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Abstract. Revegetation is the most common procedure in the restoration of disturbed
areas; this practice usually aims at reconstructing plant communities that can last without fur-
ther management. A low-cost strategy to assist these efforts is the application of ecological
knowledge in the design of the restoration. Promoting ecological processes that enhance the
functioning of the restored community could result in higher restoration success. Among these
processes, plant–plant interactions, e.g., facilitation and competition, can play an important
role, both facilitating and impeding the development of a self-sustaining plant community.
Although these processes have been well-studied in nature, we rarely have sufficient knowledge
about the whole plant community. To develop that knowledge, we leverage on a restoration
experiment that took place after a mine toxic spill, where ~15,000 woody plants from 13 species
were planted and geolocated. Species were planted in three mixtures mimicking natural com-
munities found along soil moisture gradients (xerophyte, intermediate, and hydrophyte). Plant-
ings also varied in density. Approximately 2,600 plants were monitored for damage status,
survival, and growth, for 4 yr. We analyzed growth performance of six targeted species as a
function of their damage status, planted mixture, and density. Growth was also assessed on the
basis of neighboring plants, accounting for the species identity and distance to the focal plant.
Results show that survival among planted species was relatively high and was mostly unaf-
fected by mixture or density of the plantings. Only very damaged plants in one species experi-
enced a decrease in survival with increasing density. Neighborhood effects on growth show
positive, neutral, and negative interactions among the tested species; these also varied depend-
ing on the type of growth performance considered (height, crown area, diameter). The species-
specific results ranged from positive to negative, varying between pair of species and growth
performance metric. Results gathered from our neighborhood analyses on plant growth pro-
vide valuable information for the design of planting schemes that could enhance the perfor-
mance of the target species. The methods developed can be applied to other systems and
species. Given the potential impacts that facilitation and competition may have during revege-
tation, these interactions could be considered in restoration operations.

Key words: Crataegus monogyna; Guadiamar toxic spill; Myrtus communis; Olea europaea; Phil-
lyrea angustifolia; Pistacia lentiscus; reclamation; Spain; Tamarix africana.

INTRODUCTION

Restoration efforts of degraded land are being under-
taken all over the world. Although these usually involve
a considerable amount of resources, success is not
always granted. Furthermore, most restoration projects
either entirely fail or underperform while the underlying
causes remain poorly identified (Zedler and Callaway
1999, Suding 2011). Restoration ecology, i.e., the study
of the relationships among organisms and their environ-
ment in a restoration context (Palmer et al. 2016), aims
at applying well known ecological theory and principles

to restoration practices. In restoration, the rationale is
that we can accelerate and aid recovery by promoting
processes that will lead to the desired outcome. Even
where human-caused perturbations are very different
from the natural disturbances that may have shaped
ecosystems, ecological damage is more readily reversed if
restoration can capitalize on natural processes (e.g.,
Bradshaw 1997, Prach and Py�sek 2001).
Most restoration practices aim at rebuilding degraded

ecosystem through revegetation (Greipsson 2011), and
multi-species planting is a common practice to speed up
ecosystem recovery (Funk et al. 2008). Ecological pro-
cesses that could be targeted in restoration are the mech-
anisms by which co-occurring plants interact with each
other. Plant–plant interactions, mainly competition and
facilitation, play a dominant role in community
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assembly (Callaway and Walker 1997). Plant–plant inter-
actions can facilitate (e.g., nurse plants, mycorrhizal net-
works) or constrain (e.g., competitors, allelopathic
species) the establishment and performance of plants
(Brooker and Callaghan 1998, Armas and Pugnaire
2005, Maestre et al. 2009). Thus, understanding and
quantifying these effects could provide critical informa-
tion aimed at increasing restoration success. For exam-
ple, by choosing combinations of species that minimize
competition for limiting resources, or plant species that
facilitate establishment or performance of other plants,
restoration efforts could be improved.
In the context of restoration, facilitation among plant

