the spacial derivative of g00, we use
the conservation law of the energy-momentum tensor T μν ,

∂0T 00(t, r) + vF∂iT
0i(t, r) = 0, (9)

where we have introduced the Fermi velocity in the spatial
part of the metric to adapt the calculation to the case of
Dirac semimetals. The zero-zero component of the energy-
momentum tensor is then:

T 00(t, r) = −
∫ t

−∞
dt ′vF ∂iT

0i(t ′, r), (10)

where we have used that the system is unperturbed at t =
−∞. Introducing Eq. (10) in Eq. (8) and integrating by parts,
we get:

〈Ji〉(t, r) =
∫ ∞

−∞
dt ′dr′

∫ t ′

−∞
dt ′′

{−ivF

h̄
	(t − t ′)

×〈[Ji(t, r), T 0 j (t ′′, r′)]〉
}
∂ jg00(t ′, r′). (11)

Equation (11) represents the electric current generated by a
thermal gradient computed via Kubo formula. The Fourier
transform

〈Ji〉(ω, q) = χ i j (ω, q)(iq j )g00(ω, q), (12)

leads to the standard form of the response function:

χ i j (ω, q) = (2π )3
∫

dt eiω(t−t ′ )
∫ t ′

−∞
dt ′′

{−ivF

V h̄
	(t − t ′)

〈[Ji(t, q), T 0 j (t ′′,−q)]〉
}
, (13)

where we have assumed that the system is invariant under time
and spatial translations and V is the volume of the sample.

Equation (13) is the expression that we will compute for a
Dirac semimetal in the presence of an external magnetic field.

It is important to note that, in the Luttinger approach
described in this section, the current computed with the Kubo
formula (11) includes local magnetization currents not con-
tributing to transport [32,33]. The transport coefficient in (1)
will be given by Li j

12 = χ
i j
12 − εi jl Ml [21], where Ml is the

magnetization [34]. Our main result Eq. (24) in the local limit
at zero temperature and chemical potential is not affected by
this term.

B. Highlights of the calculation

We have done the calculation using the Lehman represen-
tation of the Green’s function as described in Ref. [31]. The
Hamiltonian of a Dirac semimetal in an external magnetic
field can be decomposed into two Weyl Hamiltonians,

Hs = svF σ i(pi + eAi ), (14)

where s describes the chirality of the node, pi is the momen-
tum operator, and e is the charge of the electron (e = |e|).
Choosing the magnetic field in the z direction and using the
Landau gauge Ax = −By, the spectrum of the Hamiltonian is

Ekzms = sign(m)vF
[
2eh̄B|m| + h̄2k2

z

]1/2
m ∈ Z, m 
= 0 ,

Ekz0s = −svF h̄kz. (15)

The two zeroth Landau levels have opposite chiralities and the
rest are doubly degenerated. The eigenvectors are

ϕkms(r) = 1√
LxLz

eikxxeikzz√
α2

kz,m,s + 1
e−(y−kxl2

B )2/2l2
B

×
⎛
⎝ αkzms√

2M−1(M−1)!π1/2lB
HM−1

[ y−kxl2
B

lB

]
1√

2M M!π1/2lB
HM

[ y−kxl2
B

lB

]
⎞
⎠, (16)

with

αkz,m,s = −√
2eBh̄|m|

Ekzms/svF − h̄kz
. (17)

Capital letters refer to the absolute value of Landau levels,
Hm(x) are the Hermite polynomials, and the factor (α2

kz,m,s +
1)1/2 comes from the wave-function normalization. In the
basis of the Landau levels, the current operators in Eq. (13)
read:

Ĵx(t, q) =
∑
k,mn

Jx
kms,k+qns(q)â†

kms(t )âk+qns(t ), (18)

T̂ 0y(t ′′,−q) =
∑
κ,μν

T 0y
κμs,κ−qνs(q)â†

κμs(t
′′)âκ−qνs(t

′′), (19)

where the matrix elements (for a detailed derivation, see
Sec. III A) are

Jx
kms,k+qns(q) = 1

(2π )3/2

∫
dy e−iqyy svF eϕ∗

kms(y)σ xϕk+qns(y), (20)
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T 0y
κμs,κ−qνs(q) = 1

