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Abstract
The objective of the present work was to evaluate the water hyacinth (WH) as a substrate for the production of hydrolytic 
enzymes (cellulases and hemicellulases) of 100 strains of filamentous fungi under conditions of solid growth. Five fungal 
strains, identified as Trichoderma harzianum, Trichoderma atroviride, Penicillium griseofulvum, Penicillium commune and 
Aspergillus versicolor, were selected and studied for their ability to grow on water hyacinth as a substrate and carbon source 
only, evaluating hydrolytic enzymatic activities (α-l-arabinofuranosidase, cellulase, xylanase and β-d-xylopyranosidase) 
and extracellular protein per g of water hyacinth dry matter (gdm). The five strains selected were able to produce the four 
enzymes studied; however, T. harzianum strain PBCA produces the highest xylanase (149.3 ± 14.3 IU/gdm at 108 h), cel-
lulase (16.4 ± 0.6 IU/gdm at 84 h) and β-d-xylopyranosidase (127.7 ± 14.8 IU/gdm at 48 h). In contrast, the fungus with the 
highest α-l-arabinofuranosidase activity was A. versicolor, with 129.8 ± 13.3 IU/gdm after 108 h. In conclusion, T. harzi-
anum showed the best production of the hydrolytic enzymes studied, using as a matrix and carbon source, water hyacinth. 
In addition, catalytic activities of arabinofuranosidase and xylopyranosidase were reported for the first time in T. versicolor 
and T. harzianum.

Keywords α-l-Arabinofuranosidase · Aspergillus · Penicillium · Trichoderma · Water hyacinth · Xylanase · β-d-
Xylopyranosidase

Introduction

Water hyacinth (WH) (Eichhornia crassipes) is an aquatic 
plant and due to its high growth rate and efficiency to pro-
duce seeds, is commonly considered an aquatic weed. The 
presence of WH reduces the amount of dissolved oxygen and 
the amount of sunlight that penetrates into water bodies, thus 
affecting the naturally occurring biota and increasing the 
pollution in several water environments. This aquatic weed 
is a persistent worldwide problem in more than 80 countries 
(Jafari 2010). However, a number of potential applications 
exist for WH, which include as an agent in phytoremedia-
tion, cellulose nanocrystals, composting, animal feed and 
even as a carbon source to produce biofuels, such as bio-
diesel, biogas or bioethanol (Jafari 2010; Das et al. 2016). 
It has been described that carbohydrates present in WH lig-
nocellulose hydrolysates are xylose, cellulose, arabinose, 
galactose and mannose, mainly (Kumar et al. 2009) with 
lignocellulose being around 36% of the total dry weight of 
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lignocellulose of WH. Due to the complexity of the sub-
strate, it is necessary for the combined action of several 
hydrolytic enzymes such as cellulases, xylanases, arabino-
furanosidases and xylopiranosidases for the generation of 
monosaccharides and it can be destined to biotechnologi-
cal processes such as the production of biofuels (Nigam 
2002). Additionally, WH can be used for the production of 
xylan, xylooligosaccharides or xylose for food and nonfood 
applications (Samanta et al. 2012) because WH possesses a 
significant hemicellulose content, even more than cellulose 
(Balasubramanian et al. 2012) which can be converted into 
saccharides, which are of industrial interest, using xylanases, 
β-d-xylopyranosidases and α-l-arabinofuranosidases.

WH has been used as a growth medium to produce 
β-glucosidases and endoglucanases from Rhizopus ory-
zae (Karmakar and Ray 2011), cellullases and xylanases 
from Trichoderma reesei, Aspergillus niger and Myrothe-
cium roridum (Okunowo et al. 2010), and cellobiohydro-
lases from A. niger. However, there are currently no reports 
studying the production of β-d-xylopyranosidases and α-l-
arabinofuranosidases by fungi grown on WH.

In this work, we report the selection and identification of 
five filamentous fungal strains that produce cellulase, xyla-
nase, β-d-xylopyranosidase and α-l-arabinofuranosidase 
activities when they are grown using solid-state fermenta-
tion (SSF) and WH as the only carbon source.

