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Abstract	

With	the	help	of	novel	processing	workflows	and	algorithms,	we	have	obtained	a	better	understanding	of	the	
flexibility	and	conformational	dynamics	of	 the	SARS-CoV-2	spike	 in	 the	prefusion	state.	We	have	 re-analyzed	
previous	cryo-EM	data	combining	3D	clustering	approaches	with	ways	to	explore	a	continuous	flexibility	space	
based	on	3D	Principal	 Component	Analysis.	 These	advanced	analyses	 revealed	a	 concerted	motion	 involving	
the	receptor-binding	domain	(RBD),	N-terminal	domain	(NTD),	and	subdomain	1	and	2	(SD1	&	SD2)	around	the	
previously	characterized	1-RBD-up	state,	which	have	been	modeled	as	elastic	deformations.	We	show	that	 in	
this	dataset	there	are	not	well-defined,	stable,	spike	conformations,	but	virtually	a	continuum	of	states	moving	
in	a	concerted	fashion.	 	We	obtained	an	 improved	resolution	ensemble	map	with	minimum	bias,	 from	which	
we	model	by	flexible	fitting	the	extremes	of	the	change	along	the	direction	of	maximal	variance.	Moreover,	a	
high-resolution	structure	of	a	recently	described	biochemically	stabilized	form	of	the	spike	is	shown	to	greatly	
reduce	the	dynamics	observed	for	the	wild-type	spike.		Our	results	provide	new	detailed	avenues	to	potentially	
restrain	the	spike	dynamics	for	structure-based	drug	and	vaccine	design	and	at	the	same	time	give	a	warning	of	
the	potential	image	processing	classification	instability	of	these	complicated	datasets,	having	a	direct	impact	on	
the	interpretability	of	the	results.		
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Introduction	

The	world	 lives	 in	 the	middle	of	 truly	unexpected	times,	with	a	viral	global	pandemic	caused	by	SARS-CoV-2.	
Science	works	around	 the	 clock	 to	provide	answers	 to	essential	questions	aimed	at	understanding	how	viral	
infection	 occurs	 and	 how	 we	 could	 interfere	 with	 it.	 In	 this	 context,	 one	 of	 the	 most	 pressing	 issues	 is	 to	
analyze	how	 the	 initial	event	of	 cellular	 recognition	occurs	between	 the	viral	 spike	 (S)	protein	and	 the	ACE2	
receptor,	aiming	to	start	understanding	the	structural	 flexibility	 involved	 in	 the	process.	This	 is	an	essentially	
dynamic	 event,	 hard	 to	 analyze	 by	 most	 structural	 biology	 techniques.	 Still,	 cryo-EM	 offers	 some	 unique	
capabilities	that	makes	it	a	very	suitable	approach	for	the	task,	including	that	it	can	work	with	non-crystalline	
samples	and,	up	to	a	certain	degree,	with	structural	flexibility	(Dashti	et	al.,	2014;	Maji	et	al.,	2020;	Scheres	et	
al.,	2007;	Sorzano	et	al.,	2019;	Tagare	et	al.,	2015).		

In	turn,	cryo-EM	information	is	complex,	buried	in	thousands	of	very	noisy	movies,	making	it	a	real	challenge	to	
reveal	a	three-dimensional	(3D)	structure	from	this	collection	of	images.	Furthermore,	cryo-EM	is	in	the	middle	
of	 a	 methodological	 and	 instrumental	 “revolution”	 (Kühlbrandt,	 2014)	 that	 is	 already	 lasting	 several	 years,	
implying	that	new	methods	are	being	constantly	produced.	In	a	way,	we	can	say	that	almost	anything	is	“old”	
by	the	time	it	reaches	the	hands	of	the	practitioner,	and	this	work	is	a	very	good	example	of	this	phenomenon.	
In	 this	 way,	 the	 original	 data	 of	Wrapp	 et	 al.	 (2020)	 have	 been	 reanalyzed	 applying	 newer	 workflows	 and	
algorithms,	obtaining	improved	information.			

Considering	that	we	were	studying	a	biological	system	characterized	by	its	continuous	flexibility,	we	have	not	
strictly	followed	the	standard	multi-class	approach	(Scheres	et	al.,	2007),	very	well	suited	to	discrete	flexibility	
cases,	since	the	mathematical	modeling	and	the	biological	reality	could	be	just	too	far	apart.	Instead,	we	have	
calculated	a	new	“ensemble”	map	at	3Å	global	resolution	in	which	bias	has	been	carefully	reduced,	followed	by	
both	a	3D	classification	process	and	a	continuous	flexibility	analysis	in	3D	Principal	Component	(PC)	space	using	
a	GPU-accelerated	and	algorithmically-improved	version	of	the	method	of	Tagare	et	al.	(2015).	The	ensemble	
map	has	been	used	for	atomic	modeling.		Our	aim	has	been	to	explore	a	larger	part	of	the	structural	flexibility	
present	 in	 the	data	 set	 than	 the	one	 achievable	 by	 3D	 classification	 alone.	Using	 this	mixed	procedure,	 and	
through	the	scatter	plots	of	the	projection	of	the	different	particle	images	onto	the	principal	component	axes,	
we	have	clearly	shown	how	the	spike	flexibility	in	this	dataset	should	be	understood	as	a	continuum	of	states	
rather	 than	 having	 discrete	 conformations.	 Thanks	 to	 maximum	 likelihood-based	 classification	 we	 have	
obtained	two	maps	that	project	at	the	extremes	of	the	main	principal	component	on	which	flexible	fitting	from	
the	 ensemble	 map	 has	 been	 performed.	 Still,	 these	 extreme	 maps	 have	 an	 intrinsic	 blurring	 on	 the	 most	
flexible	 areas,	 since	 for	 any	 class	 we	 may	 define,	 images	 are	 coming	 from	 a	 continuum	 of	 states	 and	 are,	
therefore,	 heterogeneous.	 This	 flexibility	 is	 substantially	 reduced	 in	 a	 recently	 described	 biochemically	
stabilized	spike	(Hsieh	et	al.,	2020),	as	evidenced	by	the	reduced	blurring	that	translates	into	an	improved	local	
resolution.			

In	 this	 work,	 we	 describe	 the	 new	 structural	 information	 obtained	 and	 how	 it	 impacts	 our	 biological	
understanding	 of	 the	 system,	 together	 with	 the	 new	 workflows	 and	 algorithms	 that	 have	 made	 this	
accomplishment	 possible.	 At	 the	 same	 time,	 we	 are	 currently	 submitting	 our	 raw	 and	 intermediate	 data,	
including	preprocessing	workflows,	to	public	databases	(EMPIAR	(Iudin	et	al.,	2016)	and	EMDB	(Lawson	et	al.,	
2011))	with	the	hope	to	further	speed	up	developments	and	to	enhance	scientific	reproducibility.	

