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Abstract

The combination of visible and thermal data from the ground and astrophysics

space missions is key to improving the scientific understanding of near-Earth,

main-belt, trojans, centaurs, and trans-Neptunian objects. To get full infor-

mation on a small sample of selected bodies we combine different methods and

techniques: lightcurve inversion, stellar occultations, thermophysical modeling,

radiometric methods, radar ranging and adaptive optics imaging. The SBNAF

project will derive size, spin and shape, thermal inertia, surface roughness, and

in some cases bulk densities and even internal structure and composition, for ob-

jects out to the most distant regions in the Solar System. The applications to ob-

jects with ground-truth information allows us to advance the techniques beyond

the current state-of-the-art and to assess the limitations of each method. We

present results from our project’s first phase: the analysis of combined Herschel-

IThe research leading to these results has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378.

∗Corresponding author
Email address: tmueller@mpe.mpg.de (T. G. Müller)

October 26, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/343443915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


KeplerK2 data and Herschel-occultation data for TNOs; synergy studies on large

MBAs from combined high-quality visual and thermal data; establishment of

well-known asteroids as celestial calibrators for far-infrared, sub-millimetre, and

millimetre projects; first results on near-Earth asteroids properties from com-

bined lightcurve, radar and thermal measurements, as well as the Hayabusa-2

mission target characterisation. We also introduce public web-services and tools

for studies of small bodies in general.

Keywords: Radiation mechanisms: non-thermal, Radiation mechanisms:

thermal, Techniques: image processing, Techniques: photometric, Techniques:

astrometric, Techniques: radar astronomy, Astronomical data bases, Stellar

Occultations, Kuiper belt: general, Minor planets, asteroids: general, Infrared:

planetary systems, Submillimeter: planetary systems

1. Introduction

We conduct an EU Horizon 20201-funded benchmark study2 (2016-2019)

that addresses critical points in reconstructing physical and thermal properties

of near-Earth (NEA), main-belt (MBA), and trans-Neptunian objects (TNO).

The combination of the visual and thermal data from ground and astrophysics

space missions like Hubble3, Kepler-K24, WISE/NEOWISE5, IRAS6, Herschel7,

Spitzer8, AKARI9, and others, is key to improving the scientific understanding

1Research and Innovation programme of the European Union, see

http://www.horizont2020.de/
2Scientific exploitation of astrophysics, comets, and planetary data:

https://ec.europa.eu/research/participants/portal/desktop/en/-

opportunities/h2020/topics/compet-05-2015.html
3The Hubble Space Telescope, see http://hubblesite.org/
4The Kepler Space Telescope, see https://keplerscience.arc.nasa.gov/
5Wide-field Infrared Survey Explorer, see https://neowise.ipac.caltech.edu/
6Infrared Astronomical Satellite, see http://irsa.ipac.caltech.edu/IRASdocs/iras.html
7The Herschel Space Observatory, see http://sci.esa.int/herschel/
8The Spitzer Space Telescope, see http://www.spitzer.caltech.edu/
9The Infrared Imaging Satellite "AKARI" (ASTRO-F), see http://global.jaxa.jp/-

projects/sat/astro_f/
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Figure 1: Overview of the different techniques applied to minor bodies at different distances

from the Sun. The range where a given technique can be used is very restricted, making the

reconstruction of object properties more complex and strongly dependent on the availability

of suitable data.

of these objects. The development of new and improved tools is crucial for the in-

terpretation of much larger data sets from WISE/NEOWISE, Gaia10, JWST11,

or NEOShield-212. Some of our results will be used in support of the operation

of interplanetary missions, and for the exploitation of in-situ data. Depending

on the availability of data, we combine different methods and techniques to get

full information on selected bodies. Figure 1 shows the typical data and applica-

bility of techniques as a function of distance from the Sun: lightcurve inversion,

10Astrometric space observatory of the European Space Agency, see http://sci.esa.int/-

gaia/
11James Webb Space Telescope, see https://www.jwst.nasa.gov/
12EU-funded project on "Science and Technology for Near-Earth Object Impact Prevention,

see http://www.neoshield.eu/science-technology-asteroid-impact/
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stellar occultations, thermal/infrared data (for thermophysical modeling and

radiometric methods), radar ranging and adaptive optics imaging. The appli-

cations to objects with ground-truth information from interplanetary missions

Hayabusa13, NEAR-Shoemaker14, Rosetta15, DAWN16, or New Horizons17 (see

yellow blocks in Fig. 1) allows us to advance the techniques beyond the current

state-of-the-art and to assess the limitations of each method. Another impor-

tant aim is to build accurate thermophysical asteroid models to establish new

primary and secondary celestial calibrators for the far-infrared (far-IR), sub-

millimeter (submm), and millimeter (mm) range (ALMA18, SOFIA19, APEX20,

IRAM21, and others), as well as to provide a link to the high-quality calibration

standards of Herschel and Planck22. The SBNAF project will derive physical,

thermal, and compositional properties for small bodies throughout the Solar

System. The target list comprises recent interplanetary mission targets, two

samples of main-belt objects, representatives of the Trojan and Centaur popu-

lations, and all known dwarf planets (and candidates) beyond Neptune.

We introduce the relevant observing techniques (Sect. 2), our target sample

(Sect. 3) and the related science questions. Selected results from our project’s

first year will be discussed in Section 4, new tools and web-services for studies

of small bodies will be presented in Section 5. We conclude with an outlook

(Sect. 6) for the next project phases.

13Asteroid Explorer of the Japan Aerospace Exploration Agency (JAXA), see

http://global.jaxa.jp/projects/sat/muses_c/
14The Near Earth Asteroid Rendezvous âĂŞ Shoemaker mission, see

https://solarsystem.nasa.gov/missions/near
15Comet mission by ESA, see http://sci.esa.int/rosetta/
16Space probe to the asteroids Vesta and Ceres, see https://dawn.jpl.nasa.gov/
17NASA mission to Pluto, see http://pluto.jhuapl.edu/
18The Atacama Large Millimeter/submillimeter Array, see

http://www.almaobservatory.org/
19Stratospheric Observatory for Infrared Astronomy, see https://www.sofia.usra.edu/
20Atacama Pathfinder EXperiment, see http://www.apex-telescope.org/
21Radio telescopes operated by the Institute for Radio Astronomy in the Millimeter Range

(IRAM), see http://www.iram-institute.org/
22ESA’s Planck space telescope, see http://sci.esa.int/planck/
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2. Observing techniques

Small bodies are typically not resolved and models are needed to translate

disc-integrated signals into physical properties. The SBNAF project will take

advantage of existing observational data taken remotely from ground-based ob-

servatories and astrophysical missions, but we will also conduct (mainly photo-

metric) measurements of a set of selected targets to vitally enhance the amount

of information we can derive from them.

2.1. Lightcurves in the visible

Lightcurve inversion techniques are used to find an object’s rotation period,

its shape and spin-axis orientation. It requires the availability of multi-epoch

and multi-apparition lightcurve measurements of sufficient quality. These kind

of data are only available for NEAs, MBAs, and very few more distant bodies

(see Fig. 1).