Materials and methods

Strain screening

More than 100 strains of filamentous fungi from the col-
lections of the IBT-UNAM (Instituto de Biotecnología-
Universidad Nacional Autónoma de México, México), 
UAM-I (Universidad Autónoma Metropolitana-Iztapalapa, 
México), CBMSO-CSIC (Centro de Biología Molecular 
Severo Ochoa-Consejo Superior de Investigaciones Cientí-
ficas, Spain) and IRD (Institut de Recherche pour le Dével-
oppement, France) were studied. Their ability to grow on 
agar plates (1.5%) containing 0.2% carboxymethylcellulose 
(CMC-sodium salt) or 0.2% birchwood xylan was deter-
mined. Solid media were supplemented with 0.2%  NaNO3, 
0.1%  K2HPO4, 0.05%  MgSO4, 0.05% KCl, 0.2% and 0.2% 
peptone. After 5 days of incubation at 28 °C, the plates 
containing the fungal strains were flooded with the Gram’s 
iodine reagent (2 g of KI and 1 g of iodine in 300 mL of 
distilled water) for 3–5 min and the activity halo, a relative 
method to estimate the cellulase or xylanase activity, was 
measured (Kasana et al. 2008). The size ratio of the hydroly-
sis halo/size of the colony was used during the growth of the 
microorganisms during 5 days (Cruz-Ramirez et al. 2012) 
to select the performance of the strains to hydrolyze CMC 

or xylan. The five strains with the highest ratio (above 1.5) 
were selected for the subsequent studies.

Strain identification

Identification was performed using molecular methods and 
internal transcribed spacer (ITS) sequences as molecular 
markers. The fungal strains with the highest enzymatic 
activities were grown at 28 °C in liquid culture with 20 g 
malt extract/L and 10 g peptone/L to obtain mycelium and 
then used for DNA extraction with the method described 
by Raeder and Broda (1985). The ITS region was amplified 
using universal primers, ITS4 and ITS5 (White et al. 1990), 
and the sequenced products were compared with those 
reported in GenBank; the obtained partial sequences were 
deposited in GenBank with the accession number reported 
in the results section.

Substrate preparation

Fresh WH was collected from the Xochimilco water canals 
(Mexico City, Mexico) in collaboration with the TEMA 
S.A. Company. The roots were manually removed, and the 
remainder of the plant was dried in a rotary oven.

Characterization of the substrate

Moisture determination

10 g of WH was weighted and subjected to drying in an oven 
at 60 °C for 48 h until constant weight. The moisture content 
was determined by weight difference.

Extractable material in organic solvents

The TAPPI T204 om-88 was used. 10 g of water hyacinth 
with a particle size of 0.425 mm was used (TAPPI T204 
om-88 1987).

Extractable material in hot and cold water

The TAPPI T207 om-93 standard was performed, using the 
material previously subjected to extraction of organic sol-
vents (TAPPI T207 om-93 1993).

Ash content

To estimate the ash content, the TAPPI standard T211 om-93 
was performed and 1 g of WH was utilized with a particle 
size of 0.425 mm (TAPPI T211 om-93 1993).
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Determination of lignin insoluble in acid

The TAPPI T222 om-88 standard was performed using 1 g 
of WH (TAPPI T222 om-88 1988).

Holocellulose content

The method described by Browning (1967) was performed 
using 2 g of WH.

Culture conditions for solid-state fermentations

Three hundred milligram batches of WH (prepared as 
described above) were used for solid-state fermentation. 
The initial pH was adjusted to a value of 6 through the 
addition of 0.25 mM  H2SO4 prior to the sterilization of 
the WH; subsequently, the substrate was sterilized at 
15 lb of pressure for 20 min. The WH was supplemented 
with modified Pontecorvo medium (1953) composed 
of 1.8 g  (NH4)2SO4/L, 0.5 g urea/L, 0.5 g  KH2PO4/L, 
0.2 g KCl/L, 0.2 g  MgSO4·7  H2O/L and 0.3 mL of trace 
metals/L, containing 100 mg  Na2B4O7·10H2O/L, 50 mg 
 MnCl2 ·  4H2O/L, 50  mg  Na2MoO4·2H2O/L, 250  mg 
 CuSO4·5H2O/L, 85  g  FeCl3/L, 100  mg  ZnSO4/L. To 
harvest the spores, each one of the fungi was grown on 
30 mL of PDA contained in 250-mL Erlenmeyer flasks; 
after 7 days of fungal growth at 28 °C, to each flask was 
added 30 mL of a solution of Tween 20 (0.01%) sterile; 
and with the help of an orbital shaker, the spores were 
detached from the mycelium and harvested which were 
subsequently counted using a Neubauer chamber. The WH 
was inoculated with the Pontecorvo medium containing 
2 × 107 spores per gram of dry matter until the humidity of 
the WH was 70%. Solid cultures were incubated at 28 °C; 
humidity was adjusted to 70%. Samples were taken and 
analyzed every 12 h during 5 days determining extracel-
lular protein, and enzymatic activities of xylanases, cel-
lulases (CMCase), xylopyranosidases and arabinofuranosi-
dases, as described below. The analyses were performed 
in triplicates for each sample.