species is widespread in plant communities (Padilla and
Pugnaire 2006, Callaway 2007, Brooker et al. 2008). Pos-
itive interactions are particularly common among woody
species in water-limited ecosystems (G�omez-Aparicio
2009), this is likely due to release from water stress
(G�omez-Aparicio 2009). With shading, facilitating
plants can ameliorate water scarcity by reducing evapo-
transpiration in other plants (e.g., G�omez-Aparicio et al.
2004, Holmgren et al. 2012, Caldeira et al. 2014). Plants
with deep roots can provide water to the superficial lay-
ers of the soil via hydraulic lift (e.g., Dawson 1993, Cald-
well et al. 1998, Prieto et al. 2011), benefiting
establishing seedlings and plants with shallower root sys-
tems. In addition, as different species may exploit differ-
ent water resources within the soil layers, mixtures of
species may also lead to water stress release through root
niche partitioning or diversity of hydraulic traits (Pret-
zsch et al. 2012, Anderegg et al. 2018). In a restoration
context, soils and hydrology have often been altered,
deeply affecting water holding capacity in the soil (Sud-
ing et al. 2016), and strongly influencing the establish-
ment and persistence of the restored vegetation. Thus,
facilitative effects may be particularly relevant in this
context.
Still, even if facilitation dominates plant–plant inter-

actions under stressful conditions, competition for limit-
ing resources will also contribute to the net effect of the
interaction. Under the usually harsh conditions taking
place during revegetation (e.g., no shading, bare and
degraded soils), nutrients and water are common limit-
ing resources for plant establishment and persistence
(Pywell et al. 2002, Suding et al. 2016). In addition,
unvegetated sites experience harsher environments for
plant growth, being exposed to more extreme conditions,
e.g., higher temperatures and wind exposure, which
increase the risk of desiccation (Questad et al. 2014), and
make competition for water even more relevant. Fur-
thermore, as plants grow and require more resources,
communities may experience a shift from neutral
dynamics or net facilitation to having competition domi-
nating plant–plant interactions (Miriti 2006). Therefore,
in restoration, competition with other plants can con-
strain the establishment and performance of the target
individuals, leading to failure or underperformance of
the restoration (Yang et al. 2014, Suding et al. 2016).

Given the potential impacts that facilitation and com-
petition mechanisms may have during revegetation,
understanding these processes, and their spatial extent,
could provide critical information in the design of the
restoration in question. To that extent, neighborhood
analyses that identify and quantify interaction between
co-occurring plants have been developed for natural
communities (e.g., Uriarte et al. 2004, Canham and Uri-
arte 2006, Ib�a~nez et al. 2015). These techniques have
been used to understand spatial patterns of plant recruit-
ment and growth performance as a function of distance,
identity, and/or size of neighboring plants. As such, this
same approach could also be applied in the design of
restoration activities. Thus, understanding how different
neighborhood designs, i.e., plant species composition
and spatial arrangement, may affect the outcome of the
restoration could be particularly relevant in the success
of these projects.
In Mediterranean regions, like the one in our study

site, reforestation efforts have focused on using facilita-
tive effects of already established native shrubs on trans-
planted trees (Cortina et al. 2004, Greipsson 2011).
However, in the context of restoration, where all woody
vegetation is being established simultaneously, it is not
clear what kind of interaction, facilitation, or competi-
tion, prevails. We leverage the use of neighborhood anal-
yses in the context of a large-scale restoration project to
assess the impact of the neighboring community on
plant performance. In particular, we assessed the magni-
tude, and spatial scales, of positive and negative interac-
tions between neighboring plants. We analyzed woody
plant survival and growth data from a restoration effort
that took place in southwestern Europe (Fig. 1a,b). For
each target species, we addressed the following ques-
tions: (1) How does neighborhood density affect survival
of these restored species? (2) What are the neighboring
species that exert a positive or negative influence on their
growth performance? And (3) what are the spatial extent
of those effects? Answering these questions allowed us
to provide a specific list of positive and negative plant
interactions affecting these planted species, information
that can now be directly used in the design of future
restoration projects at no, or low, additional cost.