Figure 2: Left: Shape models for two components of the binary asteroid (90) Antiope obtained

with the inversion of lightcurves using the SAGE algorithm for non-convex shapes (Bartczak

et al. [2014]) in an equatorial view (top) and polar view (bottom). Right: A comparison

between the stellar occultation chords and the projected non-convex shape solution.

Traditional, dense lightcurves are today available for over 10 000 asteroids.
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The data sets are stored in the LCDB23 database (Warner et al. [2009]) which is

being regularly updated. Apart from continuous lightcurves, also an increasing

number of so called "sparse data" recently appear, which are sparse in time

absolute photometric measurements, usually obtained as a result or byproduct

of wide-field surveys. In some cases the latter allow for finding rotational periods

(Waszczak et al. [2015]), or spin axis position determinations (Ďurech et al.

[2016]) for a large number of tagets.

Sparse lightcurve data are scientifically interesting (e.g., for searching for

close and contact binaries via their diagnostic large lightcurve amplitude; Son-

nett et al. [2015]), but the shape information content is very limited. For precise

shape reconstruction there are much more stringent demands for the lightcurve

data, which should be dense, low-noise, and come from a wide range of viewing

geometries. Consequently, in order to reconstruct detailed shapes of asteroids,

well coordinated campaigns are needed. The key is to complement already avail-

able data (stored in e.g. ALCDEF24, or in APC25 databases) with observations

in different geometries, to probe the lightcurve changes over various aspect and

phase angles. Because of the high demand of observing time, precise shape

models can only be obtained for a small number of asteroids.

The field of spin and shape modelling of asteroids has seen a huge develop-

ment in recent years. Since the introduction of the lightcurve inversion technique

at the beginning of the last decade (Kaasalainen & Torppa [2001a]; Kaasalainen

at al. [2001b]), over 900 spin and shape models have been published (e.g., Hanuš

at al. [2013]; Marciniak et al. [2012]), usually based on sparse data. First at-

tempts of multi-data inversion have been made in the last years (e.g., KOALA

code, Carry et al. [2012]; ADAM algorithm, Viikinkoski et al. [2015]). Previ-

ously obtained shape models have also been size-scaled using data from stellar

occultations (Ďurech et al. [2011]). In this way, it was shown that many inver-

23Asteroid Light Curve Database at http://alcdef.org/
24The Asteroid Lightcurve Data Exchange Format, see http://alcdef.org/
25The Asteroid Photometric Catalog, see http://asteroid.astro.helsinki.fi/apc
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sion solutions fit the data from independent methods. It has also been demon-

strated recently, that lightcurves alone contain enough information for reliable

non-convex modelling (the SAGE algorithm, Bartczak et al. [2014, 2017]; see

Fig. 2).

Today, there is a possibility to join many types of complementary data to

construct full physical models of asteroids, which would be an invaluable cor-

nerstone for calibration of various methods and extrapolating gained knowledge

to the whole range of objects, especially those with less rich available data

sets. For example with thermal infrared (IR) data we see emission influenced

by the thermal inertia and roughness of the surface and also sub-surface emis-

sion at submm/mm wavelengths, which makes a direct comparison with optical

lightcurves more complex (see also discussion in Müller et al. [2017b]). Thermal

data may also bear contributions from non-illuminated, yet warm parts of the

surface (e.g., Nuggent et al. [2017]). Studying the relation of these two types

of data on the basis of a few well-studied objects will help in developing a tool

with great potential to infer information on albedo, size, spin, thermal inertia,

and large-scale surface and regolith characteristics.

Physical properties of asteroid surfaces are the missing link in e.g. YORP

effect modelling, which has been shown to change the spin frequencies and

spin axis positions of small and medium-sized asteroids (Vokrouhlicky et al.

[2003]). However, widely applicable small-body modelling techniques based on

such varied sources of data (optical and thermal) is still missing. Thus we are

going to address these issues in the present project. This way we will establish

strong foundations for further studies of asteroid physical properties.

2.2. Radar technique

Radar is a technique used to retrieve information about asteroids. Its unique-

ness lies in the observer’s control of the transmitted signal, which is not the case

in other techniques, like photometry. Thus, radar observations can be described

as an experiment (Ostro et al. [2002], and references therein).

Only NEAs and MBAs that pass sufficiently close to Earth can be observed
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by radar, as the signal from the telescope fades very quickly with distance (see

Fig. 1). Signals are sent from radio telescope and they bounce off the surface of

the target body to be then recorded back on Earth. Asteroids come in variety

of shapes, and the signal travels different distance depending on the part of

asteroid that it hits. The echo (returning signal) arrives at different times,

which can be translated into a size estimate. Since asteroids rotate, we can

use this phenomena and take advantage of the Doppler effect. When the light

emitting (or reflecting) objects (or surface elements) move towards the observer

the registered light will have higher frequency ("blue-shifted") than the emitted

(reflected) light. Similarly, if the object is moving away, its frequency is lower,

and the light is "red-shifted". When an asteroid rotates, surface elements farther

from the spin axis move at higher velocities. As a result, every pixel on radar-

echo image is an intensity of returning signal at given time delay (distance) and

frequency (velocity).

If we want to use radar images to model an asteroid, we have to simulate

radar observations of a model object and compare it with observations. The

model object is then modified in complicated patterns until the model echo

matches the observed echo. This method works best when the object’s spin

properties are known and sufficient good-quality visible lightcurves are available.

2.3. Occultations

It is a simple measurement technique to derive the size and the projected

cross section of a small body in a direct way. The basis is to predict when the

particular body will pass in front of a certain star. One simply measures the

flux of the star before, during and after the occultation from a few locations

on Earth within the predicted shadow. It provides area-equivalent diameters

with kilometric accuracy and it allows to determine the projected shape (a 2-D

snapshot) of the body. It can reveal the presence of atmospheres with pressures

down to a nano-bar (nbar) level, discover possible satellites, rings or material

orbiting around a given object (see Fig. 3). Stellar occultations of planets, satel-

lites (including the Moon) and also minor bodies (Elliot [1979]; Elliot & Young

8



[1992]) have been recorded over the last decades. This technique is well devel-

oped for these bodies, but it is only an emerging field for TNOs and Centaurs.

Predicting and observing stellar occultations by TNOs is extremely difficult and

challenging because the angular diameters of TNOs are very small and neither

the stellar catalogues nor the TNOs orbits have the accuracy required to make

reliable predictions well in advance.

A multi-chord stellar occultation by TNOs allows us to determine the pro-

jected shape and orientation of the body in the plane of the sky at the moment

of the occultation. However, this information is insufficient to determine the

true 3D shape of the body and its spin axis orientation in space. Combining

the occultation-derived information with rotational lightcurves one can distin-

guish whether the 3D shape of the body is an oblate spheroid or a Jacobi

ellipsoid. Usually, a very low TNO lightcurve amplitude implies a MacLaurin

oblate shape, whereas amplitudes larger than 0.15 mag imply Jacobi shapes

(Duffard et al. [2009]). But the spin axis orientation is still not well constrained

(unless many high-precision rotational lightcurves spanning many years exist).