	

Results	

With	the	goal	set	at	analyzing	spike	flexibility,	we	go	step	by	step	over	our	key	results.	
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Ensemble	map	and	the	way	to	obtain	it	

In	 the	 following,	 we	 describe	 the	 analysis	 of	 the	 spike	 stabilized	 in	 the	 prefusion	 state	 by	 two	 proline	
substitutions	in	S2	(S-2P)	or	a	more	recent	variant	containing	six	proline	substitutions	in	S2	(HexaPro).	We	will	
objectively	 demonstrate	 that	 the	 spike’s	 flexibility	 should	 be	 understood	 as	 a	 quasi-continuum	 of	
conformations,	so	that	when	performing	a	structural	analysis	on	this	specimen	special	care	has	to	be	paid	to	
the	images	processing	workflows,	since	they	may	directly	impact	the	interpretability	of	the	results.		

Starting	from	the	original	SARS-CoV-2	S-2P	data	set	of	Wrapp	et	al.	(2020),	we	have	completely	reanalyzed	the	
data	in	the	context	of	our	public	domain	software	integration	platform	Scipion	(de	la	Rosa-Trevín	et	al.,	2016),	
breaking	 the	 global	 3A	 resolution	 barrier.	 A	 representative	 view	 of	 the	 new	 ensemble	 map	 and	 its	
corresponding	global	FSC	curve	is	shown	in	Figure	1A	(new	EMD-11328);	the	sequence	of	a	monomer	of	the	S	
protein	is	shown	on	the	right	to	facilitate	further	discussions	on	structure-function	relationships	(from	Wrapp	
et	al.	(2020)).	Figures	1B	and	1C	show	a	comparison	between	the	original	map	(Wrapp	et	al.,	2020)	with	EMDB	
entry	21375	and	the	newly	reconstructed	ensemble	map	corresponding	to	EMD-11328.	Clearly,	local	resolution	
(Vilas	et	al.,	2018)	-left-	is	increased	in	the	new	map,	and	anisotropy	-center-	is	much	reduced.	Finally,	on	the	
right-hand	side,	we	present	plots	of	the	radially-averaged	tangential	resolution,	that	are	related	to	the	quality	
of	the	angular	alignment	(Vilas	et	al.,	2020);	the	steeper	the	slope,	the	higher	the	angular	assignment	error.	As	
can	be	appreciated,	the	slope	calculated	from	the	newly	obtained	map	is	almost	zero,	compared	with	Wrapp	et	
al.	(2020),	indicating	that,	in	relative	terms,	the	particle	alignment	used	to	create	the	new	map	is	better	than	
the	one	used	to	build	the	original	map.	The	result	is	an	overall	quantitative	enhancement	in	map	quality.		

In	terms	of	tracing,	besides	modeling	several	additional	residue	side	chains	and	improving	the	geometry	of	the	
carbon	skeleton	(see	Supplementary	Material	Figure	SM2),	one	of	the	most	noticeable	improvements	that	we	
observed	in	the	new	map	is	the	extension	of	the	glycan	chains	that	were	initially	built,	particularly	throughout	
the	S2	fusion	subunit	(new	PDB	6ZOW).	A	quantitative	comparison	can	be	made	between	the	length	of	glycan	
chains	 in	 the	 new	 “ensemble	 structure”	with	 respect	 to	 the	 former	 one	 (PDBID:	 6VSB)	 (see	 Supplementary	
Table	SM2).		Although	the	total	number	of	N-linked	glycosylation	sequons	throughout	the	SARS-CoV-2	S	trimer	
is	essentially	the	same	in	the	new	structure	(45)	and	in	6VSB		(44),	we	have	substantially	increased	the	length	
of	 their	glycan	chains,	expanding	the	total	number	of	glycans	by	about	50%.	We	note	the	 importance	of	 this	
extensive	glycosylation	for	epitope	accessibility,	and	how	the	accurate	determination	of	this	glycan	shield	will	
facilitate	 efforts	 to	 rapidly	 develop	 effective	 vaccines	 and	 therapeutics.	 Supplementary	Material	 Figure	 SM2	
shows	a	 representative	 section	of	 sharpened	versions	of	 ensemble	map	 (EMD-11328)	 as	 compared	 to	EMD-
21375	where	 glycans	 can	be	better	 traced	now.	 Still,	we	 should	not	 forget	 that	 the	ensemble	map	 contains	
images	 in	which	 the	 receptor-binding	 domain	 (RBD)	 and	N-terminal	 domain	 (NTD)	 are	 in	 different	 positions	
(see	next	section),	and	consequently,	these	domains	appear	blurred.	Details	on	how	the	tracing	was	done	can	
be	 found	 in	Materials	 and	Methods,	while	 in	 Supplementary	Material	 Figure	 SM3	we	present	 two	maps-to-
model	quality	figures	indicating	the	good	fit,	in	general,	with	the	obvious	exception	of	the	variable	parts.	

Flexibility	analysis	

Starting	 from	a	carefully	selected	set	of	particles	obtained	from	our	consensus	and	cleaning	approaches	 (see	
Material	and	Methods),	 together	with	the	ensemble	map	described	previously,	we	subjected	the	data	to	the	
following	flexibility	analysis:	

1) The	 original	 images	 that	 were	 part	 of	 the	 ensemble	map	went	 through	 a	 “consensus	 classification”	
procedure	 aimed	 at	 separating	 them	 into	 two	 algorithmically	 stable	 classes.	 Essentially,	 and	 as	
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described	 in	 more	 detail	 in	 Material	 and	 Methods,	 we	 performed	 two	 independent	 classifications,	
further	selecting	those	particles	that	were	consistently	together	through	the	two	classifications.	In	this	
way,	 we	 obtained	 two	 new	 classes	 shown	 in	 Figure	 2A.	 We	 will	 refer	 to	 them	 as	 “the	 closed	
conformation”	(Figure	2A-	Class1;	EMD-11336)	and	“the	open	conformation”	(Figure	2A-Class2;	EMD-
11337).	The	number	of	images	in	each	class	was	reduced	to	45k	in	one	case,	and	21k	in	the	other,	with	
global	FSC-based	resolutions	of	3.1	and	3.3	Å,	respectively.		