METHODS

In April 1998, a toxic spill to the Guadiamar River
(southwest Spain; 37°23046″ N, 6°13046″ W; Fig. 1a)
took place after the collapse of a dyke in a pyrite mine
tailings pond. About six million cubic meters of acidic
water and sludge rich in heavy metals breached the dam
and flooded more than 4,000 ha of the alluvial plain
along 40 km downstream (Grimalt et al. 1999; Fig. 1b).
The heavy equipment used first to remove sludge and
then to apply alkaline and organic amendments also
uprooted existing vegetation (mostly tree crops) and
removed topsoil (or thicker soil layers in some areas;
OTRG 1998). Buried sludge remains created soil spots
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with high trace-element concentration (Cabrera et al.
2008). In 1999, native shrubs and trees began to be
planted. On the basis of soil properties, altitude, and dis-
tance to the river banks, 14 different plantation models
varying in species composition were used (Moreira and
Arenas 2003). By 2005, plantation performance exhib-
ited large spatial variability and further efforts were
applied to zones were restoration proved unsuccessful,
sometimes adopting new plantation models.

Planting effort

In early 2006, approximately 15,500 individuals, dis-
tributed in 20 parcels over a 14-ha area (Fig. 1b,c), were
planted. At planting, all individuals were 1 yr old except
for Fraxinus angustifolia and Quercus spp. seedlings that
were 2 yr old. Three types of plant mixtures were
planted, species for each mixture were selected to repre-
sent a gradient of plant adaptations to different levels of
soil moisture (xerophytes, hydrophytes, and intermedi-
ate; Table 1; Fig. 1c). Each mixture included two tree

and four shrub species. Plant density was also manipu-
lated with dense parcels, where individuals were spaced
1 m; thin parcels, where separation doubled to 2.0–
2.5 m; and mixed parcels, where parcels featured a dense
core (1.5 m) and a thin periphery (2.5 m). Site size and
the distribution of soil conditions precluded a balanced
factorial design density 9 mixture (Fig. 1c).
Herbs and the aerial structures of woody plants sur-

viving from earlier revegetation were removed by disc-
harrowing. The site was then planted between January
and February 2006. Each planted individual was geolo-
cated within the parcel. In fall 2006, each planted indi-
vidual surviving the first summer was geolocated. We
randomly selected a point in each parcel 9 density com-
bination and marked a set of about 100 contiguous indi-
viduals around this point. For the next 3 yr, each fall, we
monitored survival and growth of marked individuals.
When available, dead plants were replaced with nearby
individuals in order to keep sample size close to 100
plants per parcel (Fig. 1d). Initial identification and
geolocation also included plants naturally growing in the

FIG. 1. (a) Location of the Guadiamar River in southwest Spain. (b) Location of the experimental plantation within the
restored area (shaded) in the lower Guadiamar River. (c) Distribution of parcels planted with three mixtures of six woody species
with variable dependence on soil moisture. Plantations were classified as dense (individuals spaced 1 m), thin (2–2.5 m), or mixed,
where the parcel core was densely planted (1.5 m) and density decreased at the parcel periphery (2.5 m). (d) Sample of neighboring
plants that were monitored for survival and growth. Some individuals dying during the observations were replaced with other
shrubs or trees in order to get a sample size of about 100 plants per parcel and year.
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parcels (114 individuals; resprouts from former vegeta-
tion) and other plantings (3,881 individuals).