Modelling thermal observations can be of great help in this regard. It allows us

to put tighter constraints on the spin axis orientation by modelling the thermal

output of the object. The basic parameters that can be constrained with ther-

mophysical models are the size, shape, albedo, rotation rate (sometimes even

the direction of rotation), the spin-axis orientation, and surface properties such

as e.g. thermal inertia. Given that the occultation timings provides a very ac-

curate size, shape and albedo, and if the rotation period is also known from

the rotational lightcurves, the remaining parameters can be tightly constrained

by combining these techniques. Thus, the combination of occultation results,

optical lightcurves and thermal measurements allows us to reconstruct a full 3D

shape and spin axis orientation in space. Once this all is known, bulk densities

can be determined accurately using the Chandrasekhar figures of equilibrium

formalism. This works very well for icy dwarf planets (mostly large TNOs)

which are expected to be in hydrostatic equilibrium.

One example of the power of this technique is brought by the work of Ortiz
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et al. ([2012]), who found a radius of the TNO named Makemake to be 1430 ±

9 km, and a hint of an atmosphere. Recently, the existence of rings around two

Centaurs has been discovered by means of stellar occultation: around (10199)

Chariklo by Braga-Ribas et al. ([2014]) and around (2060) Chiron by Ortiz et

al. ([2015]).

Figure 3: Left panel: dense telescopic observations (chords) of the stellar occultation by (9)

Metis revealing the shape of the occulting body, with the superimposed independent shape

model based exclusively on lightcurves inversion technique (Bartczak et al. [2014a]). Right

panel: observations of the stellar occultation by (10199) Chariklo, where the presence of rings

around a minor body was discovered for the first time (Braga-Ribas et al. [2014]).

2.4. Radiometric technique

This technique refers to the determination of the radius of the small body

by fitting thermal emission models to observed thermal flux densities. The first

applications of these techniques date back to the 1970’s (for a recent review, see

Delbo et al. [2015]). In a nutshell, the warmer a body is, the higher its emitted

flux needs to be in order to stay in thermal equilibrium. Main belt asteroid

surfaces are around 300K and are best observed at around 10µm (data from

ground and space), TNOs surfaces are at around 30 - 40K so the best wave-

length range to observe them is between 70 to 100µm (data are mainly coming

from space projects). Two main radiometric methods allow the exploitation

10



of mid- and far-infrared thermal data with the goal to obtain size and albedo

of asteroids: the Standard Thermal Model (STM; Lebofsky et al. [1986]), and

the near-Earth asteroid thermal model (NEATM; Harris [1998]). On the other

hand, if the shape and rotational properties of the object are known, we can

model instantaneous surface temperatures accounting for the heat conductivity

of the material as well as surface roughness. These are typically called “ther-

mophysical models” (TPM; see references in Harris & Lagerros [2002] or Delbo

et al. [2015]). If the shapes have no absolute scale, as it is the case for those

derived from light curve inversion techniques for example, TPMs can help find

the best scaling factors. The corresponding volume can be used to find more

reliable equivalent diameters, or densities in cases where the asteroid mass is

known. If multi-epoch thermal data are available for a given object, then it is

possible to derive reliable thermal properties (thermal inertia, thermal conduc-

tivity), to estimate grain sizes on the surface or to do a simple study on the

expected surface roughness (see Delbo et al. [2015] and references therein). The

radiometric techniques work for all IR-detectable bodies in the Solar System

(see Fig. 1). A recent example for radiometric applications for a large sample of

Mars-crossing asteroids was presented by Alí-Lagoa et al. ([2017]). The "TNOs-

are-cool" Herschel Space Observatory Key project (a large Herschel project with

more tan 370 h of granted time) has gathered thermal data for more than 130

TNOs (Müller et al. [2009]; Kiss et al. [2013]; Lellouch et al. [2013]; Lacerda et

al. [2014]). A good example of capabilities of the radiometric method based on

Herschel observations is a study of the very distant (88AU) TNO named Sedna.

Pál et al. ([2012]) derived a diameter of 995 ± 80 km and geometric albedo of

0.32 ± 0.06. Sedna is not easily accessible otherwise.

2.5. Direct imaging techniques

Direct imaging techniques are related to measurements by large ground or

space telescopes or by using data from interplanetary missions. The targets

are spatially resolved in the obtained images. Size and shape information can

then be extracted directly. Direct, accurate measurements of asteroid physi-
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Figure 4: Comparison of the shape model for Itokawa with 204 facets (left) from lightcurve

inversion technique, and a much more detailed shape model with 49152 facets (right) based on

in-situ measurements from the Hayabusa mission. Figure and thermo-physical model adapted

from Müller et al. [2014a].

cal properties are, meanwhile, possible for the largest several hundreds aster-

oids. They can be spatially resolved using the Hubble Space Telescope (HST)

or large ground-based telescopes equipped with adaptive optics (AO) on the

world’s largest telescopes (Keck26, VLT27, and Gemini28). The AO systems

today are capable of providing images close to the diffraction limit of the tele-

scope at shorter wavelengths (<1.6µm), hence with an angular resolution of

≈33milli-arcsecond (mas). Combining this technique with lightcurve inversion

modelling it is possible to derive the volume-equivalent diameters for asteroids

with typical uncertainties lower than 10%, caused by both the uncertainty in

the size of the AO contour and the convex shape model imperfections. It can

also remove the inherent mirror pole ambiguity of lightcurve inversion models

(Marchis et al. [2006]; Hanuš et al. [2013a]). AO techniques are also capable of

discovering binary systems which are important for studies on internal structure

26W. M. Keck Observatory AO systems: see https://www2.keck.hawaii.edu/optics/ao/
27More information about the AO systems of the Very Large Telescope of the European

Southern Observatory ESO can be found at http://www.eso.org/sci/facilities/develop/-

ao/sys.html
28More information about the AO systems of the Gemini Observatory is given at

http://www.gemini.edu/sciops/instruments/adaptive-optics
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and composition through density determinations (via mass determination from

Kepler’s 3rd law; e.g., Merline et al. [2002]; Marchis et al. [2005]; Descamps et

al. [2007]).

3. Targets and scientific questions

For our benchmark study on minor bodies we selected important targets

which were already visited by spacecraft (or will be visited soon), which have a

wealth of data from different observing techniques available (or are candidates

for being observed with new techniques), but also those which are or will be

useful in the calibration context, or which will allow us to address or answer

specific scientific questions. The target list is not completely fixed and new

objects –like the Halloween NEA 2015 TB145 (Müller et al. [2017a])– can be

included, if we see great observing and/or modelling prospects. Other targets

might eventually be set aside for lack of data or data quality reasons.

3.1. Near-Earth asteroids

Several NEAs have already been visited by interplanetary missions. We

selected the following objects:

• (433) Eros (visited by NEAR-Shoemaker mission)

• (25143) Itokawa (visited by Hayabusa mission)

• (162173) Ryugu (Hayabusa-2 mission; arrival in 2018)

• (101955) Bennu (OSIRIS-REx mission; arrival in 2018)

• 2015 TB145 ("Halloween 2015 asteroid"; near-Earth flyby)

The selection was done on the basis of available visual and thermal data

and the knowledge of object properties from in-situ studies. The objects have

a wealth of visual lightcurve observations available, allowing the determination

of shape and spin information via lightcurve inversion techniques. For Eros

and Itokawa successful radar measurements have been conducted. All NEAs
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have thermal measurements from different origin, covering wide wavelength and

phase angle ranges.

