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Weyl semimetals (WSM) are a new class of topological materials that exhibit a bulk Hall effect and a chiral
magnetic effect. The topological contribution of these unusual electromagnetic responses can be characterized
by an axion term 6E - B with space and time dependent axion angle 6(r, ). In this paper we compute the
electromagnetic fields produced by an electric charge near a topological Weyl semimetal with two Weyl nodes,
in the equilibrium state, at zero electric chemical potential, and with broken time-reversal symmetry. We find
that, as in ordinary metals and dielectrics, outside the WSM the electric field is mainly determined by the optical
properties of the material. The magnetic field is, on the contrary, of topological origin due to the magnetoelectric
effect of topological phases. We show that the magnetic field exhibits an interesting behavior above the WSM
as compared with that induced above a topological insulator: the field lines begin at the surface and then end
at the surface (but not at the same point). This distinctive behavior of the magnetic field is an experimentally
observable signature of the anomalous Hall effect in the bulk of the WSM. We discuss two experimental setups

for testing our predictions of the induced magnetic field.
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I. INTRODUCTION

Materials characterized by topological order, or simply
topological materials, have attracted great attention recently
both from the theoretical and experimental fronts. The best
studied of these are the topological insulators (TIs), which
are characterized by a gapped bulk and protected boundary
modes that are robust against disorder [1,2]. Up to recent
times, one usually associated topologically nontrivial prop-
erties with gapped systems; however, we have learned that
gapless (semi)metallic states may be topologically nontrivial
in the same sense as gapped insulators. A particularly in-
teresting state of matter is the topological Weyl semimetal
(WSM), which may be thought of as a three-dimensional (3D)
analog of graphene. These are states characterized by phases
with broken time-reversal (TR) or inversion (I) symmetry,
whose electronic structure contains a pair of Weyl nodes (band
crossing points) in the Brillouin zone (BZ) provided the Fermi
level is close to the Weyl nodes. WSMs possess protected
gapless surface states on disconnected Fermi arcs with end
points at the projection of the bulk nodes onto the surface
BZ [3]. The WSM phase was first theoretically predicted
in pyrochlore iridates (such as Y,Ir,O7) in 2011 [4] and
experimentally discovered in TaAs four years later [5-9].

Besides their spectroscopic distinguishing features, topo-
logical phases also exhibit unusual electromagnetic (EM)
responses that are a direct macroscopic manifestation of the
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nontrivial topology of their band structure. It has been shown
that the EM response of both topological insulators [10—12]
and Weyl semimetals [13—15] is described by the so-called 6
term in the EM action, Sy f O(r,t)E - Bd’rdt. For TIs, the
only nonzero value compatible with TR symmetry is 6 = 7,
and thus has no effect on Maxwell equations in the bulk. Its
only real effect, a half-quantized Hall effect on the sample’s
surfaces, becomes manifest only in the presence of surface
magnetization. When TR and I symmetries are broken in the
bulk, such as in a topological Weyl semimetal, the axion
field 6 may also acquire linear space and time dependence
0(r,t) =2b - r — 2bot, where 2b is the separation between
the Weyl nodes in momentum space and 27%by is their energy
offset. Unlike the 6 term for TIs, the analogous term for
WSMs modifies Maxwell equations in the bulk and thus
has observable physical consequences, namely the anomalous
Hall effect (AHE) and the chiral magnetic effect (CME). A
number of physical effects, mainly optical, have been pre-
dicted on the basis of this theory. For example, the magneto-
optical Faraday and Kerr rotation [16] and the Casimir effect
[17], and the appearance of plasmon polaritons [18] and
helicons [19] at the sample’s surface. In this paper we are
concerned with a particular physical effect associated with the
anomalous Hall effect.

One striking consequence of the 6 term in topological
insulators is the image magnetic monopole effect, namely, the
appearance of a magnetic field that resembles the one pro-
duced by a magnetic monopole when an electric charge is put
near the material’s surface [20-22]. Physically, the monopole
magnetic field is induced by a circulating Hall current on the
TI surface, centered at the position of the charge projected
onto the TL. In this paper we tackle the analogous effect in
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topological Weyl semimetals. To be precise, we investigate
the electromagnetic fields induced by an electric charge above
a WSM in the equilibrium state, at zero electric chemical po-
tential, and with broken TR symmetry. We assume the charge
to be located along the axis defined by the separation between
the Weyl nodes in the BZ, i.e., near the surface without Fermi
arcs. What is relevant in our configuration is that due to the
magnetoelectric effect in WSMs, a magnetic field is induced.
Outside the material, the magnetic field is noteworthy as it
is not radial (as that produced by a magnetic monopole).
Indeed, its physical origin is the anomalous Hall effect in
the bulk, which as we will see, can be interpreted in terms
of a family of (2 + 1)-dimensional subsystems parametrized
by the coordinate along the nodal separation. Each subsystem
exhibits a quantum-like Hall effect, such that a WSM can be
effectively understood as a chain of 2D Dirac surface states.

The rest of this paper is organized as follows. In Sec. II
we briefly review the electromagnetic response of topological
Weyl semimetals. The central part of this paper is presented
in Sec. III, where we compute the EM fields produced by
an electric charge above a WSM. In Sec. IV we compute
the interaction energy and the force that the material exerts
upon the static charge. We close with a brief summary of
our results and conclusions in Sec. V, where we also discuss
two possible experimental setups to eventually measure the
resulting magnetic field. The Appendix A contains the details
of the calculation of the required scalar and vector potentials
determining the electromagnetic fields. Throughout the paper
we use Gaussian units.