Data collection

In November of 2006, 10 months after planting, all
individuals were checked for survival, damage status,
and size. Surviving plants were classified according to
their damage status as vigorous (V), low vigor (low V;
growth was judged to be abnormally low regarding the
average height, volume, branch density, and stem diame-
ter for the species in the parcel), damaged (D; there were
signs of at least one of these features: defoliated sec-
ondary stems, most leaves showed abnormal color,
shape, or size, major branches were torn apart or eaten,
the main stem presented severe tissue harm), and high
damage (high D; similar signs as D, but affecting at least
one-half of the aerial structures, evergreen species were
leafless or the main stem was cut below the first bifurca-
tion). After that date, only a targeted number of plants
(2,675) were monitored for survival and growth in 2007,
2008, and 2009. Plant size was assessed by measuring
height, crown area (estimated from the plant’s largest
crown diameter and its perpendicular diameter), and
diameter at the base in 2007, 2008, and 2009. Growth
was estimated as the difference in size between two con-
secutive years. Negative growth values, mainly due to
herbivory or mechanical damage during field operations,
were not included in the analyses. To factor out the effect
of plant size on growth and to better compare among
the different growth measurements, height, crown, and
diameter, we used relative growth rates (RGR: ln[sizet/
sizet�1]) in the analyses.

Survival analysis

We had 4 yr of survival data to estimate annual sur-
vival probabilities at three period intervals, 2006(fall)–
2007, 2007–2008, and 2008–2009. For each species, we
estimated survival as a function of mixture (if they were
planted in more than one mixture), density of planting,
status of the plant the previous year (t � 1), and parcel
random effects (PREsurv). Survival data (S = 1 alive,

S = 0 dead) for plant i in time interval t were analyzed
as

likelihood : Si;t �Bernoulli pi;t
� �

process model: logit pi;t
� � ¼ amixture ið Þ;density ið Þ

þbstatus ið Þ;t�1 þ PREsurvparcel ið Þ:

We then used the results of this analysis, i.e., parame-
ter means, variances, and covariances, to predict survival
(Spred) for the plants still alive in fall 2006 but that were
not monitored in subsequent years. We used these pre-
dicted survival values in our growth analysis (see details
in Growth analysis). Naturally occurring seedlings were
considered to be alive the whole time period.

Growth analysis

We analyzed relative growth rates (RGR) for the two
periods of time for which growth data were available:
2007–2008 and 2008–2009. We analyzed growth data for
height, basal diameter, and crown area from targeted
plants as a function of mixture, plant status the previous
year, neighborhood effects (NE), and parcel random
effects (PREgrow). For plant i in year t

likelihood:RGRi;t�Normal Gi;t;r2
� �

limited tobepositiveð Þ
processmodel:Gi;t¼lmixture ið Þ þxstatus ið Þ;t�1

þNEi;tþPREgrowparcel ið Þ:

Neighborhood effects were estimated following Uri-
arte et al. (2004), where the overall neighborhood effect
is the sum of each neighbor’s effect. Each neighbor’s
effect is a function of the neighbor’s species identity (pa-
rameter k) and of the distance to the target plant (effects
dissipate with distance following a power function;
parameter c). We used a radius of 5 m to define each
plant’s neighborhood. Using the geolocation data, we
identified all the neighbors surrounding a particular
plant and the distance between them. We did not include
size of the neighbor (which is commonly done; G�omez-
Aparicio et al. 2008a) because we did not have size data
for unmarked plants; also since all plants were of the

TABLE 1. Plant species planted at each mixture type and other species found in the parcels, or nearby, assigned to each of the
mixtures.

Mixture Species planted Other species found in the parcels

Xerophyte Arbutus unedo (tree), Crataegus monogyna (shrub),
Phillyrea angustifolia (shrub), Pistacia lentiscus (shrub),
Quercus coccifera (shrub), Quercus ilex (tree)

Celtis australis, Ceratonia siliqua, Fraxinus
angustifolia,Myrtus communis, Olea europaea,
Prunus spp., Rosa spp., Tamarix africana

Intermediate Crataegus monogyna (shrub), Olea europaea (tree),
Phillyrea angustifolia (shrub), Pistacia lentiscus (shrub),
Populus alba (tree), Retama sphaerocarpa (shrub)

Celtis australis, Fraxinus angustifolia, Rosa spp.