The work on these targets will help us to verify the reconstruction of shapes

(convex and non-convex solutions) from multi-apparition lightcurves, in direct

comparison with true object shape and spin properties from in-situ measure-

ments. Radiometric models "translate" infrared fluxes into size and albedo so-

lutions, but how accurate are these radiometric sizes? Is it possible to constrain

the spin-axis orientation from thermal measurements? Another key science goal

is related to the influence of thermal inertia and surface roughness on the ob-

served infrared fluxes (see for example Keihm et al. [2015]). Are there ways

to break the degeneracy between these two properties which both influence the

surface temperatures and the temperature distribution? Extensive work will be

conducted on (162173) Ryugu, the Hayabusa-2 mission target: a pre-encounter

characterisation of this small body will be used as a reference design model for

the planning of the Hayabusa-2 close-distance operation, and in suppport of the

interpretation of in-situ measurements. Our plans for Bennu, the OSIRIS-REx

mission target, are restricted to independent tests of the current object proper-

ties specified in the Design Reference Asteroid document (Hergenrother et al.

[2014]) by applying our new SBNAF tools.

3.2. Main-belt asteroids

For the main-belt asteroids we also selected a few reference objects with

"ground-truth" information from interplanetary missions: Ceres & Vesta which

were visited by DAWN, Lutetia and Gaspra which were seen during flybys of

Rosetta and Galileo29 missions, respectively. In addition, we selected a sam-

ple of large main-belt asteroids where the Gaia mission will eventually pro-

vide robust mass estimates (Gaia perturbers). Our goal is to collect existing

data (lightcurves, thermal measurements, occultations, etc.) and conduct new

29A NASA mission which studied Jupiter and its moons and several other small bodies, see

https://www.jpl.nasa.gov/missions/galileo/
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measuremets that will allow us to derive reliable 3-D shape models and high-

quality size estimates. The combination of Gaia and SBNAF properties will

lead to object densities with unprecedented accuracy. Another MBA group

- partly overlapping with the Gaia mass targets - is the "calibrator sample".

Selected large and well-known main-belt asteroids are useful celestial calibra-

tors for many ground-based and space projects, mainly at far-IR, submm, and

mm wavelengths. For the calibration aspect it is usually necessary to observe

bright, point-like sources where flux predictions are reliable. Direct applications

are: absolute flux calibration for photometers, determination of relative spectral

response functions, characterisation of instrument linearities, testing for filter

leaks, or verification of satellite pointing and tracking capabilities. In addi-

tion, we added (911) Agamemnon as one of the very few better-known Trojan

asteroids.

• (1) Ceres & (4) Vesta (visited by the DAWN mission)

• (21) Lutetia (Rosetta flyby)

• (951) Gaspra (Galileo flyby)

• Gaia mass sample (or Gaia perturbers)

• Calibrator sample (for thermal IR, submm, mm projects)

• (911) Agamemnon (unique Trojan asteroid)

The main science goals are similar to the ones for NEAs, but now for much

larger objects, for low-conductivity surfaces covered by fine-grain regolith, more

spherical shapes, and for targets of very different taxonomic types. Testing of

radiometric solutions and shape-spin properties is as important as the support

for Gaia and for calibration applications. The work on main-belt asteroids will

also allow us to study subsurface emission at submm and mm wavelengths (data

coming from ALMA, APEX, IRAM, but also Herschel and Planck).
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3.3. Centaurs and trans-Neptunian objects

New tools have to be developed to characterise these very remote bodies.

The distant objects can only be seen under small phase angles (and always

very similar aspect angles) and standard lightcurve inversion techniques fail.

Here, the lightcurves need to be combined with information from infrared data

and occultation measurements to constrain physical and rotational properties.

Thermal data became available recently (mainly from Spitzer and Herschel,

partly also from ALMA and WISE), and still await a full scientific exploita-

tion. Occultation measurements - however - are very difficult due to significant

uncertainties in astrometric positions of the stars and - even more critical - of

the distant solar system objects themselves. In this distant-object category we

focus on large and ’observable’ objects:

• Centaurs with thermal measurements (WISE, Spitzer, Herschel, others)

• large TNOs with thermal measurements (Spitzer, Herschel, ALMA)

• Centaurs/TNOs with stellar occultation information

• all dwarf planets and large dwarf planet candidates within the TNO pop-

ulation

The TNO/Centaur target sample is mainly driven by successful occultation

observations, but recently we also obtained very high quality and long-coverage

lightcurve measurements via the Kepler-K2 mission. These observations put

strong constraints on object properties, and in combination with the thermal

data will lead to significant improvements in the characterisation of Centaurs

and TNOs. It will also be very interesting to phase in new ALMA observations

at mm wavelengths: here we start to see subsurface emission telling us details

about the top-layer surface properties, and related emissivity effects such as

were seen with Herschel/PACS/SPIRE for a small sample of TNOs/Centaurs

(Fornasier et al. [2013]).
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4. Science results: synergies from ground and space

Remote observations and in-situ measurements of asteroids are considered

highly complementary in nature: remote sensing shows the global picture, but

transforming measured fluxes in physical quantities frequently depends upon

model assumptions to describe surface properties. In-situ techniques measure

physical quantities, such as size, shape, rotational properties, geometric albedo

or surface details, in a more direct way. However, in-situ techniques are often

limited in spatial/rotational/aspect coverage (flybys) and wavelength coverage

(mainly visual and near-IR wavelengths). Mission targets are therefore impor-

tant for comparing properties derived from disk-integrated measurements with

those produced as output of the in-situ measurements. The associated benefits

are: (i) the model techniques and output accuracies for remote, disk-integrated

observations can be validated (e.g., Müller et al. [2014a] for the Hayabusa mis-

sion target (25143) Itokawa; O’Rourke et al. [2012] for the Rosetta flyby target

(21) Lutetia); (ii) the improved and validated model techniques can then be

applied to many similar objects easily accessible by remote observations, but

which are not included in interplanetary mission studies. The pre-mission ob-

servations are also important for determining the object’s thermal and physical

conditions in support for the construction of the spacecraft and its instruments,

and to prepare flyby, orbiting and landing scenarios.

We summarise a few key points arising from the combination of ground and

space measurements:

• disk-resolved vs. disk-integrated measurements

• different viewing geometries from ground and space

• long-term observation possibilities from ground vs. short single flyby events

• extended (infrared) wavelength coverage from space

• higher sensitivity from space (or close-up observations)
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• long-term stable observations from space without weather, day/night or

airmass issues

• testing of thermal model parameters (like surface roughness) vs. in-situ

properties

• testing of mathematical shape/spin model solutions vs. in-situ properties

• assessment of errors, biases, limitations, etc. related to lightcurve inver-

sion, radar, occultation, AO, or radiometric techniques

In the following projects we took advantage of the synergetic effect of com-

bining observations from very different sources.