Preparation of enzymatic extracts

Enzymatic extracts were obtained by adding 6 mL of dis-
tilled water to 300 mg of fermented substrate, which was 
then stirred in a vortex at room temperature for 2 min and 
then centrifuged for 5 min at 15,000×g to obtain liquid 
extracts free of fungal biomass; these extracts were utilized 
for protein analyses and extracellular enzymatic activity. 
The extracts were analyzed immediately. The extracellular 
protein content was determined using the Bradford assay 

(Bradford 1976) and a standard curve of bovine serum 
albumin in the range of 0 to 25 mg/L.

Enzymatic activity measurements

Xylanases

The crude extract was incubated with 0.2% birchwood xylan 
for 10 min at 40 °C (100 mM citrate buffer, pH 5.5). The 
activity was then calculated by quantifying reducing sug-
ars according to Quintanar et al. (2012). One international 
unit (IU) was defined as the amount of enzyme required to 
release 1 µmol of reducing sugar (expressed as xylose) per 
min under the assay conditions. All activities are referred to 
as initial grams of WH dry matter (IU/gdm).

Cellulases as CMCases

Samples were incubated with 0.2% carboxymethylcellulose 
for 10 min at 40 °C (100 mM citrate buffer, pH 5.5), and the 
enzymatic activity was calculated by quantifying the reduc-
ing sugars according to Quintanar et al. (2012). One inter-
national unit was defined as the amount of enzyme required 
to release 1 µmol of reducing sugar (expressed as glucose) 
per min under the assay conditions.

β-d-Xylopyranosidases

One hundred fifty microlitres of crude extract was incubated 
with 150 µL of p-nitrophenyl-β-d-xylopyranoside (1 mg/mL 
in distilled water) at 30 °C for 10 min, 900 µL of  Na2CO3 
0.1 M was added to stop the reaction, and the activity was 
calculated to quantify the p-nitrophenyl according to the 
method of Tagawa and Kaji (1988). One international unit 
was defined as the amount of enzyme required to release 
1 µmol of p-nitrophenyl per min under the assay conditions.

α-l-Arabinofuranosidases

One hundred fifty microliters of crude extract was incubated 
with 150 µL of p-nitrophenyl-α-l-arabinoside (1 mg/mL in 
distilled water) at 30 °C for 10 min, 900 µL of  Na2CO3 0.1 M 
was added to stop the reaction, and the activity was calcu-
lated by quantifying the p-nitrophenyl according to Tagawa 
and Kaji (1988). One international unit was defined as the 
amount of enzyme required to release 1 µmol of p-nitrophe-
nyl per min under the assay conditions.

Analysis of results

The results were analyzed using a variance analysis and 
comparison between means with the Statistica 7 software.
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Results and discussion

Screening and identification of fungal strains 
with cellulolytic and xylanolytic activities

More than 100 fungal strains were selected and stud-
ied from four laboratories (from the IBT-UNAM (Méx-
ico), UAM-I (México), CBMSO-CSIC (Spain) and IRD 
(France) collections). Five strains with the highest specific 
xylanolytic and cellulolytic activities were selected. All 
the tests were carried out in Petri dishes and the strains 
selected were showed the highest halo of enzymatic activ-
ity (Fig. 1). This method of selection has been utilized 
before in several studies with reliable results (Reader and 
Broda 1985; Runa et al. 2009). For the identification of 
the strains, the molecular marker ITS (internal transcribed 
spacer sequences—ITS4 and ITS5) was utilized, reported 
by White et al. (1990); After amplification and sequenc-
ing of extracted DNA, it was compared with the GenBank 
databases and these five strains were identified: Tricho-
derma harzianum, Trichoderma atroviride, Penicillium 

commune, Penicillium griseofulvum and Aspergillus ver-
sicolor (Table 1).