Hydrophyte Fraxinus angustifolia (tree),Myrtus communis (shrub),
Nerium oleander (shrub), Salix atrocinerea (shrub),
Salix alba (tree), Tamarix africana (shrub)

Crataegus monogyna, Olea europaea, Populus
spp., Prunus spp., Retama sphaerocarpa, Rosa
spp., Rubus ulmifolius
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same age, size variability within each species is likely to
have been low. To account for plant mortality over time,
each neighbor’s effect was multiplied by its survival sta-
tus (Sobs observed, for plants monitored each year, or
estimated Spred, for those that were not). For target plant
i at time t, the overall neighborhood effect was calcu-
lated as the sum of all the individual effects from each
neighbor j, as

NEi;t ¼
XNo:neighborsi

j¼1

kspecies jð Þdistance
�cspecies ið Þ
i;j S�

j;t:

Each growth data set, height, crown area, and diame-
ter, was analyzed independently. To better visualize the
effects of neighbors on plant growth, we then analyzed
neighborhood effects (NE) estimated for each individual
as a function of the number of neighbors

likelihood: NEi;t �Normal NEMi;t;r2
NE

� �
process model: NEMi;t ¼ d �No. neighborsi;t:

To better quantify the variability associated with the
growth data, fixed effects parameters were estimated for
each individual plant (µi, xi), these individual-level param-
eters were then estimated from treatment-level hyperpa-
rameters (µmixture, xstatus). We estimated parameter values
following a Bayesian approach where all parameters were
estimated from non-informative distributions; amixture;

density; bstatus;xstatus; kspeciesNeighbor, d�Normal 0; 1; 000ð Þ,
lmixture �LogNormal 1; 100ð Þ, cspeciesNeighbor �Uniform

0; 1ð Þ, 1=r2 Gammað0:001; 0:001Þ; PREsurvparcelNormal

ð0;r2
survÞ, PREgrowparcel �Normal 0;r2

grow

� �
, and r2

surv;

r2
grow; r

2
NE; �Uniform(0,100). Each target species was

analyzed independently. Analyses were run in JAGS 3.4
(Plummer 2003) using the rjags package (Plummer et al.
2018) in R (R Development Core Team 2013). Three
chains were run until convergence of the parameters,
~100,000 iterations, and run again for another 50,000 to
estimate posterior parameter means, variances, and covari-
ances, after thinning every 100th iteration (see DataS1:
Analysis Code).

RESULTS

Of the ~15,500 individuals planted in the restoration,
10,546 survived the first 10 months. From the 2,676 indi-
viduals targeted for long-term monitoring in 2006, 2,429
were alive in 2007, 2,192 in 2008, and 1,994 in 2009.
Growth analyses were only performed for species with
enough observations, which resulted in six target species:
Crataegus monogyna, Myrtus communis, Olea europaea,
Phillyrea angustifolia, Pistacia lentiscus, and Tamarix
africana. That amounted to 1,645 individuals for which
we had data for two growth periods. We used 2,809 esti-
mates of height growth, 2,779 of crown area growth, and
2,609 of basal diameter growth. Species-level breakdown

counts for survival and growth data are included
Appendix S1: Table S1, S2.

Survival analysis

In general, survival rates after the initial planting per-
iod were high across all the species analyzed (Fig. 2 for
target species; for all species see Appendix S2: Table S1).
Plants classified under the status categories vigorous,
low vigor, and damaged had similarly high survival, but
this significantly decreased for the high damage category
(Fig. 2). Density of planting did not affect survival in
most species (C. monogyna, M. communis, and P. angus-
tifolia), but it had a negative effect for plants in the very
damage status for P. lentiscus, and a positive effect in
O. europaea and T. africana (Fig. 2).