II. ELECTROMAGNETIC RESPONSE OF WEYL
SEMIMETALS

The low energy physics of a Weyl semimetal with two
nodes is described by the linearized Hamiltonian [3]

H = vphto - (K + t°b) + hit*by, (D

where vr is the Fermi velocity and k = —iV. The operator t
describes the node degree of freedom, while o describes the
conduction-valence band degree of freedom. The separation
of Weyl nodes in the BZ is governed by the broken symmetries
in the bulk. A broken TR symmetry implies b # 0 and this
will produce a separation of the Weyl nodes in momentum by
an amount 2b, each node located at +b. On the other hand,
a broken I symmetry implies by # 0 which will produce a
separation of the Weyl nodes in energy, by an amount 27b.
The terms proportional to by and b in the Hamiltonian (1)
can be gauged away and it reduces to H = vghit®o - k. The
chiral transformation in euclidean space ¥’ — e~*%/2y;, with
O(r,t = it) = 2b - r — 2ibyt (and corresponding for v/ ") in-
deed gauges away the terms byt and t°b- ¢ but it also
changes the integration measure in the path integral and thus
the seeming chiral symmetry of the fermionic field is broken,
which is nothing more than the chiral anomaly. This gives rise
to an unusual EM response described by an additional 6 term
in the action of the electromagnetic field [13—15]

Sy = ife(r,t)E-Bdnﬁr, )
4r?

where o = e?/Fic is the fine-structure constant and 6(r, 1) =
2b - r — 2byt is the so-called axion field [23,24]. Topological
response of WSMs is thus described by an action similar to
that of axion electrodynamics. It is useful to compare this
with the 6 term in the effective action of 3D topological
insulators. In that case § = m is the only nonzero value
consistent with TR symmetry [10-12]. The EM response of
3D TIs is rather simple, since the only nontrivial physical
effect is to generate a half-quantized quantum Hall effect on
the sample’s surfaces. Indeed, a general method to describe
the topological magnetoelectric effect in 3D TIs has been
elaborated in Refs. [22,25-28] by means of Green’s function
techniques.

Unlike the 6 term in 3D TIs, Eq. (2) does modify Maxwell
equations in the bulk of a Weyl semimetal and thus provides
additional observable consequences. The physical manifesta-
tion of the Chern-Simons-like term (2) can be best understood
from the associated equations of motion. Varying the full
action Sy + Sy, where Sy = % [ [€E* — (1/)B?]dt d°r s
the usual nontopological Maxwell action for electromagnetic
fields in matter, we find that the axionic term (2) changes two
of the four Maxwell equations, i.e.,

a
and
VxH—1Q=4—n<J+icbe—iboB), @)
c ot c 272 272

with the constitutive relations D = € E and H = B/i. Fara-
day’s law V x E = —¢~'9B/dt, and the equation stating the
absence of magnetic monopoles V - B = 0, remain unaltered.
Here € = ¢ +iow(w)/w and i =1+ x,,, where € is the
static permittivity, oy, (w) is the longitudinal conductivity, and
Xm 18 the magnetic susceptibility that we assume is negligible
for the WSM.

In general, the electric current J depends on both the
electric and magnetic fields. As in ordinary metals, in the
linear response regime, the electric field-dependent current
is given by J® = 0;;(w)E;&;, where the frequency-dependent
conductivity tensor o;;(w) can be derived by using, for exam-
ple, the semiclassical Boltzmann transport theory. In addition,
if we have chiral fermions in a magnetic field with chemical
potentials p; and wug for left- and right-handed fermions,
respectively, there are two additional B-dependent current
terms, namely,

B o (B) o
J® = ﬁMSB’ J5 = FMBs (5)

where s = (UL — ur)/2 and u = (ur + ur)/2 are the chi-
ral and the electric chemical potentials, respectively.

The most salient features of Weyl physics are fully con-
tained in the inhomogeneous Maxwell Egs. (3) and (4). For
example, the b-dependent terms encode the anomalous Hall
effect that is expected to occur in a Weyl semimetal with
broken TR symmetry [29-32]. The by-dependent term that
arises in Weyl semimetals with broken I symmetry, describes
only one part of the celebrated chiral magnetic effect, namely,
the generation of an electric current driven by an applied
magnetic field. The second part of the CME is given by
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J® in Eq. (5), which arises from an imbalance between
chemical potentials of right- and left-handed fermions. The
total contribution to the CME current is

o
Jome = _2_712(b0 — us)B (6)

that vanishes for by = us in which case the WSM is said to
be at the equilibrium state. On the other hand, Jé’ in Eq. (5),
which is identified with the chiral separation effect, vanishes
for 4 = 0, a condition that defines the neutrality point. For a
detailed discussion of the chiral magnetic effect and the chiral
separation effect see Ref. [33]. The vanishing of the CME in
solid state context is addressed in Refs. [34-36].

III. CALCULATION OF THE EM FIELDS

A. Statement of the problem

An electric charge near the surface of a 3D TI induces
a vortex Hall current (because of the in-plane component
of the electric field produced by the charge) generating a
magnetic field that resembles the one produced by a magnetic
monopole [20-22]. A similar image monopole is predicted
when a charge is near the surface of linear magnetoelectric
material [37]. In this paper we consider an electric charge
near the surface of a topological Weyl semimetal. Due to
the broken symmetries in the bulk, additional nontrivial
topological effects may result as compared to the case of
the TIs. Specifically, we are concerned with the anomalous
Hall effect of WSMs in the equilibrium state and at the
neutrality point. Charge neutrality can be attained for some
WSMs under specific circumstances and it is not an unrealistic
assumption. Theoretical and experimental studies involving
WSMs at neutrality have been of considerable interest, as
shown in the following cases. In Ref. [38] numerical calcu-
lations for transport properties are performed. Longitudinal
and transversal conductivities and also topological Kerr and
Faraday rotations were reported in Ref. [16]. In Ref. [39]
the authors report that TaAs exhibits strong spin Hall effect
precisely at neutrality. In [40], experimental confirmation of
an optical conductivity with linear dependence in frequency
(indicative of the Fermi level intersecting the Weyl nodes) for
TaAs at T = 5 K. A theoretical study of light propagation in
a WSM finding unconventional electromagnetic modes was
found [41]. In Ref. [42] neutral WSMs in presence of strong
disorder were studied finding that the residual conductivity
is qualitatively larger than previously estimated. Realistic
studies of transversal magnetoresistance and Shubnikov—de
Hass oscillations in WSM both away and at the neutrality
point were considered in Ref. [43]. Finally, in Ref. [44] the
authors carried a theoretical ab initio study of Berry curvature
dipole in WSM. These examples show us that neutrality is not
only a simplifying assumption, but rather a relevant one to be
considered.