The	 open	 and	 closed	 structures	 depict	 a	 clear	 and	 concerted	movement	 of	 the	 “thumb”	 formed	 by	
receptor-binding	domain	(RBD)	and	subdomain	1	and	2	(SD1	&	SD2)		and	the	NTD	of	an	adjacent	chain.		
The	thumb	moves	away	from	the	central	spike	axis,	exposing	the	RBD	in	the	up	conformation.		In	order	
to	make	clearer	where	the	changes	are	at	the	level	of	Class	1	and	Class	2	maps,	we	have	made	use	of	
Sorzano	et	 al.	 (2016)	 representation	of	map	 local	 strains,	 that	 help	 visualize	 very	 clearly	 the	 type	of	
strains	 needed	 to	 relate	 two	 maps,	 whether	 it	 is	 rigid	 body	 rotations	 or	 some	 more	 complex	
deformations	are	needed	(stretching).	We	have	termed	the	maps	resulting	from	this	elastic	analysis	as	
‘1s’	(Class	1,	stretching)	and	‘1r’	(Class	1,	rotations)	on	the	right	hand	side	of	Figure	2A,	and	the	same	
for	Class	2.	The	color	scale	in	both	stretching	and	rotations	goes	from	blue	(small)	to	red	(large).	Clearly	
the	differences	among	the	classes	with	respect	to	the	NTD	and	RBD	have	a	very	substantial	component	
of	 pure	 coordinated	 rigid	 body	 rotations,	 while	 the	 different	 RBDs	 present	 a	 much	 more	 complex	
pattern	of	deformations	(stretching),	indicating	an	important	structural	rearrangement	in	this	area	that	
does	not	happen	elsewhere	 in	 the	 specimen.	 In	 terms	of	 atomic	modeling,	we	have	made	a	 flexible	
fitting	of	the	ensemble	model	onto	the	closed	and	open	forms	(see	Figure	2A,	rightmost	map;	the	PDB	
ID	for	the	open	conformation	is	PDB	ID	6ZP7,	while	for	the	closed	one	it	is	PDB	ID	6ZP5).	Focusing	on	
rotations,	which	is	the	most	simple	element	to	follow,	we	can	quantify	that	the	degree	of	rotation	of	
the	 thumb	 in	 these	 classes	 is	 close	 to	 6	 degrees,	 as	 shown	 in	 Figure	 2B.	 	 Given	 this	 flexibility,	 we	
consider	that	the	best	way	to	correctly	present	the	experimental	results	is	through	the	movie	shown	in	
Supplementary	 Material	 Video	 1,	 where	 maps	 and	 atomic	 models	 are	 presented.	 Within	 the	
approximation	to	modeling	that	a	flexible	fitting	represents,	we	can	appreciate	two	hinge	movements	
at	 RBD-SD1-2	domains:	 one	 located	between	amino	 acids	 318	 to	 326	 and	588	 to	 595	 that	 produces	
most	 of	 the	 displacement,	 and	 other	 between	 amino	 acids	 330	 to	 335	 and	 527	 to	 531	 that	 goes	
together	with	a	less	pronounced	“up”	movement	of	the	RBD.		This	thumb	motion	is	completed	by	the	
accompanying	motion	 of	 the	NTD	 from	 an	 adjacent	 chain.	 Also	 in	 a	 collective	way,	 other	NTDs	 and	
down	 RBDs	 are	 slightly	moving,	 as	 can	 be	 appreciated	 better	 in	 the	 S1	movie	 where	 the	 transition	
between	fitted	models	overlaps	with	the	interpolation	between	observed	high-resolution	class	maps.		

2) To	further	investigate	whether	or	not	the	flexibility	was	continuous,	we	proceeded	as	follows:	Images	
from	the	two	classes	were	pooled	together	and,	using	the	ensemble	map,	subjected	to	a	3D		principal	
components	 analysis	 (PCA).	 The	 approach	we	 followed	 is	 based	 on	 Tagare	 et	 al.	 (2015),	 with	 some	
minor	modifications	of	the	method.	A	detailed	explanation	of	the	modifications	is	given	in	Material	and	
Methods.	 We	 initialized	 the	 first	 principal	 component	 to	 the	 difference	 in	 the	 open	 and	 closed	
conformation,	 while	 the	 remaining	 principal	 components	 were	 initialized	 randomly.	 Upon	
convergence,	the	eigenvalue	of	each	principal	component	and	the	scatter	of	the	images	in	the	principal	
component	 space	was	 calculated.	 	 The	eigenvalues	of	 the	principal	 components	are	 shown	 in	Figure	
3A.	Clearly	 the	 first	 three	principal	 components	are	 significant.	The	scatter	plot	of	 the	 image	data	 in	
Principal	 Component	 1-3	 space	 is	 shown	 in	 Figure	 3B.	 	 Figure	 3B	 strongly	 suggests	 that	 there	 is	
``continuous	flexibility”	rather	than	``tightly	clustered’’	 flexibility.	Figure	3B	also	shows	the	projection	
of	 the	maps	corresponding	 to	 the	open	and	closed	conformations	on	 the	extremes	of	 the	 first	 three	
Principal	Components.	It	is	clear	that	the	open	and	closed	conformations	are	aligned	mostly	along	the	

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 8, 2020. . https://doi.org/10.1101/2020.07.08.191072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.191072
http://creativecommons.org/licenses/by-nc-nd/4.0/


first	Principal	Component;	 suggesting	 that	 the	open/close	 classification	 captures	 the	most	 significant	
changes.	 Figure	 3C	 shows	 side	 views	 of	 a	 pair	 of	 structures	 (mean	 plus/minus	 2	 x	 std,	 where	
std=sqrt(eigenvalue))	for	each	Principal	Component.	Additional	details	of	these	structures	are	available	
in	 the	Supplementary	Material	 Figures	SM4	and	SM5.	Note	 that	Principal	Components	are	not	 to	be	
understood	 as	 structural	 pathways	 with	 a	 biological	 meaning,	 but	 directions	 that	 summarize	 the	
variance	of	a	data	set.	For	instance,	the	fact	that	RBD	appears	and	disappears	at	the	two	extremes	of	
PC3	 indicates	 that	 there	 is	an	 important	variability	 in	 these	voxels,	probably	 indicative	of	 the	up	and	
down	conformations	of	the	RBD	(to	be	understood	in	the	context	of	the	elastic	analysis	shown	in	Figure	
2B).		