Growth analysis

Measured values for growth rates varied widely among
species. For plants in the vigorous category, average
height growth (cm/yr, mean � SD) ranged from
57.6 � 36.0 for T. africana to 9.3 � 6.5 for M. commu-
nis, with 30.8 � 20.3 for C. monogyna, 17.1 � 11.5 for
O. europaea, 18.0 � 15.6 for P. angustifolia, and
24.6 � 17.5 for P. lentiscus. Growth in crown area (m2/
yr, mean � SD) varied from 1.7 � 2.9 for T. africana to
0.10 � 0.10 for P. angustifolia, with 0.12 � 0.12 for
C. monogyna, 0.29 � 0.28 for M. communis,
0.34 � 0.26 for O. europaea, and 0.42 � 0.78 for P. len-
tiscus. Growth in basal diameter (mm/yr, mean � SD)
ranged from 13.0 � 9.1 for T. africana to 2.6 � 0.86 for
C. monogyna, with 11.2 � 7.4 for M. communis,
6.2 � 5.7 for O. europaea, 2.8 � 2.9 for P. angustifolia,
and 6.7 � 7.1 for P. lentiscus.
Analysis of relative growth rate data (RGR) shows an

overall fit (i.e., predicted vs. observed R2 across all spe-
cies) of 0.93 for height, 0.31 for crown area, and 0.69 for
stem basal diameter. In the growth analyses of the target
species, height and crown RGR increased with plant’s
damage status for C. monogyna, P. angustifolia, P. len-
tiscus, and T. africana, and showed no trend with status
in M. communis and O. europaea (Fig. 3). Basal diame-
ter growth also increased with damage status for
C. monogyna and P. angustifolia (Fig. 3). For the three
species planted in two mixtures, C. monogyna, P. angus-
tifolia, and P. lentiscus, growth was similar between mix-
tures (Fig. 3). See Appendix S2: Table S2 for growth
analyses parameter values.
The number of neighbors included in the analyses was

2–101 for C. monogyna, 2–33 for M. communis, 2–99 for
O. europaea, 6–115 P. angustifolia, 2–114 for P. lentis-
cus, and 2–32 for T. africana. The neighborhood analy-
ses illustrate how the six target species were affected by
their neighbors in many different ways (Table 2);
although only a few interactions were statistically signifi-
cant (i.e., 95% CI around parameter k did not intercept
with zero; see Appendix S2: Table S3 for parameter
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values). Only one species, M. communis, showed several
strong positive interactions, and a negative one, affecting
growth. None of the species of neighbors had an overall
negative or positive effect on the target species’ growth
trends (Table 2). The extent of the spatial effects (pa-
rameter c) was very similar in magnitude and variability
among the target species (mean � SD ~0.93 � 0.12; see
Appendix S2: Table S4). Analyses of the neighborhood
effects as a function of the number of neighbors reflect
the variability of results found among the parameters
(Table 2), showing increasing, decreasing, and neutral
effects on height, crown and basal diameter growth, as
the number of neighbors accumulated (Fig. 4).

DISCUSSION

Plant–plant interactions play an important role in
determining the assemblage of plant communities, and
this could likely be the case in restoration projects where
degraded areas are revegetated. Facilitative interactions
could be critical under the suboptimal conditions fre-
quently associated with restoration settings (G�omez-
Aparicio et al. 2004, Padilla and Pugnaire 2006). Still,
competition for limiting resources may also affect suc-
cess under the harsh conditions plants often encounter
in restored areas. Despite its relevance, a major challenge
for designing restoration schemes that promote facilita-
tive interactions, while lessening competition, is the
uncertainty in the nature of these plant–plant

interactions (Vallejo et al. 2012). In this study, we lever-
age on a large-scale restoration experiment, where both
plantings and naturally growing vegetation were geolo-
cated, to assess the impact of plant–plant interactions
on plant performance. Results from the analyses show
that after the initial transplant, survival among planted
species was relatively high and was mostly unaffected by
density of the plantings. Only for one species very dam-
aged plants experienced a decrease in survival with
increased density. Nevertheless, growth increased with
damage category among several species, indicating a
high recovery potential among surviving plantings.
Growth was also impacted by the neighboring plants.
Neighborhood effects, i.e., number of neighbors, their
species identity, and distance to the plant, were quite
idiosyncratic. Outcomes from the analyses show posi-
tive, neutral and negative interactions among the tested
species, and these varied depending on the type of
growth performance considered. The species-specific
results gathered from our neighborhood analyses on
plant growth provided valuable information for the
design of planting schemes that could enhance the per-
formance of the target species.
The restoration project we assessed took place in

southwestern Europe, an area within the Mediterranean
biome. The region is characterized by mild and wet win-
ters and hot and dry summers; droughts are frequent
and can last from weeks to months, making water a key
limiting resource in plant establishment (G�omez-