WH characterization

The results obtained from the characterization of the WH 
are shown in Table 2. A 5.22% lignin content was observed 
which is slightly lower than that described by Tham (2012); 
the low lignin content can be an advantage and may favor 
the hydrolysis of the biopolymers present in WH such as 
cellulose and hemicellulose (Juárez-Luna et al. 2011). The 
concentration of holocellulose found in the present work 
(around 30%) varies considerably with that described by 
other authors; this variation may be due to climatic differ-
ences, age of the plant, height above sea level, geographical 
area, etc., which can influence the variation observed. The 
carbohydrates present in the holocellulose of the WH are 
of great interest since they can be used for a great variety 
of biotechnological processes, mainly for the production 
of bioethanol (Guragain et al. 2011). Abraham and Kurup 
(1996) reported a content of 53.3% of holocellulose, Nigam 
in 2002 reported 66.9%, Gunnarsson and Petersen (2007) 
reported 52.9%, Kumar et al. (2009) reported 67.6%, and 
Sornvoraweat and Kongkiattikajorn (2010) reported 51.7% 
holocellulose in samples of E. crassipes. It is, therefore, 
of utmost importance to take into account the edaphic and 
geographical factors to estimate sugar yields that can be des-
tined to biotechnological processes.

Protein production by the selected filamentous 
fungi grown on WH

The selected fungal strains were grown on WH as a solid 
matrix and only carbon source. The extracellular protein was 
quantified as an indicator of microbial growth. All of the 
analyzed strains were able to use the lignocellulosic mate-
rial as a carbon source, generating mycelia and extracellular 

Fig. 1  Halos of hydrolytic activity of selected filamentous fungi 
grown on bacteriological agar supplemented with Pontecorvo salts, 
and carboxymethylcellulose and birch xylan as carbon source for 
cellulolytic and xylanolytic activities, respectively. A = P. commune; 
B = T. harzianum; C = T. atroviride; D = A. versicolor; E = P. griseof-
ulvum 

Table 1  Strain identification and GenBank accession numbers

Original code Collection origin Strain GenBank 
accession 
number

CBMSO 56 CBMSO-CSIC Aspergillus versi-
color

JX436463

108A IBT-UNAM Penicillium com-
mune

JX436464

CBMSO 7 CBMSO-CSIC Penicillium griseof-
ulvum

JX436465

L892 IRD Trichoderma atro-
viride

JX436466

PBCA IBT-UNAM Trichoderma harzi-
anum

JX436467
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protein (Table 3). T. harzianum was the strain that produced 
the highest amount of extracellular protein, whereas A. ver-
sicolor had the lowest. T. atroviride, P. griseofulvum and P. 
commune displayed a similar behavior with similar protein 
concentrations. In all cases, the production of extracellular 
protein was evident after 36 h of cultivation.

Five fungal strains were selected during the screening 
as they showed high cellulolytic and xylanolytic activities 
relative to growth during the plate assays. Also, the five 
selected strains were able to grow using WH as an only 
carbon source which is indicative of the production of sac-
charifying enzymes. The molecular identification of strains 
indicated the presence of Trichoderma, Aspergillus and 
Penicillium species; all of these species have been previ-
ously reported as capable strains of producing cellulases and 
xylanases. However, there have been few studies about β-d-
xylopyranosidase and α-l-arabinofuranosidase production.

Saccharifying enzyme production 
by the filamentous fungi grown on WH

Finally, the enzymatic extracellular activity for cel-
lulases, xylanases, β-d-xylopyranosidases, and α-l-
arabinofuranosidases was analyzed. CMCase activity 
(Fig. 2a) was detected in the five strains; starting to increase 
at 36 h, with a maximum at 84 h. T. harzianum had the 
highest activity (16.4 ± 0.6 UI/gdm at 84 h). A similar ten-
dency was evident for the xylanase activity (Fig. 2b), i.e., T. 