Let us consider the geometry shown in Fig. 1. The
lower half-space (z < 0) is occupied by a topological Weyl
semimetal with a pair of nodes separated along the k, direction
in the bulk BZ, while the upper half-space (z > 0) is occupied
by a dielectric fluid. An electric charge is brought near the
surface that does not support Fermi-arc electronic states, in
this case the xy plane for b = bé,. Being this a static problem,
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FIG. 1. Illustration of an electric charge above the surface of a
Weyl semimetal. We also represent the k-space picture showing the
location of the Weyl nodes (blue and red dots as sources and sinks
of Berry curvature) along k, axis in the bulk BZ and the Fermi arcs
(lines ending at the projection of the Weyl nodes) on the surface BZ.

it is appropriate to neglect all frequency dependence on the
conductivities, such that the EM response of the WSM is fully
captured by Egs. (3) and (4), with by = us and © = 0. Since
0(z = 0) = 0, there are no surface currents, and the resulting
material is just a bulk Hall medium with current responses
given by the transverse Hall conductivity

)
2n2h’

The analogous problem of a charge located in front of a
surface that supports Fermi arcs would also be of interest.
However, from a practical point of view, we start from the
assumption that the WSM phase has been properly character-
ized, such that the surfaces with/without Fermi arcs have been
identified and then we can choose the configuration depicted
in Fig. 1. In fact, when a WSM phase is produced from a
Dirac semimetal by applying an external magnetic field, the
separation between nodes will be along the field direction and
thus the identification of the faces supporting surface states
is possible. Hereafter we concentrate on the surface without
Fermi arcs, and we left the complementary problem for future
investigations.

For the sake of generality, in Sec. III B we solve Maxwell
Egs. (3) and (4) by considering two semi infinite bulk Hall
materials, characterized by the parameters (eq, b;) for z < 0
and (e, bp) for z > 0, separated by the surface z = 0. The
inhomogeneity in €(r) and o,,(r) is therefore limited to a
finite discontinuity across the interface. Our results correctly

(N

Oxy = —Oyx =
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reproduce the ones reported in Ref. [45] for an infinite chiral
medium, and the well-known electrostatic field produced by a
charge near a dielectric medium [46] as well. In Sec. III C we
take the limit b, = 0, which yields the electromagnetic fields
produced by an electric charge in a dielectric fluid above the
surface of a WSM.

B. General solution and consistency checks

Since the homogeneous Maxwell equations relating the
potentials to the fields are not modified by the 8 term, the static
electric and magnetic fields can be written in terms of the
scalar ® and vector A potentials according to E = —V® and
B = V x A. In the Coulomb gauge V - A = 0, for a pointlike
electric charge of strength g at r' = 7/, with 7/ > 0 (that is
the charge lies in medium 2), the electromagnetic potentials
satisfy the equations

SV @VOI+ Loy ()6 x A= dTp(r), @)

4
~V2A + Tnaxy(z)éz X V® =0, )

where p(r) = ¢8(r — r’) is the charge density. To obtain the
general solution for the EM potentials, we must solve Eqgs. (8)
and (9) in the bulk Hall systems and satisfy the appropri-
ate boundary conditions. Working in cylindrical coordinates
(p, @, 2) to exploit the axial symmetry of the problem, we
introduce the reduced scalar potential ¢(z, 7’; k1 ) through the
2 + 1 representation

dzkl ik -p /.
q>(r)=4n/We $(z, 73k1), (10)

where k; = (ky, k,) and p = (x,y) are the momentum and
position parallel to the xy plane. Expressing the area element
in polar coordinates d*k, = k,dk,dy, and choosing the k,
axis in the direction of the vector p, then k;, - p =k pcos¢
and the angular integration can be performed to obtain

Q(p,z2) = 2/ ki Jotk1p)p(z, 2 sk)dky,  (11)
0

where J,, is the nth order Bessel function of the first kind. In-
serting this ansatz into the equations of motion and assuming

J

the axial symmetry for the vector potential, we introduce the
analogous 2 + 1 dimensional representation

W(p.2)=2 f ko di (ko) 25k dke,  (12)
0

which defines the vector potential through A = W(p, z)&,, a
choice that naturally satisfies the Coulomb gauge V- A =
p~19,¥ = 0. The problem now consists of determining the
reduced functions ¢ and . Inserting the above 2 + 1 repre-
sentations into Eqgs. (8) and (9) we obtain

b ¢ 4 ,
—8—Z<68—Z> + ke + TkLaxyw =q8(z—12), (13)
92y
972

where we have expressed the charge density as p(r) =
%B(Z -7 fooo ki1Jo(kyp)dk, . Here we omit the z depen-
dence of the dielectric function € and the Hall conductivity
oy, for brevity. The differential Eqgs. (13) and (14), along with
the appropriate boundary conditions at the interface z = 0 and
at the singular point z = 7/, constitute a complete boundary
value problem.

Before dealing with the solutions of the above equations
let us comment on the effects on the induced electric and
magnetic fields when we interchange the position of the Weyl
nodes in momentum space. In the following we momentarily
call the solutions to Egs. (13) and (14) as ¢y and ¥r,. There
are two possibilities of arranging the Weyl nodes according to
whether the source (sink) of the Berry curvature is located
at +b (—b) or the other way around, which amounts to
changing b — —b in our equations. This interchange implies
Oxy — —0yxy, in Eqgs. (13) and (14), with new solutions we now
denote by ¢_p, and _p,. However, by the way in which these
equations are coupled we obtain ¢_y, = ¢ and Y_p = — V.
In other words, the electrostatic potential remains the same,
but the vector potential (and thus the magnetic field) flips sign
under the interchange of the Weyl nodes in momentum space.

To solve Egs. (13) and (14) we employ standard techniques
of electromagnetism [46]. Leaving the details of the calcula-
tions for the Appendix A, we obtain the following expressions
for the reduced functions beneath the surface (z < 0):

47
+ kY — Tkmxyqs =0, (14)

$oco = %em“ﬂ’«elm + e2as) cos(Biz — Bo?) + (€181 + €2B2) sin(Biz — foz)
+ (1 — €2) cos (B12)[az cos(Brz') — Ba sin(Brz)]}, (15)
Veco = gewm’{(e]ﬂl + €282) cos(Biz — Br?) — (€11 + €0) sin(B1z — fr?)
+ (€1 — €)sin (Bi2)[Ba sin(Brz) — a2 cos(Br ]}, (16)

and, above the surface (z > 0), we obtain

$>0 = 3 9 e ay cos(Balz — 21) — B sin(Balz — 2/ 1)] - 11 =9 iy, cos[Ba(z — )]
627‘2 262Q
+ Bisin[Ba(z — )} + e 2T cos[Ba(z 4+ 2)] — Asin[Ba(z + )1}, (17)