3) Through	 this	 combination	 of	 approaches,	 we	 have	 learnt	 that	 the	 spike	 conformation	 fluctuates	
virtually	 randomly	 in	 a	 rather	 continuous	manner.	Additionally,	 clearly	 the	approach	 taken	 to	define	
the	 two	 algorithmically	 stable	 “classes”	 has	 partitioned	 the	 data	 set	 according	 to	 the	 main	 axis	 of	
variance,	 PC1,	 since	 the	 projection	 of	 these	 classes’	maps	 fall	 almost	 exclusively	 along	 PC1	 and	 are	
located	 towards	 the	 extremes	 of	 the	 image	 projection	 cloud.	 Note	 that	 the	 fraction	 of	 structural	
flexibility	due	to	PC2	and	PC3	is	also	important	in	terms	of	the	total	variance	of	the	complete	image	set,	
but	 that	 classification	 approaches	 do	 not	 seem	 to	 properly	 explore	 it.	 Unfortunately,	 currently	 the	
resolution	 in	PC2	and	PC3	 is	 limited,	so	 it	 is	difficult	 to	derive	clear	structural	conclusions	from	these	
low	resolution	maps.	Still,	it	is	clear	from	this	data	that	the	dynamics	of	the	spike	is	far	richer	than	just	
a	rigid	body	closing	and	opening,	and	 involves	more	profound	rearrangements,	especially	at	 the	RBD	
but	 at	 other	 sites	 as	 well.	 This	 observation	 is	 similar	 to	 the	 one	 of	 Ke	 et	 al.	 (2020),	 working	 with	
subtomogram	averaging.			

Additionally,	the	fact	that	PCA	indicates	this	continuous	flexibility	as	a	key	characteristic	of	the	spike	dynamics	
also	suggests	that	many	other	forms	of	partitioning	(rather	than	properly	“classifying”)	this	continuous	data	set	
could	 be	 devised,	 this	 fact	 just	 being	 a	 consequence	 of	 the	 intrinsic	 instability	 created	 by	 forcing	 a	 quasi-
continuous	data	distribution	without	any	clustering	structure	to	fit	 into	a	defined	set	of	clusters.	 In	this	work	
we	have	 clearly	 forced	 the	 classification	 to	 go	 to	 the	 extremes	of	 the	data	 distribution	 -as	 shown	 in	 Fig.	 3-,	
probably	 by	 enforcing	 an	 algorithmic	 stable	 classification,	 but	 the	 key	 result	 is	 that	 any	 other	 degree	 of	
movement	of	the	spike	in	between	these	extremes	of	PC1	as	well	as	PC2	and	PC3	would	also	be	consistent	with	
the	 experimental	 data.	 In	 other	 words,	 since	 the	 continuum	 of	 conformations	 does	 not	 have	 clear	
“cutting/classification”	points,	there	is	a	certain	algorithmic	uncertainty	and	instability	as	to	the	possible	results	
of	a	classification	process.	Note	that	this	instability	could	be	exacerbated	by	the	step	of	particle	picking,	in	the	
sense	that	different	picking	algorithms	may	have	different	biases	(precisely	to	minimize	this	instability	we	have	
done	all	throughout	this	work	a	“consensus”	approach	to	picking).		

Clearly,	flexibility	is	key	in	this	system,	so	that	alterations	in	its	dynamics	may	cause	profound	effects,	including	
viral	 neutralization,	 and	 this	 could	 be	 one	 of	 the	 reasons	 for	 the	 neutralization	 mechanism	 of	 antibodies	
directed	against	the	NTD	(Chi	et	al.,	2020).			

	

Structure	of	a	biochemically	stabilized	form	of	the	spike	

In	this	work	we	have	also	analyzed	the	HexaPro	stabilized	spike	 in	the	prefusion	state	(Hsieh	et	al.,	2020).	 In	
this	case,	and	after	going	through	the	same	stringent	particle	selection	process	than	for	the	previous	specimen,	
which	is	presented	in	depth	in	Material	and	Methods,	it	was	impossible	to	obtain	stable	classes,	so	that	in	Fig.	4	
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we	present	a	single	map	(EMD-11341),	together	with	 its	global	FSC	curve	and	a	 local	resolution	analysis.	 It	 is	
clear	that	 local	 resolution	has	 increased	 in	the	moving	parts	 (mostly	RBD	and	NTD),	although	we	did	not	still	
feel	confident	for	further	modeling.		

	

Conclusions	

We	present	in	this	work	a	clear	example	of	how	the	structural	discovery	process	can	be	greatly	accelerated	by	a	
wise	combination	of	fast	data	sharing	and	the	use	of	the	wave	of	newly	developed	algorithms	that	characterize	
this	phase	of	the	“cryo-EM	revolution”.	The	reanalysis	of	the	same	data	used	in	Wrapp	et	al.		(2020),	but	with	
new	workflows	and	new	tools,	has	resulted	in	a	rich	analysis	of	the	spike	flexibility	as	a	key	characteristic	of	the	
system.		

Essentially,	and	at	least	to	a	first	approximation,	the	spike	moves	in	a	continuous	manner	with	no	preferential	
states,	 as	 clearly	 shown	 in	 the	 scatter	 plots	 of	 Figure	 3B.	 In	 this	way,	 the	 results	 of	 a	 particular	 instance	 of	
image	 processing	 analysis,	 including	 a	 3D	 classification,	 should	 be	 regarded	 as	 snapshots	 of	 this	 quasi-
continuum	 of	 states.	 In	 our	 case	 we	 have	 shown	 that	 a	 particular	 meta	 image	 classification	 approach,	
implemented	 through	a	consensus	among	different	methods	 in	many	steps	of	 the	analysis,	 results	 in	classes	
that	are	at	 the	extreme	of	 the	main	axis	of	variance	 in	Principal	Component	 space.	Clearly	PC1,	 through	 the	
analysis	of	the	two	extreme	classes,	reflects	a	concerted	motion	of	the	NTD-RBD-SD1-2	thumb,	although	there	
are	smaller	collective	movements	all	throughout	the	spike	(see	Fig.	2	and	Supplementary	Material	Video	1).			In	
this	case,	the	RBD	moves	together	with	the	NTD,	with	a	smaller	degree	of	independent	flexibility	and	always	in	
the	“up”	conformation.	The	NTD-RBD	movement	can	be	characterized	to	a	large	degree	as	a	rotation,	but	the	
different	 RBDs	 present	 a	 much	 more	 complex	 pattern	 of	 flexibility,	 indicating	 an	 important	 structural	
rearrangement	 (from	Figure	2,	elastic	analysis,	and	Figure	3,	PCA).	The	presence	of	quasi-solid	body	rotation	
hinges	 is	 clearly	 located	 between	 amino	 acids	 318	 to	 326	 and	 588	 to	 595,	 that	 produces	 most	 of	 the	
displacement,	together	with	other	hinges	between	amino	acids	330	to	335	and	527	to	531,	that	goes	together	
with	a	less	pronounced	“up”	movement	of	RBD		

Still,	there	are	other	Principal	Component	axes	explaining	significant	fractions	of	the	inter-image	variance	that	
are	not	properly	explored	at	the	level	of	our	two	classes.	Principal	Component	3	is	a	clear	example,	indicating	a	
high	variance	at	the	voxels	associated	with	RBD	up,	which	is	probably	suggesting	large	conformational	changes	
in	that	area	that	result	in	RBD	coming	down.					