4

1

(2π )3/2

∫
dy e+iqyy [vF ϕ∗

κμs(y)Ipyϕκ−qνs(y) − vF pyϕ
∗
κμs(y)Iϕκ−qνs(y)]

+ 1

4

1

(2π )3/2

∫
dy e+iqyy ϕ∗

κμs(y)sσ y(Eκμs + Eκ−qνs − 2μ)ϕκ−qνs(y). (21)

Introducing Eqs. (18)–(21) into Eq. (13) the response function is given by:

χ xy(ω, q) = lim
η→0+

∑
k,mn

(2π )3

V
ivF h̄ Jx

kms,k+qns(q)T 0y
k+qns,kms(q)

(Ekzms − Ekz+qzns + ih̄η)(Ekzms − Ekz+qzns + h̄ω + ih̄η)
[nkms − nk+qns], (22)

where we have used the relation

〈[â†
kmsâk+qns, â†

κμsâκ−qνs]〉 = δk,κ−qδm,νδk+q,κδn,μ{nkms − nk+qns} (23)

and we have introduced a factor e+η(t ′′−t ) in the time integra-
tion to guarantee the convergence.

As we see, there is a sum over energetically allowed transi-
tions. In the limit T → 0, the distribution function becomes
a step function: nkms = 	(μ − Ekzms) and only transitions
between positive and negative levels are allowed (when the
chemical potential is placed at the neutrality point). We have
evaluated the numerical value of the response function by
considering only the dominant contribution due to transitions
between the lowest Landau levels (0,±1). The final result is

χ xy ≡ lim
ω→0

lim
q→0

χ xy(ω, q) = 1

2(2π )2

vF e2B

h̄
. (24)

The contribution to the numerical coefficient coming from
higher-energy transitions decrease very rapidly with the
Landau level N . Summing up the contributions up to N = 20
changes the numerical value by a factor of 2 approximately.
Finite temperature and chemical potential dependencies will
be discussed in the next section.

IV. EXPERIMENTAL SIGNATURES. PROSPECTS

The calculation presented here is based on a three-
dimensional massless Dirac Hamiltonian that can describe
Dirac or Weyl semimetals in the low-energy regime. The
result is valid irrespective of whether the opposite chiralities
are superimposed (Dirac) or separated (Weyl) in momentum
space. Additional contributions proportional to the separation
of the Weyl nodes may arise in Weyl semimetals. We have
been particularly careful to follow the chirality dependence
of all the terms along the calculation to ensure that no can-
cellations occur (both chiralities contribute to the response
function with the same sign). Placing the chemical potential
at μ = 0 and adding the contributions of the two chiralities,
the thermoelectric coefficient αxy in Eq. (1) is given by:

αxy = 2

T
χ xy = e2vF B

4π2T h̄
, (25)

which coincides with the result in Ref. [15] up to a numerical
factor close to unity (the sign is a matter of convention). This
is a remarkable result. First notice that, although we deal
with thermally induced transport, the calculation has been
done at zero temperature and the coefficient remains finite
in the limit T → 0, with ∇T/T being kept finite. Second,
this calculation is valid at the Dirac point, at zero chemical

potential, where it captures the vacuum contribution from
the quantum conformal anomaly. In real materials, the Fermi
energy is close but not exactly at the Dirac point. To approach
the experimental situation, we have extended the calculation
to include a finite chemical potential μ and temperature.
Figure 2 shows the Landau-level spectrum around a single
Weyl node of the Dirac semimetal in normalized units. ωc is
the cyclotron frequency. The straight line corresponds to the
chiral zeroth Landau level. The horizontal line in the inset is
the numerical result obtained for the response function χ xy

when the chemical potential lies in the interval |μ| < h̄ωc.
This is a consistency check since the zeroth Landau level has a
constant density of states. The contribution from the opposite
chirality has the same sign. In Fig. 3(a) we plot the value of
the thermoelectric coefficient as a function of the chemical
potential in the same range |μ| < h̄ωc for different values
of the temperature up to kBT = 0.1 h̄ωc. Thermally activated
carriers contribute to higher values of the transport coefficient
and the size of the plateau (constant value around μ = 0) is
reduced according to the Fermi Dirac distribution. Figure 3(b)
shows the behavior of the thermoelectric coefficient as a