26,130
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wpozé%eﬂﬂﬂﬁmcmumZ—zn+aﬁm@mZ—zny+ﬁﬂiﬁﬁeﬂmﬂ%mcmmﬂz—zn
ry 20
—aysin[Ba(z — 21} + %e—“ﬂ“’)m cos[B2(z + 2)] + T sin[Ba(z + 21}, (18)
2

where we have defined
= Olz(ézi’% - 61V12) + Baer + e)(a1 B2 — Biaz),
A = By(exr; — €r}) — anler + €)(@1fr — Bion),  (19)
0 = a1} +er; + (61 + &) + Bif2),

and rjg = k‘izk;‘z. Here kj, = aj(ky) + iB;(k1) is the complex
wave number in the medium j, with

k

(k) = \/%(,/ki + 324 k).
k

Bitkr) = \/%(‘/ki + 3% —ky),

and X; = 47”2—, is an effective bulk Hall conductivity (with
7

(20)

dimensions of inverse length). The imaginary part 8; of kj,
implies that the electromagnetic fields are attenuated in the
bulk, as in ordinary metals.

The final expressions for the scalar and vector potentials
in coordinate representation are obtained by inserting the
reduced functions (15)—(18) into the 2 4 1 representations
(11) and (12) and computing the k, integrals. Below we
present two consistency checks of our results.

First, we consider the limit in which the two materials
are topologically trivial (i.e., with vanishing bulk Hall con-
ductivities ¥ = X, = 0), with however €; # €,. In this case
we find that ki, = ko, = k, thus yielding Q = Zki(el + €),
= ki(ez —¢€1), and A = 0. Therefore, the reduced scalar
potential can be written as

4q —kil=2| _ E1 T €2 _kyjzl —ki 7
= e - e e ) 21
ZEQkJ_ |: €1+ € ( )

which we recognize as that of an electric charge in front of
a dielectric interface [46]. Besides, this limit yields y,.¢ =
Y..0 = 0, as expected, since there is no magnetoelectric effect
in the absence of the 6 term.

Second, we consider the case in which the electric charge
is embedded in an infinite chiral medium, namely €; = €, =€

and £; = %, = X, then Q =4¢k, /kI + 22 and ' = A =

0. The resulting scalar and vector potentials due to a charge g
located at 7 = 0 are

o 1 1 .
¢ = z/ kJ_JO(kJ_)O)|:—€_k"|Z| + ——e* 'Zj|dkL,
€ Jo

2k, 2k o)
A / 02 Ji(kp) Lkl _ L ki dk, é
= —e < —_e Z .
q A 1J1(K1Lp 2k, ij 1 €y

where k, = o +if and o, B are given by Eq. (20) with
¥; = X. As expected, these expressions coincide with the
ones obtained from the Green’s functions in Ref. [45].

C. EM fields induced by a charge near a WSM

The case of an electric charge located in a dielectric fluid,
above the surface of a topological Weyl semimetal, as shown
in Fig. 1, is described by the reduced functions (15)—(18) in
the limit ¥, = 0. First we discuss the resulting electric field.
Taking B, = 0 in Egs. (15) and (17) and inserting the result
into the 2 4 1 representation (11) we find that, in coordinate
representation, the electrostatic potential beneath the surface
becomes

(a1 +kp)cos (Biz) + Pisin (Biz)
CDZ<0 = 2q 2 2 2
0 61(011 +/31)+62kL+kL051(61+62)

x ki Jo(ky p)e i dk, (23)

and, above the surface, we find
q 1

-~ +
€ p*+(z—17)

q € — € 1

€6+ € \/m
_ 2qe /°° af + B — k7

er+e Jo eaf + BY) + €2k3 + kiai(e;+e)
x Jo(ky p)e MGk, . (24)

CI>z>0 =

We observe that in the dielectric fluid (z > 0), the electric po-
tential can be interpreted as due to the original electric charge
of strength ¢ at 7/, an image electric charge of strength g(e;, —
€1)/(e2 + €;) at —Z, and an additional term arising from the
nontrivial topology of the WSM. Inside the Weyl semimetal
(z < 0), the electric potential has no simple interpretation. In
Fig. 2(a) we plot the electrostatic potential ® (in units of gX;)
as a function of the dimensionless distance Xz, for p = 0 and
7 = 1/%;. Consider the reference value €¢; ~ 6 appropriate
for dielectric constant of the Weyl semimetal TaAs [5-9]. In
Fig. 2(a) the continuous line represents the case when the
semispace above the WSM is also filled with a dielectric
medium of €, = 6, and the dashed line represents the case
when the space above the WSM is vacuum, namely €, = 1.
As expected, we observe that the electrostatic potential is
attenuated inside the WSM due to the metallic character of
the material. From Eq. (23), one can further see that, in
the limit €, — 0o, we obtain that ®,_y = 0, as in a perfect
conductor. Even in this simplified model of a WSM this decay
of the electrostatic potential inside the material reflects an
additional contribution to the screening length of the mate-
rial [47], which is not the penetration depth as defined for
electromagnetic waves. A proper estimation of these relevant
parameters demands to consider a more realistic model for the
WSM and deserves further investigation.

The electric field is obtained from the electrostatic poten-
tial (23) and (24) as E = —V®. In Fig. 2(b) we illustrate
the electric field E (in units of qu) generated by an electric
charge in vacuum (e, = 1) at 7/ = 1/X; (red sphere) close to
the WSM TaAs as a function of the dimensionless coordinates
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FIG. 2. (a) Plot of the electric potential ® (in units of gX,) as a function of the dimensionless distance X,z for p = 0, when the WSM is
characterized by €, = 6. The continuous line is for €, = 6 and the dashed line for €, = 1. (b) and (c) The electric and magnetic fields (in units
of g¥?), respectively, as a function of ¥,z and %, p. The red sphere marks the position of the electric charge, at ' = 1/X;. The field lines
in (b) and (c) correspond to the choice b > 0. Under the interchange of the Weyl nodes in momentum space b — —b, the field lines of the
electric field remain invariant, while the field lines of the magnetic field are inverted.

Y10 and X;z. We observe that the electric field outside the
WSM is similar to that generated by the original electric
charge, with deviations close to the interface due to the
screening of the field inside the material. In fact, this electric
field is practically indistinguishable from that produced by
an electric charge close to an ordinary metal or a dielectric.
Nevertheless, the electric field beneath the surface is more
complicated than in the nontopological cases. For example,
the electric field within a uniform and isotropic dielectric is
a radially directed field (with the charge outside the material
as its source); while the field inside an ordinary metal is zero.
In the present case, as shown in Fig. 2(b), the electric field
is remarkably different as evidenced by the curved field lines
inside.