The	flexibility	analysis	performed	in	this	work	complements	previous	analysis	showing	large	rotations	together	
with	RBD	up-down	structural	changes	 (Pinto	et	al.,	2020;	Wrapp	et	al.,	2020),	 in	 the	sense	that	 the	different	
studies	 present	 “snapshots”	 of	 a	 continuum	 of	 movements	 obtained	 by	 a	 particular	 instance	 of	 an	 image	
processing	 classification.	 In	 a	 sense,	 all	 these	 results	 are	 correct,	 but	 none	 of	 them	 is	 able	 to	 capture	 the	
flexibility	 richness	 of	 this	 system.	 	 This	 fact	 reflects	 the	 intrinsic	 instability	 of	 segmenting	 a	 continuum	 into	
defined	clusters,	which	is	a	clear	limitation	of	classification	approaches	to	be	considered	in	the	detailed	analysis	
of	any	dataset	from	this	system.		

An	obvious	way	to	increase	resolution	in	the	moving	parts	of	the	spike	is	to	reduce	their	mobility,	which	is	the	
case,	for	instance,	of	the	biochemical	stabilization	of	Hsieh	et	al.	(2020),	and	also	of	the	formation	of	a	complex	
with	an	antibody	against	NTD	(Chi	et	al.,	2020).	On	the	other	hand,	the	way	towards	a	more	complete	analysis	
of	the	flexibility	of	the	spike	necessarily	 involves	the	analysis	of	quite	substantially	 larger	datasets	than	those	
being	used	in	most	current	CoV-2	studies,	so	that	all	the	main	axes	of	inter-image	variability	can	be	explored,	
which	is	work	under	development	at	the	moment.		
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From	 a	 biomedical	 perspective,	 the	 proof	 that	 a	 quasi-continuum	 of	 flexibility	 is	 a	 key	 characteristic	 of	 this	
specimen,	 a	 concept	 implicitly	 considered	 in	 much	 of	 the	 structural	 work	 performed	 so	 far	 but	 never	
demonstrated,	 suggests	 that	 ways	 to	 interfere	 with	 this	 flexibility	 could	 be	 important	 components	 of	 new	
therapies.					
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Materials	and	Methods	

Image	Processing	Workflow		

The	basic	 elements	 of	 the	workflow	 combine	 quite	 classic	 cryo-EM	algorithms	with	 recent	 improvements	 in	
particle	 picking	 (Sanchez-Garcia	 et	 al.,	 2020b,	 2018;	Wagner	 et	 al.,	 2019)	 and	 key	 ideas	 of	meta	 classifiers,	
which	 integrate	multiple	classifiers	by	a	“consensus”	approach	 (Sorzano	et	al.,	2000),	 finalizing	with	a	 totally	
new	approach	 to	map	post-processing	based	on	deep	 learning	 that	we	 term	“Deep	cryo	EM	Map	Enhancer”	
(Sanchez-Garcia	et	al.,	2020a),	that	complements	our	previous	proposal	on	local	deblurring	(Ramírez-Aportela	
et	al.,	2020b).	Naturally,	map	and	map-model	quality	analysis	are	performed	with	a	variety	of	tools	(Pintilie	et	
al.,	2020;	Ramírez-Aportela	et	al.,	2020a;	Vilas	et	al.,	2020).	Conformational	variability	analysis	 is	 carried	out	
explicitly	addressing	the	continuous	flexibility	nature	of	the	underlying	biological	reality,	 in	which	SARS-CoV-2	
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spike	is	exploring	the	conformational	space	to	bind	the	cellular	receptor.	Most	of	the	image	processing	done	in	
this	work	 has	 been	 done	 using	 Scipion	 framework	 (de	 la	 Rosa-Trevín	 et	 al.,	 2016)	which	 is	 a	 public	 domain	
image	processing	framework	freely	available	at	url	http://scipion.i2pc.es.	

A	graphical	representation	of	the	image	processing	workflow	used	in	this	work	can	be	found	in	Suppl.	Material	
Figure	1	

Meta	Classifiers	

On	meta	classifiers,	and	as	discussed	in	Sorzano	et	al.	(2020),	the	rationale	is	that	a	careful	analysis	of	the	ratio	
between	algorithmic	degrees	of	 freedom	versus	data	 size	 shows	 that	 cryo-EM	may	has	 transitioned	 from	an	
area	 characterized	 by	 parameter	 variance	 to	 one	 dominated	 by	 possible	 parameter	 biases.	 In	 very	 simple	
terms,	we	have	a	lot	of	data,	so	we	can	fight	the	variance	in	our	data	if	we	deal	with	random	errors.	However,	
whenever	there	is	the	possibility	of	a	systematic	error,	a	so-called	“bias”,	artifacts	in	the	maps	may	occur	and,	if	
this	is	the	case,	they	can	be	very	difficult	to	detect.	We	deal	with	the	problem	of	introducing	bias	in	the	map	
through	 “consensus”,	 so	 that	 we	 select	 those	 parameters	 for	 which	 several	 methods,	 as	 methodologically	
“orthogonal”	 as	 possible,	 concur	 on	 the	 same	 answer	 (sometimes	 we	 also	 use	 different	 runs	 of	 the	 same	
method).		

This	notion	has	been	used	at	several	different	steps	of	the	workflow.	In	particular:	

1. CTF	 estimation:	We	 estimated	 the	microscope	 defocus	 using	 two	 different	 programs	 (GCTF	 (Zhang,	
2016)	and	CTFFind4	(Rohou	and	Grigorieff,	2015).	We	only	selected	those	micrographs	for	which	both	
estimates	agreed	up	to	2.1	Å	(Marabini	et	al.,	2015).	