harzianum produced the highest activity (149.3 ± 14.3 IU/
gdm in 108 h), and this result is very similar to that described 
by López-Ramírez et al. (2018) who reported up to 100 IU/
gdm produced by T. harziamum grown on pine sawdust but 
in conditions of aeration and agitation, Rezende et al. (2002) 
detected 36 IU/mL of xilanolytic activity of T. harzianum 
using bagasse from sugarcane as a substrate; on the other 
hand, Rahnama et al. (2013) reported 433 IU/gms using rice 
straw as a substrate. It is clear that the substrate is essen-
tial to induce xilanolytic activity since both rice straw and 
WH have a high content of hemicelluloses, whereas for β-d-
xylopyranosidase activity (Fig. 3b) was 127.7 ± 14.8 IU/gdm 
at 48 h of cultivation time, respectively. The values obtained 
for these enzymatic activities are consistent with the extra-
cellular protein production levels reported in Table 2. Even 
though A. versicolor produced the lowest levels of extracel-
lular protein, this strain showed the highest activity of α-l-
arabinofuranosidase, with 129.8 ± 13.3 IU/gdm after 108 h 
of cultivation time (Fig. 3a); in addition, this strain produced 
71.7 ± 0.2 IU/gdm of β-d-xylopyranosidase activity at 108 h.

Trichoderma species are well known for cellulase and 
xylanase production (Zhang et al. 2017). López-Ramírez 
et al. (2018) detected 9 IU/gdm of cellulolytic activity in 
T. harzianum using as substrate, pine sawdust, Ikram-Ul-
Haq et al. (2005) reported up to 0.427 IU/ mL of cellulo-
lytic activity using cotton fibers as a substrate, and Pathak 
et al. (2014) detected 3.96 IU/gdm of cellulolytic activ-
ity of T. harzianum using wheat grains. Comparing what 

Table 2  Chemical composition of the water hyacinth

The results represent the mean ± standard derivation

Components

Ash Moisture Extractables in hexane Extractables in cold 
water

Extractables in hot 
water

Lignin Holocellulose

Content (%) 17.43 ± 0.4 11.66 ± 2.84 7.35 ± 0.59 15.1 ± 0.73 26.51 ± 5.26 5.22 ± 0.66 30 ± 0.34

Table 3  Production of 
extracellular protein (mg/mL) 
during the growth of fungi on 
water hyacinth

The results represent the mean ± standard derivation

Time (h) Fungal strain

A. versicolor T. atroviride T. harzianum P. griseofulvum P. commune

12 41 ± 5 92 ± 1 60 ± 6 93 ± 0 83 ± 0
24 33 ± 0 43 ± 17 54 ± 8 83 ± 1 90 ± 17
36 56 ± 12 148 ± 12 180 ± 2 189 ± 12 157 ± 8
48 94 ± 5 155 ± 24 254 ± 6 229 ± 46 176 ± 14
60 97 ± 9 181 ± 18 674 ± 95 356 ± 99 219 ± 55
72 167 ± 3 420 ± 32 514 ± 16 298 ± 31 355 ± 23
84 187 ± 2 365 ± 8 639 ± 1 401 ± 25 453 ± 58
96 122 ± 7 371 ± 35 496 ± 7 308 ± 10 321 ± 8
108 131 ± 16 399 ± 35 650 ± 33 334 ± 23 325 ± 7
120 216 ± 9 562 ± 17 712 ± 26 457 ± 54 483 ± 14
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has been reported by other authors with the activity value 
obtained using WH as substrate, it is observed that this can 
be an excellent substrate for the production of cellulolytic 
enzymes, contributing to the negative impact of this plant on 
water bodies. T. harzianum is widely utilized as a biological 
control agent (Saravanakumar et al. 2016), and a thermosta-
ble xylanase, endo-β-1,4-xylanase and endo-β-1,3-glucanase 
have been previously purified and characterized from this 
fungus (Ahmed et al. 2012). T. atroviride has been less 
studied; but some reports indicate that it possess a higher 