Now we discuss the induced magnetic field. The vector
potential is given by A = W&,, with the function ¥ defined
by Eq. (12) and the reduced function ¢ given by Egs. (16)
and (18) in the limit B, = 0. In coordinate representation, the
function W beneath the surface is

©  Bicos(Biz) — (ag + ki) sin (B12)
V. 0= qul B B) 2
o €i(af+BY) + ek +kiai(e +e)
x kyJi(kp)e ™ < dky (25)

and, above the surface, we obtain

V..o = 2qe; /‘X’ il
- o €i(af+BY) + ek +kiaile +e)

x ko Jy(k p)e gk, . (26)

The magnetic field is obtained from these expressions as B =
VxA=—(0,¥)e&,+p '9,(p¥)e,. InFig. 2(c) we show the
magnetic field B (in units of qu) induced by an electric
charge in vacuum at 7’ = 1/%, close to the WSM TaAs as
a function of the dimensionless coordinates ¥;p and X;z.
Clearly the field lines do not have a simple form. The magnetic
field generated by an electric charge close to a TI should serve
as the benchmark for understanding the subtlety of our result.
In that case, the monopole magnetic field beneath (above) the

surface is radially directed with the magnetic monopole above
(beneath) the surface as its origin [20-22]. In the present case,
however, the behavior of the field lines is radically different.
Above the surface, the magnetic field lines begin at the surface
and end at the surface (but not at the same point). The situation
beneath the surface also differs from that of the topological
insulator. In Sec. V we discuss two experimental setups which
could be used to test this nontrivial magnetic field.

To understand the physical origin of the induced magnetic
field above the surface we rewrite the Maxwell Eq. (4) as
V x B.-g = *Z Jyyan, where the bulk Hall current, given by
JoHan = %b x E; ¢, is induced by the in-plane component
of the electric field produced by the charge. Having taken
b = bé_, the current is circulating around the symmetry axis,
i.e., JoHan = 04y (€, - E;0) €,. In Fig. 3 we show a stream
density plot of the bulk Hall current Jppay (in units of quyE%)
for 77 = 1/%, and different values of X,z. We observe that
each cross section of the bulk Hall current resembles the
surface Hall current induced by an electric charge near to a
topological insulator. Naively, this suggests that a 3D Weyl
semimetallic phase can be understood as an infinite number
of 2+ 1 Dirac subsystems (one for each value of z in the
bulk) supporting a surface Hall current. According to Fig. 2(c)
we do not expect an induced magnetic monopole in the bulk
as it is the case of an electric charge in front of a TI. A
close inspection to Fig. 2(c) reveals that below the surface of
the WSM, centered at the position of the image charge, the
B-field lines wind in an axisymmetric way as if about a loop
of current, similar to those of a “physical” magnetic dipole
of finite radius. This suggests that we consider a multipole
expansion of the magnetic field and determine the dominant
contribution. Still, we recall that the source of the magnetic
field is not localized, being the bulk Hall current Jpp,; which
is proportional to the electric field E,_o produced by the
charge. In this way, the standard multipole expansion for
localized sources does not necessarily applies. In order to
answer the above question we look for the large distance
behavior of the magnetic potential A = W(p, z)&, in the re-
gion z > 0. It is convenient to rewrite Eq. (26) in the form
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FIG. 3. Stream density plots of the bulk Hall current Jpyg,; (in units of anyElz) for 77 =1/%, ¢, =6, ¢, =1, and X,z =

—1, -2, =3.5, —4 (from left to right).

Wooo = 2qe; [y Fkyser, )i (kip)e ) dk,, where
B1

€1\/k] + i +ek +(a e

Due to the exponential factor e *:@+2) together with the
rapidly oscillating nature of Jj(k;p) in the far zone, the
integral (26) is dominated by the behavior of the integrand
for small values of k;. A series expansion of F(k ;e€;, €)
in powers of k; /¥, results in an expansion in powers of
(k1 /%1)"/%. The leading terms are

Wy~ 2qe /Oo i("_i)m_(fl“z)(k_L)
z>0 1 0 ﬁ 21 26% 21

kJ_ 3/2 /!
+ 0<E—1> :|Jl (ki p)e ™ CFD gk, . (28)

F(kise, €)=

@n

Just from dimensional arguments, it is clear that the term
proportional to k7 (with o > 0) under the integral yields a
contribution of the order (1/L)°*V, with L being a character-
istic length in the integrand. In fact, the required integrals are
given in closed form [48], yielding

VAT(5/2)q 1

M o
A SR

1 2(cos 0)@,, (29)

for the dominant contribution in the far zone, that arises from
the term proportional to ki/ % in Eq. (28). Here 6 is the angle
from the oz axis to the observation point, rcosé =r - &,

r=p&,+ (z+2)e, and r =/p> + (z+ z')*>. The associ-

ated Legendre function Pl_/; (x) is

1 /1 172 1
Pol(x) = —<l> 2171(—1/2 3/2;2; l)
1/2 F(Z) 1+x ) 5 > 2 N
(30)

where > F (a, b; c; z) is the hypergeometric function. The next
term in Eq. (28) produces

A® ~

(€1 + €)sinf
_qT 3 e,. (€28

Comparing with the magnetic potential A = (msin6/r?)&,
produced by a magnetic dipole mé, at the origin, we identify

this contribution as that of a magnetic dipole with

(€1 + €2)

=—q———
€12

located at the image point —z’. Thus we confirm the qualitative

expectation that a magnetic dipole is induced, which is the
subleading term of the vector potential.