2. Particle	selection:	We	used	two	particle	picking	algorithms	(Xmipp	(Abrishami	et	al.,	2013)	and	Cryolo	
(Wagner	et	al.,	2019)).	We	submitted	both	results	 to	a	picking	consensus	algorithm	by	deep	 learning	
(Sanchez-Garcia	 et	 al.,	 2018)	 and	 removed	all	 those	 coordinates	 in	 contaminations,	 carbon	edges,	…	
also	using	a	deep	learning	algorithm	(Sanchez-Garcia	et	al.,	2020b).	Then	we	cleaned	the	set	of	selected	
particles	using	two	rounds	of	CryoSparc	2D	classification	(Punjani	et	al.,	2017;	Punjani	and	Fleet,	2020)	
and	the	consensus	of	two	independent	3D	classifications	with	CryoSparc.	

3. Initial	 volume:	 As	 initial	 volume	we	 selected	 the	majoritarian	 class	 that	 came	 out	 from	 the	 two	 3D	
classifications	above	and	refined	it	with	Highres	(Sorzano	et	al.,	2018)	with	a	local	refinement	of	the	3D	
alignment.	

4. 3D	reconstruction:	We	then	performed	a	CryoSparc	non-uniform	3D	reconstruction,	followed	by	a	local	
angular	refinement	using	Relion	with	a	3D	mask	(Zivanov	et	al.,	2018).	Particle	images	were	subjected	
to	ctf	refinement	and	Bayesian	polishing	(Zivanov	et	al.,	2018),	before	performing	another	two	rounds	
of	ctf	refinement	and	local	angular	refinement	in	Relion,	where	we	improved	the	resolution	versus	the	
first	 local	 refinement.	 Finally	 we	 performed	 a	 non-uniform	 refinement	 in	 cryoSPARC.	 The	 reported	
nominal	 resolution	 2.96Å	 is	 based	 on	 the	 gold-standard	 Fourier	 shell	 correlation	 (FSC)	 of	 0.143	
criterion.	Actually,	by	using	Xmipp	Highres	(Sorzano	et	al.,	2018)	we	could	lower	the	resolution	to	2.2Å	
in	the	central	region	of	the	volume	(the	one	that	is	not	flexible),	but	at	the	expense	of	still	reducing	it	
more	in	the	flexible	areas.	

5. 3D	 classification:	 We	 then	 performed	 two	 rounds	 of	 3D	 classification	 with	 Relion	 followed	 by	 a	
consensus	 3D	 class	 yielding	 two	 stables,	 large	 classes.	With	 these	 two	 classes	we	 then	 performed	 a	
local	angular	refinement	using	a	CryoSparc	non-uniform	3D	reconstruction.	
	

Particle	selection	
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We	found	that	micrographs	and	particles	that	are	used	for	the	3D	reconstruction	play	a	key	role	in	the	quality	
and	characteristics	of	the	final	map.	In	particular	we	used	the	following	two	procedures:	

a. CTF	 estimation:	We	 estimated	 the	microscope	 defocus	 using	 GCTF	 and	 CTFFind4.	We	 required	 that	
both	estimates	are	similar	(the	phase	of	their	corresponding	Contrast	Transfer	Function	differed	in	less	
than	90	degrees)	up	to	2.1	Å.	Only	70%	of	the	micrographs	met	this	criterion.	We	then	estimated	the	
CTF	envelope	using	Xmipp	CTF	(Sorzano	et	al.,	2007)	while	keeping	fixed	the	defocus	value	(calculated	
as	the	average	between	the	GCTF	and	CTFFind4	estimates).	We	found	this	step	very	important	to	keep	
high	resolution	information.	With	Xmipp	CTF	we	discovered	that	most	of	the	micrographs	had	a	non-
astigmatic	validity	between	3-4	Å	(meaning	that	at	this	resolution	the	assumption	of	non-astigmatism	
breaked	down	for	most	of	the	micrographs,	and	only	a	minority	of	30%	reached	higher	resolution	in	a	
non-astigmatic	way).	

b. Particle	 selection:	 Two	 advanced	 particle	 picking	 algorithms	were	 employed:	 Xmipp	 and	 Cryolo.	 The	
first	 one	 identified	 1.2	Million	 (M)	 coordinates	 possibly	 pointing	 to	 spike	particles,	while	 the	 second	
one	 identified	 0.73M.	We	 then	 combined	both	 estimates	 using	Deep	Consensus	with	 a	 threshold	 of	
0.99,	resulting	in	0.62M	coordinates.		Micrograph	Cleaner	was	used	to	rule	out	particles	selected	in	the	
carbon	 edges,	 aggregations	 or	 contaminations,	 rejecting	 a	 total	 amount	 of	 50k	 particles.	 After	 two	
rounds	of	CryoSparc	2D	classification	at	a	pixel	size	of	2.1	Å	and	an	 image	size	of	140x140	pixels,	we	
kept	298k	particles	assigned	to	2D	classes	whose	centroid	clearly	corresponded	to	projections	of	 the	
spike.	 At	 this	 point	 we	 performed	 two	 initial	 volume	 estimates	 using	 CryoSparc	 and	 classifying	 the	
input	particles	into	two	classes.	In	both	executions,	one	of	the	structures	clearly	corresponded	to	the	
spike	(with	80%	of	particles),	while	the	other	one	resulted	in	a	3D	structure	that	clearly	corresponded	
to	contamination.	We	calculated	the	consensus	of	the	two	CryoSparc	3D	classifications	(those	particles	
that	 consistently	 were	 assigned	 to	 the	 same	 3D	 class).	 Only	 203k	 particles	 belonged	 to	 the	 class	
consistently	assigned	to	the	spike.	

	

Validation	and	quality	analysis	

On	 judging	 the	 quality	 of	 our	 structural	 results,	 we	 concentrated	 here	 in	 three	 of	 the	 newest	 approaches:	
Directional	Local	Resolution,	Q-score	and	FSC-Q.	The	first	one	provides	a	measure	of	map	quality,	while	the	two	
latter	ones	focus	on	the	relationship	between	map	and	structural	model.	In	other	words,	how	well	the	model	is	
supported	by	the	map	density,	without	any	other	complementary	piece	of	information.	

In	 terms	 of	 map-to-model	 validation,	 in	 Figure	 SM3A	 and	 SM3B	 we	 present	 Q-score	 and	 FSC-Q	 metrics,	
respectively,	 showing	 the	agreement	between	 the	ensemble	 cryo-EM	map	and	 the	 structural	model	derived	
from	 it.	 In	most	areas	 the	agreement	 is	very	good,	with	the	exception	of	 the	receptor	binding	domain	 (RBD)	
and	substantial	parts	of	the	N-terminal	domain	(NTD),	as	expected	by	their	higher	flexibility.	