cellulase activity than T. reesei (Kovacs et al. 2008) and 
it is present in urban stone surface (Paramo-Aguilera et al. 
2012). In the literature, there is only one report on xyla-
nase activity being produced by Penicillium commune (Baffi 
et al. 2012) and another report indicating cellulolytic activity 
(Zyani et al. 2009). Penicillium griseofulvum has been the 
most studied and there are two studies reporting endo-β-
1,4-xylanase genes (Cervera-Tison et al. 2009). Finally, the 
xylanase and cellulose activities of A. versicolor have also 
been studied (Lee et al. 2011).
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The present work constitutes the first report on the 
capacity of the P. commune and A. versicolor to pro-
duce β-d-xylopyranosidases. In the case of the α-l-
arabinofuranosidase enzyme, it has been detected mainly 
in T. harzianum (Do Vale et al. 2012; Da Silva-Delabona 
et al. 2013; de Souza et al. 2018) and in Trichoderma sp. 
with catalytic activity similar to α-l-arabinofuranosidase 
enzyme (Zhou et al. 2011). Both β-d-xylopyranosidases 
and α-l-arabinosidases enzymes have important biotech-
nological applications and, therefore, need to be stud-
ied using WH as a substrate to produce these enzymes 
(Sedlmeyer 2011).

Referring to the results using WH in solid-state fermen-
tations, the presence of xylanase and cellulase activities 
can be ascribed to the xylan and cellulose contained in the 
aquatic plant. The xylanolytic activity was higher than the 
cellulolytic activity for the five studied strains. We suggest 
that this phenomenon may be due to two reasons. First, 
the KM values reported for the T. harzianum cellulase are 
2.4  gL−1 (de la Cruz et al. 1995) and 3.8  gL−1 (Ahmed 
et al. 2012), whereas the KM for its xylanases is 3.3  gL−1 
(Chutani and Sharma 2015) and 4.8  gL−1 (El-Katatny et al. 
2001). The values reported by these authors suggest that 
xylanases have a greater affinity for their substrate than 
cellulases since they are capable of releasing a greater 
amount of monosaccharides. Second, glucose metabolism 
produces more ATP than xylose metabolism. Thus, fungi 
require a lower cellulase activity for a similar ATP yield 
compared to xylose metabolism. Also, a higher amount 
of β-d-xylopyranosidase activity was obtained before α-l-
arabinofuranosidase activity increased. Seiboth and Metz 
(2011) reported that the l-arabinose requires five enzymes, 
whereas d-xylose only requires three enzymes for its con-
version to d-xylulose 5-phosphate and to be catabolized 
through the pentose phosphate pathway. Thus, fungi first 
consume the carbohydrate that is easier to metabolize, in 
this case the xylose produced by d-xylopyranosidase.

The lignocellulosic degradation using the enzymes 
studied in this work produced oligosaccharides and mono-
saccharides with potential biotechnological applications, 
such as nutraceuticals (Sedlmeyer 2011) or for biofuel pro-
duction such as bioethanol using microorganisms capable 
of metabolized pentoses and hexoses present in the sub-
strate (Muñoz-Gutierrez and Martínez 2013). The results 
indicate that strain PBCA identified as T. harzianum in 
this work present the greatest potential for the use of WH 
in biorefineries. On the other hand, it has been reported 
that oligosaccharides of the arabinoxylan have nutraceuti-
cal effects in the human intestine (Grootaert et al. 2007); 
hence, A. versicolor by the extracellular enzymatic activ-
ity detected may have a potential application to generate 
nutraceuticals from this polysaccharide.

Conclusions

WH showed good qualities to be used as a support for 
the production of hydrolytic enzymes since the five fungi 
were able to grow on it. This suggests that WH can be 
used as a support for the production of hydrolytic enzymes 
being a new alternative for the use of this plant consid-
ered invasive. All strains showed hemicellulolytic activity. 
In general, T. harzianum was the fungus that produced 
the highest amounts of cellulase, xylanase and xylopyra-
nosidase enzymes. A. versicolor was the fungus with the 
highest production of the enzyme arabinofuronasidase. It 
should be noted that they are the first reports of A. versi-
color and T. harzianum as producers of the enzymes ara-
binofuranosidase and xylanopyranosidase, respectively. 
T. atroviride may also be a good candidate for the pro-
duction of the enzymes arabinofuranosidase and xylano-
pyranosidase since under the conditions of the assay it 
was the second microorganism producing these enzymes. 
Likewise, P. commune also showed capacity to produce 
these last enzymes, so the WH can be considered as a 
substrate that can induce the production of hemicellulases 
and cellulases.
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