, (32)

IV. INTERACTION ENERGY AND FORCE

To compute the force between the electric charge and the
Weyl semimetal we need the interaction energy between a
charge distribution and a WSM as given by [46]

1
Ein =7 / [@(r) — Do(r)]p(r)d’r, (33)

where ®y(r) = limy,_,o ®(r) is the electrostatic potential in
the absence of the 6 term. The first contribution represents
the total energy of a charge distribution in the presence of the
WSM, including mutual interactions. We evaluate this energy
for the problem of an electric charge above a WSM. Making
use of Eq. (24), the interaction energy becomes

B ¢ € —e _ g€ /OO o217
derz’ €1 +€ € +e Jy

8 af + B — K
el(af + ,312) + Ezki +kioi(er +€)

Eint(z/) =

dky,

(34)

which we interpret as follows. The first term corresponds to
the interaction energy between the original charge at 7/ and
the image charge at —z’ [46]. The second term does not admit
an immediate interpretation in a similar fashion, however, we
are certain that it is a consequence of the nontrivial bulk
topology of the material since it vanishes as the bulk Hall
conductivity goes to zero. We observe that as the charge
approaches the interface (z/ — 0), the nontopological con-
tribution will dominate the interaction energy (34) provided
€] # €; and therefore Ej,, — —oo, as usual. However, this
trivial contribution vanishes for €; = €, which is achieved
by embedding the charge in a dielectric fluid with the same
permittivity to that of the Weyl semimetal. This idea was
recently employed in Refs. [49,50] to cancel out the trivial
electrostatic effects when studying the interaction between an
hydrogenlike ion and a planar topological insulator. To isolate
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FIG. 4. Interaction energy Ej, (in units of the surface energy
Eguf) as a function of the dimensionless distance X;7’. The inset
shows the force (in units of F;) as a function of ¥,z

the topological effects we focus on this case. A distinguishing
feature of this interaction energy is that it does not diverge as
the charge approaches the interface. Indeed, we can compute
the surface interaction energy analytically, with the result
(setting €] = €, =€)
ag*b
8e2
This finite value of the interaction energy at the interface
is a signature that the electric field cannot be interpreted in
terms of a symmetrically located image charge, as in metals,
dielectrics, and topological insulators. In Fig. 4 we show a plot
of the ratio between the interaction energy Ejy and the surface
energy Eg,r as a function of the dimensionless distance X7 .
We observe that the maximum value is precisely at the surface,
and it decreases asymptotically to zero as the charge moves
away from the surface. The force that the Weyl semimetal ex-
erts upon the charge can be computed as F,(z') = —d, Ejn (7).
To get an insight of the magnitude of this force, in the inset of
Fig. 4 we plot the force F, (in units of Fy = —%, which
is the force that a perfect metallic surface exerts upon the
charge) as a function of the dimensionless coordinate X7’
As we can see, the force between the Weyl semimetal and the
charge tends asymptotically to the force between the charge
and a perfect metallic surface.

Egt = Eim(Z, =0)=- (35)

V. SUMMARY AND DISCUSSION

In summary, we have computed the electromagnetic fields
produced by an electric charge near a topological Weyl
semimetal in the equilibrium state, at the neutrality point,
and with two nodes in the bulk Brillouin zone, when the
charge is located in front of the face without surface states.
We found that, outside the WSM, the electric field behaves as
that generated by the original electric charge, with deviations
close to the interface due to the screening of the field inside
the material [see Fig. 2(b)]. This behavior is dominated by
the dielectric properties of the semimetal, in such a way that
the topological contribution is always hidden. The magnetic
field is, on the contrary, of topological origin due to the
magnetoelectric effect of topological phases. In particular,

we showed that the magnetic field exhibits a characteristic
behavior above the WSM: the field lines begin at the surface
and then end at the surface (but not at the same point), as
depicted in Fig. 2(c). In fact, we showed that this peculiar
magnetic field for z > 7’ includes a nonleading contribution
corresponding to a magnetic dipole moment induced beneath
the WSM’s surface. This magnetic field is different from the
radially directed one produced by an electric charge near the
surface of a TI, interpreted in terms of an image magnetic
monopole located beneath surface. As in the case of the charge
in front of the TI, in our case, the interpretation of the dipole
magnetic moment is only an artifact. The physical origin of
this field are the circulating Hall currents induced in the bulk
of the WSM obtained at the end of Sec. IIIC. Again, the
comparison with the situation of a charge in front of a TI is
useful. As we see from the stream density plot of the bulk
Hall current in Fig. 3, for each z < 0, the current resembles the
surface Hall current induced by a charge near a TI, suggesting
that a 3D WSM can be interpreted as an infinite number of
2+1 Dirac subsystems supporting a surface Hall current. The
distinctive behavior of the magnetic fields here obtained is
an experimentally observable signature of the anomalous Hall
effect in the bulk, and thus its detection is in order.

We must recall that our model is based on a simplified
description of Weyl semimetals. Nevertheless, the physical
realization of materials with generic WSM phases amenable
for experimental measurements is rather subtle. For example,
Weyl semimetals may have more than a single pair [51-53]
of Weyl nodes and possibly not all aligned with each other.
In this case a different approach must be employed to solve
the field equations and our results cannot be directly applied
since axial symmetry no longer holds. We point out that our
model and results still apply to systems where the Weyl nodes
appear once time reversal is broken by an external magnetic
field. For instance, in the Dirac materials Cd3As, [54-56] and
Na3Bi [57-59], each Dirac point is expected to split into two
Weyl nodes with a separation in momentum proportional (in
magnitude and direction) to the magnetic field. An interesting
theoretical proposal of the WSM phase with two nodes is
the multilayer structure comprised of topologically trivial and
nontrivial insulators proposed in Refs. [30,60,61], which to
our knowledge has not been realized experimentally yet.

Now we discuss two specific fingerprints of the induced
magnetic field above our particular WSM which could, in
principle, be measured.

Angle-resolved measurement. The force that the Weyl
semimetal exerts upon the charge is F, = —d,FEj,(z'), where
the interaction energy is given by Eq. (34). This force cor-
responds to F, = gE,.o(r"), where E_. is the electric field
above the WSM evaluated at the position r' = 7€, of the
original charge, and it attracts the charge toward the surface
in the direction perpendicular to it. However, interesting phe-
nomena appear when we examine a moving external charge.
For example, consider a steady electron beam drifting at a
distance 7’ above the surface of the WSM. If the motion of the
electrons is slow enough with respect to the Fermi velocity
in the solid, the induced polarization and magnetization of
the material rearranges infinitely fast, in such a way that the
solution for the electromagnetic fields we have computed are
still valid. In this case, where the charge ¢ is moving with a
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uniform velocity v above the surface of the WSM, the force
acting upon the charge will acquire an additional term of
the form F,, = g% x B..o(r) due to the induced magnetic
field. For an electron beam moving along the x direction (with
velocity v = v,&,) we find

Fo— & /OO 2¢%€1(vy/c) k3 Bre 227 dk
" Y 0 El(a%+ﬂ%)+62ki+kLa1(€1-‘1-62)'