4.1. Thermal measurements from Herschel & Spitzer combined with occultation

information

The multi-chord stellar occultation by the trans-Neptunian object (229762)

2007 UK126 led to an area-equivalent radius (of an ellipse fit) of 319+14
−7 km, a

geometric V-band albedo of 0.159+0.07
−0.013 and a possible body oblateness close to

0.1 (Benedetti-Rossi et al. [2016]). The combination of occultation results with

thermal data from the Herschel Space Observatory allowed us to put additional

constraints on the size, shape, possible spin-axis orientation, and thermal inertia

(Γ = 2 - 3 Jm−2s−0.5K−) of the main body, but also some upper limits on the

satellite of 2007 UK126 (Schindler et al. [2017]).

A similar approach was possible for the Plutino 2003 AZ84 (Santos-Sanz

et al. [2017]). The Herschel and Spitzer measurements, in combination with

a successful occultation event, gave a consistent solution for the object’s size

and shape (close to a sphere) and favours a close to pole-on orientation of the

spin axis. A new study combined four different occultation events for 2003

AZ84 (Dias-Oliveira et al. [2017]) and came to the same conclusion that we are

currently seeing the object close to pole-on. This is also consistent with the

small amplitude of the optical lightcurve (around 0.07mag).

A publication on the Eris-Dysnomia system as seen with the synergy of occul-

tation and thermal emission measurements is currently in preparation (Kiss et
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al., in preparation). The results of the first successful occultation measurements

of Haumea (from January 21, 2017) will also be combined with the available

thermal measurements from Herschel and Spitzer (Ortiz et al., in prep.).

Figure 5: A comparison between TNO sizes derived from successful occultation events and

radiometric sizes (mainly related to the "TNOs-are-Cool" Herschel key project; Müller et al.

[2009]). Ourliers are explained in the text.

Figure 5 shows a comparison between size determinations based on radio-

metric techniques (mainly based on Herschel thermal measurements) and occul-

tation measurements. There is a very good agreement between both completely

independent solutions. The point out of the line near 1000 km is Sedna that has

so-far only a single chord occultation. In case of Pluto (second outlier with the

largest occultation size in Fig. 5) the (standard) radiometric method is uncer-

tain. The atmosphere, strong albedo variations and the large satellite Charon

would have to be considered to obtain a reliable radiometric size.

Ideas on how to push the field of TNO occultations are presented in Santos-

Sanz et al. ([2016]). In the near-term future JWST will provide opportunities

to observe stellar occultations by TNOs (and other objects) with unprecedented

accuracy. At the same time, JWST also has the option to measure the thermal

19



emission up to 28µm for many small bodies, including the largest TNOs and

Centaurs.

4.2. Kepler-K2 lightcurves combined with thermal data

The irregular Neptune satellite Nereid was seen in a multiple-day observing

campaign of the Kepler-K2 mission. The results were presented in a publication

"Nereid from space: rotation, size and shape analysis from K2, Herschel and

Spitzer observations" by Kiss et al. ([2016]).

The Kepler-K2 fields covered also more than 50 Trojan asteroids (Szabó

G. et al. [2017]) and a large number of MBAs (Szabó R. et al. [2016]). Both

samples comprise a fantastic laboratory for combined lightcurve-thermal studies.

The Kepler-K2 lightcurves - sometimes complemented by auxiliary lightcurve

measurements from ground - constrain the shape and spin properties of these

objects. The thermal measurements (coming from IRAS, MSX, AKARI, WISE,

and others) allow the scaling of the shape solutions, and lead to albedo and

thermal characteristics for each object (this work is planned as part of the

SBNAF project).

Another successful example of Kepler-K2 and Herschel synergies was pre-

sented by Pál et al. ([2016]): "Large Size and Slow Rotation of the Trans-

Neptunian Object (225088) 2007 OR10 Discovered from Herschel and K2 Ob-

servations". 2007 OR10 is now considered as the "Largest Unnamed World in

the Solar System" (NASA JPL News May 11, 2016). A deeper look at HST

archive images of the same target revealed a small satellite (Marton et al. [2016];

Kiss et al. [2017]). Follow-up studies with HST are in preparation.

4.3. Visible and thermal photometric studies

Does the centaur (54598) Bienor have a ring system? Lightcurve studies

over more than 15 years show a strong decline in amplitude and, combined with

the spectroscopic detection of water ice, this would be best explained by rings

(Fernández-Valenzuela et al. [2017]). The main body seems to have an extreme

shape approximated by a triaxial Jacobi ellipsoid, and a possible density between
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0.6 and 0.7 gcm−3. Thermal measurements from Herschel (Duffard et al. [2014])

put constraints on size and albedo. Different spin-pole orientations are dicussed

in the light of visible and thermal measurements, but follow-up observations or

a high-quality stellar occultation are needed to clarify the true nature of this

exotic centaur.

Double-peaked visible lightcurves indicate that 2008 OG19 is a highly elon-

gated TNO (Fernández-Valenzuela et al. [2016]). The object has a rotation pe-

riod of about 8.7 h and a large peak-to-valley lightcurve amplitude of 0.44mag.

A size estimate of 619+56
−113 km is related to an average albedo for scattered disk

objects (Santos-Sanz et al. [2012]). Assuming the object to be in hydrostatic

equilibrium gives a lower limit for its bulk density of just above 0.5 gcm−3.

It belongs to the dwarf planet candidates and seems to resemble the strangely

shaped classical Kuiper Belt object Varuna. As for other large TNOs, the in-

terpretation of visible lightcurves benefits from having thermal measurements

which are less affected by albedo variations on the surface (see other TNO cases

mentioned before). In the near-term future, it is expected that JWST will con-

duct thermal emission studies of selected and scientifically interesting TNOs like

2008 OG19.

For very remote objects standard lightcurve inversion techniques fail to pro-

duce shape and spin solutions due to the small changes in aspect angles (as

seen from a ground-based or near-Earth observing point). However, the ro-

tational variability can tell us many things about these large and often icy

bodies. Santos-Sanz et al. ([2017]) obtained thermal lightcurves of the dwarf

planet Haumea, and the Plutinos 2003 VS2 and 2003 AZ84 with Herschel Space

Observatory-PACS. In addition to size, albedo and shape constraints, the au-

thors also found very low thermal inertias which seem to be explained best by a

moderately porous regolith where the sub-cm-sized amorphous ice grains have

only loose contacts. Since crystalline water ice signatures are seen for Haumea,

the best explanation points to the presence of amorphous ice at cm depths below

a thin layer of transparent crystalline ice.

Recently, Müller et al. ([2017b]) and Perna et al. ([2017]) presented a study
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on the NEA 162173 Ryugu, the target for the Hayabusa-2 mission. The almost

spherical shape of the target together with the insufficient lightcurve quality

required the application of radiometric and lightcurve inversion techniques in

different ways to find the object’s spin-axis orientation, its shape and to im-

prove the quality of the key physical and thermal parameters. The work also

showed the difficulties and problems occuring in combined visible and thermal

photometric studies. The constraints on object properties strongly depend on

the quality of the visible lightcurves, the observing/illumination geometries and

wavelengths of the thermal measurements, and also on the validity of model

concepts.