−2 0 2 4
−3

−2

−1

0

1

2

3

−1 0 1
0

2

FIG. 2. Landau-level structure of a single chirality in the Dirac
semimetal. The inset shows the calculated thermoelectric coefficient
as a function of the chemical potential (in normalized units) at
T = 0. The function has a constant value [χ xy/χ0 = 2, where χ0 =
vF e2B/4(2π )2 h̄] when μ lies in the interval between the first Landau
levels n = ±1. The opposite chirality contributes to the transport
with the same sign.
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(a) (b)

FIG. 3. (a) Behavior of the thermoelectric coefficient as a function of the chemical potential μ for fixed values of kBT/h̄ωc. Thermally
excited carriers enhance the transport and the boundaries of the plateau are smoothen by the thermal distribution function. (b) Behavior of the
thermoelectric coefficient as a function of the temperature for different values of μ in the interval |μ| < h̄ωc.

function of the temperature for different values of μ in the
interval |μ| < h̄ωc.

The best materials to explore the physics described in this
work would be Dirac or Weyl semimetals with the Fermi level
as close as possible to the Dirac point. As discussed in the
text, the calculation has been done for a single chirality and
we have checked that the contribution from the other chirality
adds up. So the result is valid irrespective of the relative posi-
tions of the Weyl cones. The advantage of Dirac semimetals,
where the two chiralities are superimposed in momentum and
energy, is that it minimizes the anomalous contribution com-
ing from the Berry phase (although there will be an anomalous
contribution in the presence of a magnetic field) [13]. In the
case of Weyl semimetals with the Weyl nodes separated in
momentum space, there will be an additional contribution
proportional to the separation of the Weyl nodes. Since this
parameter breaks conformal invariance explicitly we have not
considered it in this work. As mentioned in Ref. [15], we
can also measure the conformal anomaly contribution to the
Nernst effect indirectly in these materials by measuring the
Sxx component of the thermopower. An interesting material
to explore the conformal anomaly contribution to thermal
transport would be GdPtBi, which has the Fermi level near the
Dirac point and has recently been used to discuss the mixed
gravitational anomaly contribution [10].

We must note that the Kubo formula does not always pro-
vide the thermoelectric coefficients correctly. In the presence
of nonzero gradients of the chemical potential and/or tem-
perature the Kubo formalism includes magnetization currents
not contributing to the transport [32,33]. The energy mag-
netization current affects the thermal conductivity but does
not alter the thermoelectric coefficients. Moreover, at zero
chemical potential and zero temperature the magnetization
current vanishes.

In the physics of massless Dirac materials, an anomalous
nonconservation of a current is often the price to pay for
another current to be conserved. In the case of the chiral
anomaly, we chose to conserve the vector current (and hence
the electric charge) and the axial charge to be anomalous.
A similar scenario occurs with the conformal anomaly. The
Noether current associated to the scale invariance, the di-
latation current, is Jμ

D = T μνxν . Assuming energy-momentum

conservation, its divergence is then the trace of the energy-
momentum tensor. We could have chosen to conserve the
dilatation current at the quantum level at the price of breaking
energy-momentum conservation. Part of the relevance of the
material realization of Weyl physics is the possibility to
explore these choices and get a deeper insight into the physics
of anomalies.