Remarkably, this anomalous force is orthogonal to the elec-
trons’ motion as well as to the electric contribution F,. As
a result, these effects can be distinguished from each other.
Experimentally, the required probe can be provided by the
steady electron beam emitted from a low-energy electron gun
(low-energy electron diffraction). While drifting above the
WSM, the anomalous force (36) will deflect the trajectory of
the electron beam. To estimate the size of this deflection we
consider the proposal in Ref. [62] of a similar experimental
setup involving TIs. In that case the authors take v, ~ 107
cm/s, 7 ~ 1 um, and L ~ 1 cm for the sample’s size (which
in their case coincides with the ox displacement). We assume
these parameters are also feasible when the sample is a WSM.
An estimate of the transverse displacement A produced by the
anomalous force F,, is
40[2 qZ L2 b2
AR —

m2e;

where f (€1, €2; X7') is obtained from Eq. (36). Taking €; ~ 6
and b~ 10° m~! as for the genuine Weyl semimetal TaAs
[5-9], we find A =~ 3,2 um. This deflection is of the same
order of magnitude as that reported in Ref. [62], and then it
can be traced by angle-resolved measurements.

If this experiment were carried out with a Dirac semimetal
by applying an external magnetic field, instead of a genuine
WSM, the induced magnetic field will be overwhelmed by
the external one, and so would its contribution to the Lorentz
force on a moving charge. In fact, we can estimate by how
much is the Lorentz force of the external field larger than that
of the anomalous force. Taking B¢y, = Boé€., the Lorentz force
Fy = q% X Bexe Will deflect the trajectory of each electron
by an amount Ay = %BO. Thus, the total transverse drift
will be Ay + A, where A is the drift in Eq. (37) produced
by the anomalous force. To compare the magnitudes of these
contributions we focus on A/A, which is

A 8a? gb? ,

Ao nle B—Of(él, €3 X12).
A numerical estimation is obtained by considering the Dirac
semimetal Cds;As, in the presence of a magnetic field of
1 T. According to Ref. [56], this induces a separation of the
Weyl nodes of b =5 x 108 m~! and €; = 12. Therefore for
an electron at a distance 7/ = 1 um above the material we
obtain A/Ag = 1077, thus implying that the external field
overwhelms the topological contribution by this factor. We
then conclude that an angle-resolved measurement is appro-
priate for experimental realization only if it were possible to
consider a genuine WSM, for which no external magnetic
field is needed.

Scanning SQUID magnetometry. Another possible tech-
nique for measuring the induced magnetic field could be scan-

(36)
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FIG. 5. Magnetic flux generated by an electric charge ¢ at a
distance 7/ = 1/X; above the Weyl semimetal TaAs as a function
of X R for different values of X;z.

ning SQUID (superconducting quantum interference device)
magnetometry. Roughly speaking, a SQUID is a very sensitive
magnetometer used to measure extremely subtle magnetic
fields (as low as 5 x 107!8 T [63-65]), based on supercon-
ducting loops containing Josephson junctions. Technically, we
have to compute the magnetic flux through a loop (of radius
R and parallel to the surface) placed at a distance z above the
Weyl semimetal, i.e., g = fs B - dS, where S is the surface
of the loop. The magnetic flux from a topological insulator
through a Josephson junction ®L! serves as the benchmark for
comparing our result. In that case, the magnetic flux grows
from O (at R = 0) to the constant value 27 g (as R — 00),
where g = ﬁ is the magnetic monopole strength [22].
This is so because the magnetic field is radially directed
away from the image magnetic monopole beneath the surface
and therefore the loop will always enclose field lines. This
interesting tendency of the magnetic flux to a constant value
can be thought as a distinctive feature of the induced magnetic
field in topological insulators. The case of a Weyl semimetal
is quite different, as we discuss below.

In our case, a simple calculation produces Pg(R,z) =
27 RVY,.o(R, z), where the function W, is given by Eq. (26).
In Fig. 5 we show a plot of the magnetic flux ®p(R, z) (in
units of ¢) due to a pointlike charge g located at a distance
7 = 1/%; above the surface of the Weyl semimetal TaAs
(for which €, ~6 and b~ 10° m™!) as a function of the
dimensionless radius X{R and for different values of X;z. Of
course, g = 0 at R = 0. Furthermore, in the limit R — oo,
the function W, (26) is a highly oscillatory integral and
therefore &g — 0. This behavior implies the existence of a
maximum flux at a critical radius R,, as shown in Fig. 5. The
fact that the magnetic flux tends to zero as the radius goes
to infinity can be easily understood from the fact that the
magnetic field lines, which start at the WSM surface, go back
again to the surface, as discussed before. The existence of a
maximum flux at R., as well as the asymptotic vanishing of
the flux, are distinguishing features of the induced magnetic
field due to a genuine WSM. One can further determine the
critical radius R, corresponding to the maximal magnetic field
flux in the usual manner (i.e., by solving dg®Pp|r=r, = 0 for
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FIG. 6. Critical radius X,R. of the loop corresponding to the
maximal magnetic field flux as a function of X;(z + z’) for the Weyl
semimetal TaAs. The dots correspond to the numerical calculation
and the continuous line is curve fitting.

R.). In Fig. 6 we show a plot of ¥R, as a function of
¥1(z + Z/) for the case in which the WSM is the TaAs. While
the dots represents the numerical solution of 9z ®glr, = 0,
the continuous line is curve fitting. Unexpectedly we find the
equation of a straight line ¥R, = m X;(z + 7') + b, where
the values of the slope m and the intercept b on the X R,
axis depend on the permittivity €, of the WSM. When the
WSM is the TaAs, we find m = 2.71 and b = 3.69. For a
numerical estimate of the magnetic flux we consider a charge
q = n.|e| placed at a distance 7/ = 1 um above the surface of
the Weyl semimetal TaAs and a SQUID of radius R = 10 um
located at z = 10 um. We find ®g =~ 7n, x 10~'* Tcm?,
which is measurable with present day attainable sensitivities
of SQUIDs [63-65]. One of the key challenges for the experi-
mental detection of this flux profile would be to find a way to
fix and localize the charge above the surface.