The Spitzer/Herschel sample contains about 30 multiple TNO systems. The

satellite orbits of many of these binary and triple TNOs are sufficient to derive

a system mass. The combination of the masses with volume estimates (com-

ing either from radiometric or occultation sizes) determines the bulk density

(e.g., Santos-Sanz et al. [2012]; Mommert et al. [2012]; Vilenius et al. [2012]).

Kovalenko et al. ([2017]) presented densities ranging from below 0.5 to almost

4.0 g cm−3, with a moderately strong correlation between diameter and bulk

density. Multiple TNOs also strongly correlate with heliocentric orbital incli-

nation and with magnitude difference between components of multiple system.

Single and multiple TNOs also show different size distributions, but here the

small Centaurs (mainly single TNOs) and the large dwarf planets (almost all are

multiple systems) cause a bias in the distributions. This work is also a nice exam-

ple for the interplay between different techniques: high-resolution/AO imaging

(HST and large ground-based telescopes) is needed to discover and characterise

satellites, while thermal measurements and occultations are key to constraining

the size and volume of these bodies.

The New Horizons mission provided a very detailed view of the Pluto-

Charon system. But only through thermal measurements with Herschel’s long-

wavelength channels it was possible to see a strongly decreasing brightness tem-

perature towards submm wavelengths (Lellouch et al. [2016]). The best expla-

nation is a spectral emissivity that decreases steadily from 1 at 20-25µm to
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≈0.7 at 500µm, similar to what is found for other icy bodies in the solar system

(Fornasier et al. [2013]). The effect is likely related to a transparent top-layer

surface combined with a strong dielectric constant.

4.4. Support for interplanetary missions

The JAXA Hayabusa-2 mission was approved in 2010 and launched on De-

cember 3, 2014. The spacecraft will arrive at the NEA 162173 Ryugu (1999 JU3)

in 2018 where it will perform a survey, land and obtain surface material, then

depart in December 2019 and return to Earth in December 2020. We support

the mission by providing key physical, rotational, thermal, and compositional

properties of the mission target. Based on all available visible lightcurve ob-

servations and thermal emission measurements, we applied lightcurve inversion

and radiometric techniques. The summary of our work (as of late 2016) is doc-

umented and discussed in Müller et al. ([2017b]). Our results are part of the

Ryugu reference model which is widely used in the planning of mission oper-

ation scenarios, the satellite approach phase, touch-down simulations, landing

site selection procedures, and also for outreach activities. The pre-encounter

characterisation will also help to adjust temperature- and brightness-critical in-

strument settings. Ryugu will be one of the very few targets were preencounter

properties - derived from disk-integrated remote observations - can be directly

compared to in-situ properties. This will allow us to verify our model procedures

and to consolidate the related error estimates.

A study on the NASA OSIRIS-REx mission target (101 955) Bennu (Müller

et al. [2012]) contributed to the official "Design Reference Asteroid for the

OSIRIS-REx Mission Target (101955) Bennu" (Hergenrother et al. [2014]). We

plan to apply our SBNAF tools (lightcurve inversion, combination with radar

and thermal measurements) to the available observational data to derive phys-

ical and thermal properties (and their uncertainties) for a direct comparison

with in-situ findings (arrival of OSIRIS-REx at Bennu will be around Septem-

ber 2018).

A new field for the application of our tools and expertise is related to the
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topic of in-space utilisation of asteroids. In preparation of interplanetary mis-

sions with the goals of asteroid mining and resource utilisation for long-term

missions and manned space exploration, it is necessary (i) to find suitable ob-

jects; (ii) to characterize the global objects properties (size, shape, rotation) and

rough composition; (iii) to investigate surface and sub-surface characteristics

(Graps et al. [2016]; Müller et al. [2017a]). The SBNAF project will contribute

in different ways to the characterization of these small NEAs, in close contact

to asteroid mining companies.

5. Tools and services for small bodies

5.1. SBNAF public website

The purpose of the SBNAF public website30 is to share our scientific inter-

est on small bodies with the astronomical community and the interested public.

We document the progress and knowledge of the SBNAF project. We advertise

outreach activities that we and other institutions around Europe organise. Ul-

timately, we hope to stir curiosity and to provoke questions about these rocky

and icy bodies, some of which were around already during the formation of the

planets in our solar system.

On our public website we present the basic facts about the SBNAF project,

target lists, observing techniques, and all results (web services, tools, products,

databases, predictions, etc.) for the general planetary science community. We

also list all SBNAF-related publications, conference contributions, and outreach

activities.

5.2. ISAM

The Interactive service for asteroid model visualisation (ISAM) is a web-

based service where all kinds of asteroid shape models are provided, together

with various tools to visualise shape solutions, illumination geometries, rota-

tional properties, disk-integrated lightcurves, etc. The SBNAF-related spin and

30http://www.mpe.mpg.de/~tmueller/sbnaf/
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shape models will be provided to the community via the ISAM service31, typi-

cally in the context of SBNAF project deliverables or after specific publications.

Many of these shape and spin solutions are also used for other work packages

(like for the Gaia or calibration samples). In the last stage of the project, the

full models solutions (convex and non-convex shape solutions) with absolute

sizes and model uncertainties will be published and provided to the scientific

community by the ISAM service. This service is also of great help for a direct

comparison between on-sky projected shape model solutions with results from

an occultation event or from single-epoch AO images. The ISAM lightcurve

prediction for a given shape and spin solution can be directly compared with

lightcurve measurements or archive data (e.g., from the CDS32 or from LCDB).

5.3. Gaia-GOSA

Gaia-Groundbased Observational Service for Asteroids (Gaia-GOSA33; Santana-

Ros et al. [2014]; [2016]) is an interactive tool aiming to facilitate asteroid ob-

servers in contributing to the Gaia mission (European Space Agency) by gath-

ering lightcurves of selected targets. GOSA users can plan their observing runs

by selecting the visible targets for a given date, collaborate with other observers

and upload the frames obtained. We are responsible for analyzing the data,

publishing the results in the website and creating a lightcurve catalog. Once

calibrated, lightcurves will be easily included in the analysis of Gaia data, which

will allow to enhance the determination of asteroids’ physical properties. This

service is meanwhile used by a large community of observers to plan, conduct

and provide dedicated asteroids measurements.

5.4. Calibration project

Celestial standards play a major role in observational astrophysics. They are

needed to characterize the performance of instruments and are paramount for

31http://isam.astro.amu.edu.pl/
32Centre de Données astronomiques de Strasbourg, see http://cdsweb.u-strasbg.fr/
33http://www.gaiagosa.eu/
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photometric calibration. Large main-belt asteroids fill the flux gap between the

submm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibra-

tion stars. Space instruments at thermal infrared (IR) wavelengths use asteroids

for various calibration purposes: pointing tests, absolute flux calibration, deter-

mination of the relative spectral response function, observing mode validation,

cross-calibration aspects, and several other aspects where bright, point-like, eas-

ily accessible, and reliable sources are needed (Müller & Lagerros [2002]; Müller

et al. [2014b]).