Note added. After the submission of this manuscript, two
experimental results have appeared where a plateau in the
thermopower similar to the one described in this work is
observed in the Dirac semimetal ZrTe5 [35] and in the Weyl
semimetal TaP [36]. See also Ref. [37].
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APPENDIX A: PROJECTION OF THE OPERATORS
ON THE LANDAU WAVE FUNCTIONS

The Hamiltonian of the Dirac semimetal in a magnetic field
is decomposed into the following two Weyl Hamiltonians:

Hs = svF σ i(pi + eAi ), (A1)

where s = ± denotes the chirality of the node. In the Landau
gauge Ax = −By, the spectrum of the system is

Ekzms = sign(m)vF
[
2eh̄B|m| + h̄2k2

z

]1/2
m ∈ Z, m 
= 0

(A2)

Ekz0s = −svF h̄kz, (A3)
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and the eigenvectors are

ϕkms(r) = 1√
LxLz

eikxxeikzz√
α2

kzms + 1
e−(y−kxl2

B )2/2l2
B

⎛
⎝ αkzms√

2M−1(M−1)!π1/2lB
HM−1

[ y−kxl2
B

lB

]
1√

2M M!π1/2lB
HM

[ y−kxl2
B

lB

]
⎞
⎠. (A4)

The term αkzms is chiral dependent only when the Landau level m is different from 0. The field operators are expressed, in the
Landau basis, as:

ψ̂†(t, r) =
∑
km

〈kms|r〉â†
kms(t ) =

∑
km

ϕ∗
kms(r)â†

kms(t ), (A5)

ψ̂ (t, r) =
∑

ln

〈r|lns〉âlns(t ) =
∑

ln

ϕlns(r)âlns(t ). (A6)

Using Eqs. (A5) and (A6), the current operator and the energy-momentum tensor defined in Eq. (13) are trivially represented in
the Landau basis:

Jx(t, r) = svF e
∑
km,ln

ϕ∗
kms(r)σ xϕlns(r)â†

kms(t )âlns(t ), (A7)

T 0y(t ′′, r′) =
∑
κμ,λν

1

4
[vF ϕ∗

κμs(r
′)I{pyϕλνs(r′)} − vF {pyϕ

∗
κμs(r

′)}Iϕλνs(r′)]â†
κμs(t

′′)âλνs(t
′′)

+
∑
κμ,λν

1

4
[ϕ∗

κμs(r
′)sσ yϕλνs(r′)][â†

κμs(t
′′){ih̄∂0âλνs(t

′′)} − {ih̄∂0â†
κμs(t

′′)}âλνs(t
′′)]

+
∑
κμ,λν

1

4
[ϕ∗

κμs(r
′)sσ y(2μ)ϕλνs(r′)]â†

κμs(t
′′)âλνs(t

′′), (A8)

where, for future purposes, we have introduced a finite chemical potential in the last term of the energy-momentum tensor. All
time dependence is given explicitly by the second quantization operators: â†

kms(t ) = ei/h̄Ekzmst â†
kms. In momentum space, we get:

Ĵx(t, q) =
∑
km,ln

Jx
kms,lns(q) â†

kms(t )âlns(t ), (A9)

T̂ 0y(t ′′,−q) =
∑
κμ,λν

T 0y
κμs,λνs(q) â†

κμs(t
′′)âλνs(t

′′), (A10)

where the matrix elements are written as a function of the Landau eigenvectors:

Jx
kms,lns(q) = 1

(2π )3/2

∫
dr e−iqr svF eϕ∗

kms(r)σ xϕlns(r), (A11)

T 0y
κμs,λνs(q) = 1

4

1

(2π )3/2

∫
dr e+iqr[vF ϕ∗

κμs(r)I{pyϕλνs(r)} − vF {pyϕ
∗
κμs(r)}Iϕλνs(r)]

+ 1

4

1

(2π )3/2

∫
dr e+iqrϕ∗

κμs(r)sσ y(Eκzμs + Eλzνs − 2μ)ϕλνs(r). (A12)

In the chosen gauge, kx and kz are still good quantum numbers, and their wave functions are plane waves [see Eq. (A4)]. This
allows us to establish a relation between the wave vectors k, l, κ, and λ. Considering the occupied volume per value, we can
replace the summation over l and λ in Eqs. (A9) and (A10) by integrals:

∑
l

= LxLy

4π2

∫
dlxdlz, (A13)

and get two Dirac δ functions correlating the wave vectors:

Jx
kms,lns(q) = 1

(2π )3/2

∫
dlxdlz

∫
dy e−iqyyδ(lx − kx − qx )δ(lz − kz − qz )svF eϕ∗

kms(y)σ xϕlns(y), (A14)