Volume	post-processing	

In	 this	 work	 we	 have	 used	 two	 types	 of	 volume	 post-processing	 approaches,	 in	 the	 two	 cases	 they	 depart	
substantially	from	the	traditional	approach	in	the	field	that	is	the	application	of	global	B-sharpening.	One	of	the	
approaches	 is	 our	 already	 introduced	 LocalDeblur	 sharpening	method	 (Ramírez-Aportela	 et	 al.,	 2020b).	 The	
second	approach	is	a	totally	new	method	based	on	deep	learning	(Sanchez-Garcia	et	al.,	2020a).	Concentrating	
on	the	latter	method,	DeepEMhancer,	it	relies	on	a	common	approach	in	modern	pattern	recognition,	where	a	
Convolutional	Neural	Network	 (CNN)	 is	 trained	 on	 a	 known	 data	 set,	 comprised	 of	 pairs	 of	 data	 points	 and	
targets,	with	the	aim	of	predicting	the	targets	for	new	unseen	data	points.	In	this	case,	the	training	has	been	
done	 presenting	 the	 CNN	 with	 pairs	 of	 cryo-EM	 maps	 collected	 from	 EMDB	 and	 maps	 derived	 from	 the	
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structural	models	associated	with	 the	experimental	maps.	As	a	 result,	our	CNN	 learned	how	to	obtain	much	
cleaner	and	detailed	versions	of	the	experimental	cryo-EM	maps,	improving	their	interpretability.	

Trying	to	take	advantage	of	their	complementary	information,	we	have	used	the	two	post-processed	maps	to	
trace	 the	 atomic	model	 (PDB	6ZOW).	 Some	examples	of	 the	 similar	 improvement	of	 the	 structure	modeling	
according	to	these	two	sharpened	maps	are	shown	 in	Suppl.	Mat.	Figure	SM2.	 	Sharpened	and	unsharpened	
maps	are	all	being	deposited	at	EMDB.	

Model	building	

The	atomic	interpretation	of	the	SARS-Cov-2	spike	3D	map	(PDB	6ZOW)	was	performed	taking	advantage	of	the	
modeling	tools	integrated	in	Scipion	as	described	in	Martínez	et	al.	(2020).	Due	to	the	lack	of	sufficient	density	
of	 the	“up”	conformation	of	 the	RDB,	we	fitted	rigidly	 the	structure	of	 the	chain	A	 (residues	336-525)	of	 the	
SARS-Cov-2	RDB	in	complex	with	CR30022	Fab	(PDB	ID	6YLA)	to	the	3D	map	using	UCSF	Chimera	(Pettersen	et	
al.,	 2004).	 This	unmodeled	part	of	 the	 structure	was	 called	 chain	 “a”	 since	 it	was	part	of	 the	 chain	A	 in	 the	
structure	already	inferred	from	the	same	data	set	(PDB	ID	6VSB).	The	rest	of	the	molecule	was	modeled	using	
as	 template	 the	 same	original	 structure	 (PDB	 ID	 6VSB),	 as	well	 as	 another	 spike	 ectodomain	 structure	 in	 its	
open	state	(PDB	ID	6VYB).	 	The	former	structure	(PDB	ID	6VSB)	was	fitted	to	the	new	map	and	refined	using	
Coot	 	 (Emsley	 et	 al.,	 2010)	 and	 Phenix	 real	 space	 refine	 (Afonine	 et	 al.,	 2018).	 	 Validation	 metrics	 were	
computed	 to	 assess	 the	 geometry	 of	 the	 new	 hybrid	model	 and	 its	 correlation	 with	 the	map	 using	 Phenix	
comprehensive	validation	(cryo-EM),	EMRinger	algorithm	(Barad	et	al.,	2015),	Q-score	(Pintilie	et	al.,	2020)	and	
FSC-Q	 (Ramírez-Aportela	 et	 al.,	 2020a).	 Score	 values	 considering	 the	 whole	 hybrid	 spike	 and	 excluding	 the	
unmodeled	RBD	are	detailed	in	Suppl.	Table	SM1.	The	hybrid	atomic	structure	is	being	submitted	to	EMDB.	

iMODFIT	 (Lopéz-Blanco	 and	Chacón,	 2013)	was	 employed	 to	 flexibly	 fit	 the	hybrid	 atomic	 structure	 into	 the	
open	and	closed	class	maps.			

Principal	component	analysis	

The	principal	component	analysis	follows	the	EM-algorithm	presented	in	Tagare	et	al.	(2015)	with	the	following	
minor	modifications:	first,	in	contrast	to	Tagare	et	al.	(2015),	the	images	were	not	Wiener	filtered,	nor	was	the	
projected	mean	subtracted	from	the	images;	instead	the	CTF	of	each	image	was	incorporated	in	the	projection	
operator	of	that	image	and	a	variable	contrast	was	allowed	for	the	mean	volume	in	each	image.	The	extent	of	
the	 variable	 contrast	was	 determined	 by	 the	 Principal	 Component	 EM-algorithm.	 Second,	 the	mean	 volume	
was	 projected	 along	 each	 projection	 direction	 and	 an	 image	mask	 constructed	with	 a	 liberal	 soft	margin	 to	
allow	for	heterogeneity.	The	different	masks	thus	created	-one	mask	per	projection	direction-	were	applied	to	
the	images	and	the	masked	images	were	used	as	data.	This	step	corresponds	to	imposing	a	form	of	sparsity	on	
the	 data,	 which	 is	 known	 to	 improve	 the	 estimate	 of	 principal	 components	 in	 high	 dimensional	 spaces	
(Johnstone	and	Paul,	2018).	All	images	were	downsampled	by	a	factor	of	2	to	improve	signal	to	noise	ratio	and	
speed	up	processing.	Finally,	during	each	EM-iteration,	the	principal	components	were	low	pass	filtered	with	a	
very	broad	filter	whose	pass	band	extended	to	4	A.	This	helped	 in	the	convergence	of	the	algorithm	without	
significantly	limiting	the	principal	component	resolution.		

As	part	of	the	EM-iteration,	the	algorithm	in	Tagare	et	al.	(2015),	conveniently	estimates	the	expected	amount	
by	which	each	principal	component	is	present	in	each	image	(this	is	the	term	E[z_j]	in	equation	15	of	Tagare	et	
al.,	(2015).	Figure	3B	is	a	scatter	plot	of	E[z_j].	