The SBNAF project supports worldwide calibration activities for ground-

/airborne-/balloonborne-/space-projects at mid-IR/far-IR/submm/mm wave-

lengths by providing highly reliable model predictions of selected well-known

asteroids. These activities are documented in a series of deliverables which are

produced as part of Work Package 434 of the SBNAF project. The documents

explain the calibration need, the reasons for using asteroids in the calibration

context, and the various steps from simple model predictions for calibration

planning purposes, up to the establishment of new primary calibrators for highly

demanding applications. The asteroid-calibration activities are related to all in-

frared space projects (IRAS, MSX, Spitzer, AKARI, WISE, Herschel, Planck),

but also to ongoing submm and mm observatories like ALMA, APEX, IRAM,

or LMT, as well as for balloon-borne (BLAST) and airborne (SOFIA) projects.

A recent large delivery of calibration products (1433 FITS files) includes spe-

cific model predictions for all Herschel observations of 28 asteroids (all large

MBAs) which were used for various calibration activities for the three instru-

ments PACS, SPIRE, and HIFI (see Herschel Ancillary Data Products35).

The calibration goals of projects like ALMA or Herschel are very ambitious

and the traditional celestial calibration sources are often not sufficient, show-

ing far-IR excess emission, variability, unsuitable flux levels or spectral slopes,

or modelling shortcomings. Also the number of celestial calibrator sources is

34http://www.mpe.mpg.de/~tmueller/sbnaf/results/WP4_AstCal.html
35https://www.cosmos.esa.int/web/herschel/ancillary-data-products
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very small and often there are no sources available in a given observing cam-

paign. The asteroids are therefore useful to complement existing calibration

schemes. Currently, the highest demand is coming from Herschel and AKARI

(post-operation calibration activities), SOFIA, ALMA, and sporadically also

from other groundbased observatories like IRAM or APEX. In close contact

with instrument calibration scientist we provide specific asteroid model predic-

tions together with a documentation on the model input parameters and model

quality issues. Our SBNAF goal for Herschel and AKARI is to make a quality

upgrade for the already implemented asteroid calibration models.

5.5. Herschel Science Archive (HSA) user-provided products

The SBNAF project produces high-quality data products for small body

observations of the Herschel Space Observatory. These products are based on

sophisticated, solar-system specific reduction and calibration procedures. The

products cover many Herschel science projects, as well as calibration observa-

tions.

Most Centaur and trans-Neptunian object observations were performed in

the framework of the "TNOs are Cool!" Herschel Open Time Key Program

(Müller et al., [2009]; [2010]), supplemented by some DDT observations of ex-

treme objects (see e.g. Kiss et al., [2013]; Pál et al., [2015]). In these cases the

standard HSA36 product generation reduce the data in the co-moving frame and

does not combine multiple observations of the same target. TNO observations

were designed in a way that maps taken at different epochs can serve as mutual

backgrounds and a proper combination of maps can eliminate the background,

leaving the target to be the only notable source in the combined maps (for de-

tails, see Kiss et al., [2014]) - background elimination in the far-infrared is crucial

due to the strong confusion noise (see e.g. Kiss et al., [2005]). The simplest

maps of this kind are the differential maps, with one positive and one nega-

tive beam of the object. Further processing (double-differential maps) combines

36http://archives.esac.esa.int/hsa/whsa/
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these beams and provides a single beam of the target that is preferably used for

photometry. These double-differential maps gave the best photometric accuracy

among all Herschel/PACS scan maps observations (see e.g. the case of comet

Hale-Bopp, Szabó et al., [2012]). Differential and double-differential maps com-

bine up to eight observations, depending on the band used. Supersky-subtracted

maps (Santos-Sanz et al., [2012], Kiss et al., [2014]) are also produced – in this

case a ’target-free’, combined background map is created and subtracted from

the individual maps.

Similar techniques could be used in the case of near-Earth asteroids if the

displacement of the target was sufficiently small within a specific scan map ob-

servation block (so-called repetition, see e.g. the case of Ryugu, Müller et al.,

[2017b]). In most near-Earth asteroid observation, however, the scan map data

had to be reduced in the co-moving frame due to the fast apparent motion. In

these cases our UPDPs37 use a combination of observations different from that

of the standard HSA products and are also reduced with an optimised pipeline,

in many cases eliminating sub-blocks affected by instrumental effects. This op-

timised pipeline - both for near-Earth asteroids and TNO observations - include

specifically selected high-pass filter, masking and de-glitching parameters, sig-

nal drift correction, and optimally chosen pixel size and back-projection pixel

fraction values (for details, see Kiss et al., [2014]). Our UPDPs are provided as

standard FITS files, accompanied by specific release notes (see HSC pages on

UPDP38).

5.6. Occultation predictions

Based on publicly available and own tools, together with multiple campaigns

of dedicated astrometric observations, we make regular predictions of occulta-

tion events produced by our SBNAF sample targets. Step-by-step we also phase

in information from the Gaia mission to improve the accuracy of the predicted

37User Provided Data Products
38https://www.cosmos.esa.int/web/herschel/user-provided-data-products
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shadow paths. We focus on occultation predictions for Europe (mainly Spain)

and South America (mainly Argentina, Chile, and neighbours) where we have

own telescope facilities and close contacts with networks of well-trained ob-

servers. In the near-term future we might also include potentially interesting

asteroid occultations of strong, compact radio sources, following up on the work

by Lehtinen et al. ([2016]). The predictions of MBA events is, meanwhile, very

reliable and easily possible via public tools (e.g., Occult Watcher39 or the occul-

tation prediction software Occult40). Our focus in the SBNAF project lies on

the much more challenging predictions for TNOs and Centaurs. These distant

objects have a very small projected size in the sky: ≈8mas for a typical 100 km

Centaur at 17AU, ≈82mas for the largest TNO (Pluto), and ≈14mas for a

400 km TNO at 39AU. This means that to catch a stellar occultation produced

by one of these tiny bodies we must have a very accurate knowledge of their or-

bits and ephemeris, and we also need very precise star catalogues with accurate

positions in the occultation track region. So far, the most accurate catalogs were

the UCAC4 catalog with uncertainties of ≈15-100mas (Zacharias et al. [2013])

and the (incomplete) URAT1 catalog with up to ≈2-3 times better astrometric

precision (Zacharias et al. [2015]). The Gaia DR1 catalogue (Lindegren et al.

[2016]) improves the situation for the star positions considerably. The uncer-

tainties will be even smaller with future Gaia data releases (the second one is

expected for April 201841). However, the orbits of the TNOs and Centaurs are

only poorly known and dominate often the prediction uncertainties. These ob-

jects need centuries or even more time to complete one orbit and up to now we

have only observed a very small arc of their orbits. Here, it is often necessary

to switch to relative astrometry with the target and star imaged together in the

same field of view (FOV) in the months and weeks before a predicted event.

The FOV must be large in order to have a significant number of astrometric

39http://www.occultwatcher.net/
40http://www.lunar-occultations.com/iota/occult4.htm
41https://www.cosmos.esa.int/web/gaia/release
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references. In this way, one can achieve a high astrometric precision for TNOs

up to ≈20mas (Ortiz et al. [2011]), enough to predict the shadow path on Earth

within ≈500 km. This technique has been succesful for ≈10 TNOs (see Fig. 5)

and a few Centaurs. Large groups of observers are using these predictions to

plan own observations for supporting these unique and scientifically important

occultation events.