T 0y
κμs,λνs(q) = 1

(2π )3/2

∫
dλxdλz

∫
dy eiqyyδ(λx − κx + qx )δ(λz − κz + qz )ϕ∗

κμs(y)(· · · )ϕλνs(y), (A15)
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where ϕkms(y) is the remaining part of the wave function that only depends on y:

ϕkms(y) = 1√
α2

kzms + 1
e−(y−kxl2

B )2/2l2
B

⎛
⎝ αkz ,m,s√

2M−1(M−1)!π1/2lB
HM−1

[ y−kxl2
B

lB

]
1√

2M M!π1/2lB
HM

[ y−kxl2
B

lB

]
⎞
⎠. (A16)

Performing the different integrals one obtains the expressions given in Eqs. (20) and (21) of the main text.

APPENDIX B: THERMOELECTRIC RESPONSE

The thermoelectric current generated by an external thermal gradient perpendicular to a magnetic field in a Dirac or Weyl
semimetal is described, in momentum space, by:

〈Jx〉(ω, q) = χ xy(ω, q) (iqy) g00(ω, q), (B1)

where the response function is written as:

χ xy(ω, q) = lim
η→0

∑
k,mn

(2π )3

V
ivF h̄Jx

kms,k+qns(q)T 0y
k+qns,kms(q)

(Ekzms − Ekz+qzns + ih̄η)(Ekzms − Ekz+qzns + h̄ω + ih̄η)
[nkms − nk+qns]. (B2)

The rest of the calculation reduces to computing the numerical value of Eq. (B2). The integration over kx is easily done since
the Landau levels do not depend on it; only the eigenvectors are proportional to this conserved number. It can be shown that the
product of matrix elements does not depend on kx either; it is a function of the wave vector q only. Consequently, the integration
over kx simplifies gives only the degeneracy factor eBLy/h̄.

In order to facilitate the integration over kz, we define a dimensionless variable κz = h̄kz/
√

2eBh̄. The eigenvalues are
rewritten in the form Ekzms = vF (2eBh̄)1/2 Eκzms, with Ekzms a dimensionless energy whose expression depends on the given
level. The parameter αkzms is also normalized with this change.

1. Energy-momentum tensor: Product of Hermite polynomials

We will split the matrix elements of the energy-momentum tensor, defined in Eqs. (A12) and (A15), into three parts:

T 0y [1]
k+qns,kms(q) = 1

4(2π )3/2

∫
dy e+iqyyϕ∗

k+qns(y)sσ y(Eκzμs + Eλzνs − 2μ)ϕkms(y), (B3)

T 0y [2]
k+qns,kms(q) = 1

4(2π )3/2

∫
dy e+iqyyvF ϕ∗

k+qns(y)I{pyϕkms(y)}, (B4)

T 0y [3]
k+qns,kms(q) = −1

4(2π )3/2

∫
dy e+iqyyvF {pyϕ

∗
k+qns(y)}Iϕkms(y). (B5)

It is important to notice that only the first expression Eq. (B3) depends on the chirality of the node. The operator py in
Eqs. (B4) and (B5) produces two results when acting on the wave functions; the first one comes from the exponential factor
exp [−(y − kxl2

B)2/l2
B] inside ϕkms. When adding the two contributions from Eqs. (B4) an (B5), a term proportional to qx is

produced. This term vanishes when the local limit is considered. The second term comes from the derivative acting on the
Hermite polynomials, giving two different terms. Those three contributions will be multiplied by the current operator to provide
the thermoelectric response.

When computing the expressions of the matrix elements Eqs. (A11) and (A12), each current operator is given by the product
of Hermite polynomials that satisfy the formula [38]:∫ ∞

−∞
dy e−y2

Hr (y + a)Hs(x + b) = 2sr!π1/2bs−rLs−r
r (−2ab) for s � r, (B6)

where Lα
k (x) is the generalized Laguerre polynomial. Depending on the energy levels m, n that we are considering, the position

of each Hermite polynomial should be modified to satisfy the requirement s � r, creating three different regimes (N � M − 1,
N = M, N � M + 1) for each matrix product between operators. Taking the local limit, this scenario is greatly simplified,
remaining only four contributions to the thermoelectric response function.