	

	

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 8, 2020. . https://doi.org/10.1101/2020.07.08.191072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.191072
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure	Legends	

Figure	 1.	 The	 spike	 and	 the	 ensemble	 map.	 A)	 A	 representative	 view	 of	 the	 new	 map	 (EMD-11328),	 the	

corresponding	FSC	curve	and	the	sequence	of	a	monomer	of	the	S	protein	(from	Warpp	et	al.,	 (2020)).	Scale	

bar	5	nm.	B-C)	New	ensemble	cryo-EM	map	(EMD-11328)	compared	with	the	one	originally	presented	(EMDB	

21375).	The	first	line	(B)	corresponds	to	the	new	map	and	the	second	one	(C)	to	EMD-21375.	Within	each	line,	

and	 from	 left	 to	 right:	 Map	 representation	 showing	 local	 resolution,	 histogram	 representation	 of	 local	

directional	 resolution	 dispersion	 (interquartile	 range	 between	 percentiles	 17	 -	 83)	 and,	 finally,	 plot	 showing	

radial	average	of	local	tangential	resolution.	
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Figure	 2.	 Flexibility	 analysis:	 	A)	A	 representative	 view	of	 the	 new	 ensemble	map	 and	 the	 two	 new	 classes	

showing	in	Class	1		“the	open	conformation”	and	in	Class	2	“the	closed	conformation”.	Note	the	elastic	analysis	

of	deformations	on	the	Class	1	and	Class	2	maps	(see	main	text),	with	1s)	referring	to	“stretching”	and	1r)	to	

“rotations”.	Color	code	goes	from	blue	(minimal	deformation)	to	red	(maximal	deformation).	B)	Representation	

of	the	angles	defined	by	the	spike	when	transitioning	between	the	opened	and	the	closed	states.	The	regions	

shown	 in	magenta	represent	 the	hinges	used	by	 the	RBD	domain	 to	pivot.	The	 first	hinge	spans	amino	acids	

318	to	326	and	588	to	595,	while	the	second	hinge	is	defined	by	aminoacids	330	to	335	and	527	to	531.	The	

angles	were	measured	using	PyMol	software.		
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Figure	3.	Principal	Component	Analysis	of	the	Cov-2	spike	structure.	A)	Eigenvalues	of	principal	components.	
The	first	three	principal	components	are	significant.	B)	Scatter	plot	of	the	contribution	of	the	first	three	
principal	components	to	each	particle	image	together	with	the	projection	of	the	open	and	closed	class	maps,	
shown	as	red	points.	The	difference	between	the	projections	of	the	two	maps	is	mostly	aligned	along	PC1.	C)	
Side	view	of	the	first	two	principal	components	shown	as	mean	+/-	2	times	std,	where	std=sqrt(eigenvalue).	
Coloring	indicates	z-depth	of	the	structure,	and	is	added	to	assist	visualization.	Supplementary	Material	Figures	
4	and	5	contain	additional	views	of	these	structures.	

	

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 8, 2020. . https://doi.org/10.1101/2020.07.08.191072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.191072
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure	4.	Analysis	of	a	biochemically	stabilized	form	of	the	spike.	A-B)	A	representative	view	of	the	stabilized	
form	of	the	spike	map	and	the	corresponding	FSC	curve.	Scale	bar	5	nm.	C)	Local	resolution	map	estimated	
with	MonoRes.	
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Supplementary	Material 

Supplementary Material Figure 1. Graphical representation of the processing workflow in Scipion. The 

workflow is also accessible	at	Scipion	Workflow	Repository	at	http://workflows.scipion.i2pc.es/. 
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Supplementary Material Figure SM2. Comparison of the ability to trace the atomic structure between the 

original cryo-EM map (EMD-21375) and the two sharpened maps derived from the new reconstructed ensemble 

map. Six representative 3D map areas (a-f) illustrate the fitting between map and atomic structure. The red 

arrows detail aminoacid side chains fitted to better defined densities in the sharpened map compared to the 

original map. These side chains could have been modeled (a, b, d, e) or being absent (c, f) in the original map. 

The green arrows indicate other additional residues whose side chains have been modeled only in the sharpened 

maps, while they were absent in the original one. The blue arrows point at densities that make it difficult to 

follow the carbon skeleton shape or discriminate among different chains in the original map, whereas they 

appear better resolved in the sharpened maps.  
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Supplementary Material Figure SM3. Map-to-Model quality measures for the ensemble map. A) Q-score 

values represented on each amino acid of the new ensemble atomic model. Q-scores close to 1 indicate better 

resolvability of the residue. B) FSC-Q values are represented for each residue. Values close to zero indicate a 

good map-to-model fit, while values far from zero indicate areas where the model loses support with respect to 

the map signal. 
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Supplementary Material Figure SM4. Principal Component Analysis. Side and top views of mean volume +/- 

2 std for the three principal components. 	 Coloring	 indicates	 z-depth	 of	 the	 structure,	 and	 is	 added	 to	 assist	

visualization	of	the	top	view.	
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Supplementary Material Figure SM5. Principal Component Analysis. Enlarged top half of the side views 

showing details of the density changes captured by the principal components. Coloring	indicates	z-depth	of	the	

structure,	and	is	added	to	assist	visualization	of	the	top	view. 
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Supplementary Table SM1.  Validation scores of the new atomic structure PDB	6ZOW 

 Validation scores  Whole structure1  Modeled structure2 

EMRinger  2.66  2.73 

CC(mask)  0.75  0.76 

Ramachandran outliers (Goal: < 0.2%)  0.00  0.00 

Ramachandran favored (Goal: > 98%) 97.06 97.28 

Rotamer outliers (Goal: < 1%)  0.52  0.17 

C-beta outliers  0  0 

Clashscore 12.06 12.43 

MolProbity overall score  1.76  1.74 

Q-Score  0.55  0.58 

FSC-Q  0.73  0.58 

 

1 Chains A, a, B, C 

2 Excluding the chain a (RBD, added by rigid fitting) 	  
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Supplementary Table SM2.  Number of sequons and size of their respective glycan chains. 

 6VSB  6ZOW 

Subunit Size of N-
linked glycan 

chain 

Number of 
sequons 

Number of 
glycans 

 Number of sequons Number of 
glycans 

S1 1 26 26  18 18 

2 0 0  7 14 

3 0 0  2 6 

Subtotal 26 26  27 38 

S2 1 1 1  0 0 

2 17 34  9 18 

3 0 0  5 15 

4 0 0  2 8 

5 0 0  2 10 

Subtotal 18 35  18 51 

TOTAL  44 61  45 89 
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Supplementary Material Movie 1. Movie presenting the morphing between the two algorithmically stable 

classes described in the main text, spanning Principal Component Axis 1. 
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