As expected, if this experiment were carried out with a
Dirac semimetal instead of a genuine WSM, the required
external magnetic field will overwhelm the topological contri-
bution to the total magnetic flux. Nevertheless, in this case it is
still possible to disentangle these effects by using the fact that
the contribution to the flux produced by the external magnetic
field, say ®%", is constant in space and time. Contrary to this,
the contribution from the induced field &y is also constant in
time, however, it is not isotropic. A sensitive magnetometer
as the SQUID will be capable to measure small variations of
the flux which amounts to eventually measuring the induced
electromotive force &£ in the loop. Therefore, this allows
for isolating the topological contribution, for example, by
producing a controlled displacement of the SQUID along the
7 axis at speed v;, namely & = —%(tbg“ + &p) = —vzdl%,
where the z dependence is read-off from Eq. (26).
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APPENDIX: DETAILED SOLUTION

In this Appendix we present the detailed solution of the
equations of motion Egs. (13) and (14) in the general case
where two bulk Hall materials are in contact, as described
in the main text. First we derive the corresponding boundary
conditions at the interface z = 0 and at the singular point
7z = 7/; and next we use standard electromagnetic techniques
to obtain the general solution in the whole space.

Boundary conditions. The boundary conditions for ¢ and
can be determined as usual. Assuming that the reduced func-
tions are bounded when z is in the infinitesimal neighborhood
of z = 0, integration of Eqs. (13) and (14) over the interval
between —e and +¢ with ¢ — O yields the continuity of
€9,¢ and 0,y there. Then, the continuity of ¢ and ¢ atz =0
follows. In a similar fashion, one can show that the singularity
in Eq. (13) requires, at z = 7, that ¢ be continuous, while 9.¢
be discontinuous, i.e. ,az¢|§§§if8 = —q/e(Z'). Analogously,
integrating twice Eq. (14) yields the continuity of v and 9.y
at the singular point.

General solution. The solutions to Egs. (13) and (14)
subject to the above boundary conditions can be expressed
in terms of the solutions e*i:¢, 5%, ¢=kizz and e %%, of the
corresponding homogeneous equations. Here j labels the two
media and k;; = a; + if; is the complex wave number, with
aj and B; given by Eq. (20).

To compute the reduced functions ¢ and y we first par-
tition the z axis in the three regions: (I) z <0, (II) 0 <
z < 7, and (IIl) 7 < z. Next, we write an appropriate linear
combination of the solutions to the homogeneous equation for
each region, and finally we apply the corresponding boundary
conditions. On the one hand, for the reduced scalar potential
¢, the forms of the solutions in the three regions are as
follows:

¢ = a1eh' + et (A1)
b = b€ + byeiF 4 ceT  cpe T, (A2)
¢ = dye " + dye ", (A3)

where the signs in the exponentials (A1) and (A3) are required
by the boundary condition that ¢ goes to zero for |z| — oo.
On the other hand, we observe that Eq. (14) dictates the
relation between ¢ and ¢; namely, ¥ ~ i€;¢ for ¢ ~ etk
and ¢ ~ —ie;¢ for ¢ ~ etk Using this result we find that
Eq. (A1) implies that, for region I, Y = i€ (a; "% — arei%).
In a similar fashion we obtain the corresponding expressions
for yri; and Y.

Imposing the boundary conditions and solving the resulting
system of equations we find for the coefficients
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q ky(ey —e)e i 4 + [k, (e1 + €2) + 2k} El]e*kkz/

ay=a, = — " —> (A4)
2e) 2(erkizky, + €2kack3) + (€1 + €2)(k ko + kizky,)
9 k.
by =b5 = = A5
: 2 4€2kzze ( )
et 4 [2(2kacks, — €1kik},) + (€1 + €)kacki, — K3 ki )]e ™% — 2kykyz(€) — €2)e 5 (A6)
: 2 462k22 2(€]k1zki’<v + 62"21"3}) + (El + 62)(k k21 + klzk2z) ’
gy = dy = 2| oy Rk —abikio) + (@ ekl Kol M hidae —e)e B,
4€2k21 2(€1k1z + GZkZZkQZ) + (e1 + 62)(k kZZ + klzk27)
Using these results, we can write the reduced functions beneath the surface as ¢; = 2Re(a;e"+*) and Y = —2¢;Im(a;eb%),
whose explicit forms are
¢ = qu e (101 + €0) cos(fr1z — Boz) + (€181 + €282) sin(Biz — Boz)

1

+ (€1 — €2) cos (Br2)[az cos(Baz’) — Ba sin(Baz)]}, (AB)
Vi = %ea”’““’{mﬂ] + &) cos(Biz — fo2) — (€101 + E02) sin(B1z — fr7)

+ (€1 — €) sin (B12)[B2 sin(Baz) — a2 cos(Baz)]}, (A9)

which are the ones we present in the main text in Egs. (15) and (16). Now we follow similar steps to derive the reduced functions
o = 2Re(b1€% + cre7™%) and Yy = —26,Im(b "% 4 c1e7*=%). The results are

én = 5 2 e oy cos[Ba(z — 7)) + Ba sin[Ba(z — )]} — M ~ G ay cos[Ba(z — 7))
€rr;y 26,0
+ Bisin[Ba(z — )1} + Lzeﬂmﬁz/){r cos[Ba(z + )] — Asin[Ba(z + 21}, (A10)
26150
Y = iz @B, cos[Ba(z — 2)] — e sin[Ba(z — 2} + q(ﬂz—éez)e_”(”{){ﬁl cos[Ba(z — 2]
2r;
—ay sin[Ba(z — )1} + Q 7a2(z+z/){A cos[Br(z + )] + [sin[Ba(z + )1}, (A11)

where I', A and Q are defined in Eq. (19). Finally, for ¢y = 2Re(d e %) and Yy = —2e:Im(d;e %), we obtain

bt = LDy cosl (@’ — )] + o sinlfa(e — D} — LE— 2 et g, cosl iz — )]
2ert5 26,0
+ By sin[Baz — I} + ﬁe—mﬂ”{r cos[Ba(z +2)] — Asin[Bs(z + )1}, (A12)
2
Ym =35 e I(B, cos[Baz — 2] + @z sin[Ba(z — 7)1} + ‘“elz—éez)e—”(”“{ﬁl cos[Ba(z — 2)]
2
—ay sin[Ba(z — )]} + ﬁe—wﬂ’)m cos[Ba2(z + )] + Tsin[Ba(z + 2)1}. (A13)
2

We observe that the reduced functions above the WSM surface can be written in a unified fashion. For example, ¢ and ¢y are
both contained in Eq. (17); and ¥y and Yy are both contained in Eq. (18).
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