For the sake of clarity, consider as an example the electric current matrix element Jx
kms,k+qns. After performing the spatial

integration, the result is

Jx
kms,k+qns(q) = svF e

(2π )3/2

e−(q2
x +q2

y )l2
B/4 e−iqyl2

B (kx+qx/2)[
α2

kzms + 1
] 1

2
[
α2

kz+qzns + 1
] 1

2

�Jx (q, m, n, s) , (B7)
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where the function �Jx (q, m, n, s) = �
{i}
1 + �

{ j}
2 encodes all the information related with the different regimes between energy

levels:

�
{1}
1 (q, m, n, s) = αkzms

√
2N (M − 1)!

2M−1N!

(−qx − iqy

2
lB

)N−M+1

LN−M+1
M−1

(
q2l2

B

2

)
(N � M − 1), (B8)

�
{2}
1 (q, m, n, s) = αkzms

√
2M−1N!

2N (M − 1)!

(
qx − iqy

2
lB

)M−N−1

LM−N−1
N

(
q2l2

B

2

)
(M � N + 1), (B9)

�
{1}
2 (q, m, n, s) = αkz+qzns

√
2N−1M!

2M (N − 1)!

(−qx − iqy

2
lB

)N−M−1

LN−M−1
M

(
q2l2

B

2

)
(N � M + 1), (B10)

�
{2}
2 (q, m, n, s) = αkz+qzns

√
2M (N − 1)!

2N−1M!

(
qx − iqy

2
lB

)M−N+1

LM−N+1
N−1

(
q2l2

B

2

)
(M � N − 1), (B11)

where q2 = q2
x + q2

y . The different terms in � are chosen depending on the scenario that we are studying. The matrix element of
the electric current will be multiplied with the energy-momentum tensor terms (and their respective � functions). The elements
of �Jx and �T 0y to be multiplied will be selected according to the regime in consideration (detailed information about this type
of operations can be found in Ref. [31]).

2. Thermoelectric response function

Computing the product of the electric current with the energy-momentum tensor (the three different parts being defined in the
previous section), one gets the expression of the thermoelectric response function Eq. (22), which is made of two main terms:

lim
q→0

χ xy [1](ω, q) = 1

4(2π )2

∑
m, n

N=M−1

vF e2s2B

h̄
lim

η→0+

∫
dκz ξ (κ, m, n, s, ω, η)(Eκzms + Eκzns − 2μ) α2

κzms, (B12)

lim
q→0

χ xy [2](ω, q) = 1

4(2π )2

∑
m, n

N=M−1

−vF e2sB

h̄
lim

η→0+

∫
dκz ξ (κ, m, n, s, ω, η)

{
α2

κzmsακzns

√
M − 1 + ακzms

√
M

}
, (B13)

where the function ξ (κ, m, n, s, ω, η) is defined as:

ξ (κ, m, n, s, ω, η) = 2[nκms − nκns](
Eκzms − Eκzns + i h̄η

vF

√
2eBh̄

)(
Eκzms − Eκzns + h̄ω

vF

√
2eBh̄

+ i h̄η

vF

√
2eBh̄

) 1[
α2

κzms + 1
][

α2
κzns + 1

] . (B14)

Some relevant observations on Eqs. (B12) an (B13) are the following: as we see, the introduction of Dirac δ functions restricts the
possible choices for the transitions between different Landau levels. They arise after computing the product of matrix elements
[see the terms proportional to ±qx − iqy in Eqs. (B8)–(B11)], and the result is proportional to q to the (N ± M ± 1)th power.
In order to obtain a nonvanishing result in the local limit (q → 0), the exponents should be zero. The generalized Laguerre
polynomials Lα

k (x), obtained from the product of Hermite polynomials, are equal to 1 when the local limit and the Dirac δ

functions are evaluated. Concerning the dependence of the different factors on the chirality, no cancellations occur and both
nodes contribute equally to the response function.
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