5.7. Database of calibrated thermal infrared measurements

One of the SBNAF goals is to produce a database for thermal infrared obser-

vations of small bodies. The SBNAF concept foresees to start with a database

containing all available (published) thermal IR measurements for our selected

samples of solar system targets, first for internal usage, later with open access to

the public. The database should also have the future option (after the SBNAF

project end) to include large amounts of thermal data for all solar system small

bodies which have been detected at thermal IR wavelengths.

Our sample includes selected near-Earth, main-belt, trojans, Centaurs, and

trans-Neptunian objects. All targets have significant amounts of thermal mea-

surements from different satellite missions (IRAS, MSX, ISO, AKARI, Spitzer,

Herschel, Wise, NEOWise), from SOFIA, and from ground. We assume that all

objects appear as point sources (or point-like sources) and that the photometric

measurements are corrected for aperture losses and well calibrated. For each

dataset we will also give a short recipe on how to use the calibrated in-band

fluxes in the context of radiometric techniques. The recipes include information

about the instrument and calibration aspects, as well as the filter pass bands,

saturation, non-linearity issues, and colour-correction procedures. The collec-

tion of infrared measurements in a unified way has the goal to better describe

these targets by using all available data simultaneously. In this way, we also

want to address a range of scientific questions (see Section 3).

For storing IR measurements in a database, we first focus on the essential ba-

sic entries: object identifier, observatory, measurement identifier, instrument/-

band/filter/mode, start time of the observations, duration, measured in-band
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flux (calibrated, aperture-/beam-corrected, non-linearity/saturation-corrected,

etc.) and the corresponding flux error. A list of quality comments or other flags

should also be possible. Some of the database entries could also have a link to

auxiliary information, like project-/instrument pages, specific archives, relevant

publications and documents.

In addition to the measured flux and error, it is needed to calculate also

the mono-chromatic flux density at pre-defined reference wavelengths, to trans-

late times from calendar to JD (with/without correction for light-travel time),

to convert wavelengths to frequencies, to add absolute flux errors (if not done

already), etc. For each measurement, it would also be useful to store (or calcu-

late) information like the heliocentric, observer-centric distances, and the phase

angle, or also orbital parameters. Optional parameters are RA, Dec, ObsEcLon,

ObsEcLat, solar elongation, ecliptic helio-centric XYZ of the observer and the

target, light-travel time, apparent motion of the object (all at observation mid-

time). This could for example be done via the Callhorizons Python module42.

It is planned to make these tools available together with the first database

prototype. This database will gain importance in the context of planning and

analysing JWST mid-IR measurements of small bodies.

5.8. Phase curve calculator & H-magnitude

When absolute photometry (placed on a standard photometric system) is

available asteroid scattering properties related to the so-called opposition effect

(caused by the backscattering mechanism) can be determined. This sort of ob-

servations typically involve photometric sky conditions and/or the presence of

photometric standards in the field-of-view of the telescope. For accurate phase

curves full lightcurves obtained every few degrees in phase angle are needed

to determine the magnitude shifts between the measurements for a range of

phase angles. Data obtained at various oppositions require aspect corrections

and sparse data require even more calibrations to correct for lightcurve ampli-

42https://pypi.python.org/pypi/CALLHORISONS
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tude. Once the data have been properly calibrated we will fit the data using

different fitting schemes depending on the quality of the data. The currently

recommended IAU functions are the H, G1, G2 and H, G12 phase functions

(Muinonen et al. [2010]). A variations of the H, G12, can be utilized for low

quality data or when the taxonomic type of the fitted object is known. For low

quality (magnitude uncertanities larger then ∼ 0.3mag), but numerous data

it is recommended to perform the fitting in magnitude space (Penttila et al.

[2016]) to avoid systematic biases. For high quality data the fitting can be done

either in flux or magnitude space. In magnitude space the problem reduces

to a linear one thus reducing the computational time. The uncertanities in

phase curve parametes can be non-Gaussian, thus procedures like for example

the bootstraping method are recommended to estimate the uncertanity. The

scattering properties relate to regolith properties such as spectral type, albedo,

porosity, and others (Oszkiewicz et al. [2011]; [2012], Shevchenko et al. [2016])

.Those relations are currently poorly determined and understood. Obtaining

high number of accurate phase curves is therefore crucial in establishing those

relationships and their implications to asteroid population as a whole. As part of

SBNAF, we will document the procedures for the general users, and re-calculate

phase curves and H-magnitudes (also very relevant for albedo calculations) for

our sample objects. We will also address critical questions related to phase

curves for objects with albedo variations, multiple objects, or Centaurs/TNOs

with potential ring system. Phase curves and H-magnitudes are crucial for the

radiometric analysis of thermal data (e.g., Müller et al. [2017a] and references

therein).

5.9. Others

It is also foreseen to develop various new tools, techniques, and services re-

lated to the above mentioned observing techniques, prediction tools and models.

Our database(s) will also be made public towards the end of the SBNAF project

in 2019. One possible long-term option is to merge our database(s) with exist-
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ing services of the "Virtual European Solar and Planetary Access (VESPA43)".

The wealth of new lightcurve data obtained during SBNAF project will be made

available to the public using widely used services like Strasbourg CDS and AL-

CDEF, typically together with a scientific publication. In some cases the data

will be shared with other projects, like the recetly accepted large proposal that

plans to observe 38 large (> 100 km) MBAs with VLT/SPHERE44 in high res-

olution (see Marsset et al. [2017]). Such large bodies are seen as primordial

remnants of the early Solar System (Morbidelli et al. [2009]). The shape, size

and spin reconstruction for these objects will benefit from the combination of

Adaptive Optics images (from VLT/SPHERE), standard lightcurves, occulta-

tion, and thermal information. The derived volume (via their 3-D shape) to-

gether with mass estimates (mainly from Gaia) will allow us to determine their

bulk density and hence to characterize their internal structure. This fundamen-

tal property is very relevant for addressing the questions regarding the earliest

stages of planetesimal formation and their subsequent collisional and dynamical

evolution.

6. Outlook

The core of the SBNAF project is to study selected small bodies at very

different distances from the sun. We work on combining different observations

and modelling techniques, knowing that very different approaches are required

for NEAs, MBAs, Centaurs, or TNOs. Often we have to complement the anal-

ysis by pushing for more observations. A large and very important element of

SBNAF is therefore the planning and conduction of measurements. At the same

time, we develop new tools and services to combine information from ground and

space, and also from very different observing techniques. It requires to extract

43Virtual European Solar and Planetary Access database, see

http://www.europlanet-vespa.eu/
44SPHERE is the extreme AO system and coronagraphic facility at the VLT;

https://www.eso.org/sci/facilities/paranal/instruments/sphere.html
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from each method the constraints for the derived object properties and also the

reliability of these values. By focusing on objects with "ground truth" we will

put the new tools on solid grounds. Our results are already partly available from

our public webpage45 and documented in more than 20 peer-reviewed (submit-

ted, accepted and published) publications. More scientific publications, new

tools, databases and various services for small-body observers can be expected

during our 3-year project phase (until mid 2019).
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