FIG. 2. Predicted survival of the target species by mixture, density of plantings and status. Values are mean and 95% PI
(Predicted Interval). Intervals that do not overlap (95% PI) are considered to be significantly different from each other.
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Aparicio et al. 2008b, Caldeira et al. 2014). In restora-
tion, irrigation is rarely an option, thus, careful selection
of species is critical to ensure the success of the project.
For highly damaged reclamation sites, like our study site,
artificial selection of native species is an optimal strategy
(Vallejo et al. 2012). Species in this restoration were cho-
sen based on the natural vegetation of the area and on
the specific biophysical characteristics of the site. The

three mixtures of species planted represent the gradient
of plant adaptations to water availability characteristic
of this region, and reflect natural communities common
to the area.
Our survival results indicate that the species selected

were adequate for this landscape and that the planting
of young individuals worked well under those conditions
(Fig. 2). After initial transplant shock, survival of these

FIG. 3. Predicted relative growth rates, height, crown, and diameter, for each to the target species according to status and mix-
ture planted. Values are mean and 95% PI. Intervals that do not overlap (95% PI) are considered to be statistically different from
each other. Status: V, vigorous; low V, low vigor; D, damaged; high D, high damage.
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woody species was high and, for most species, density
of plantings did not affect survival of healthy plants
(Fig. 2). In settings of low resource availability, e.g.,
water, low plant density could be essential since plants
would have to explore the soil beyond their canopy
areas (Galatowitsch 2012, Trautz et al. 2017). Our
plants were 4 yr old the last time we monitored them,
3 yr after planting may not have been enough time for
their root systems to start competing for limiting soil
resources (Schwinning and Weiner 1998). Similarly,
any canopy interference may not have been sufficient
to limit light availability to the point that could have
affected survival (Reisman-Bernan 2007; see discussion
on growth analyses). Nevertheless, longer time moni-
toring of these plantings is likely to show stronger
competitive interactions in the denser parcels as plants
grow (Miriti 2006).
Not only were these individuals unaffected by plant-

ing density, neither was the plants’ capacity to recover
from damage, e.g., herbivory or mechanical damage,
jeopardized in any of the planting schemes. Well estab-
lished individuals seemed to have had the resources to
compensate, to a certain extent, for tissue losses (Rosen-
thal and Kotanen 1994, Hawkes and Sullivan 2001).
Growth compensation for leaf and stem removal has
been reported in shrubs of the Mediterranean basin
(Riba 1998, Focardi and Tinelli 2005, Michielsen et al.
2017). Our analyses revealed that three of the target spe-
cies responded to damage by increasing their growth
rates, while the other three maintained the same growth
across all damage categories (Fig. 3), corroborating the
choice of species was optimal for this site.

We also explored the characteristics of the neighbor-
hood surrounding each target plant, i.e., species identity
and distance to target plant, which could have strong
impacts on its establishment and growth performance
(McCarthy-Neumann and Ib�a~nez 2012, Ib�a~nez et al.
2015, Uriarte et al. 2018). Competition for resources,
exposure to soil pathogens, and facilitation effects are
the most common mechanisms by which adjacent plants
impact each other (Richard et al. 2009, Prieto et al.
2011, Urli et al. 2016). In a restoration setting, the neigh-
borhood, i.e., species selection and design of the plant-
ings, can be easily manipulated and aimed at promoting
beneficial interactions while avoiding or minimizing neg-
ative effects. In our restoration project, the neighbor-
hood impacted growth of the target species with both
positive and negative effects depending on the species
involved, the number of neighbors and the growth per-
formance metrics (Table 2; Fig. 4).
In water-limited ecosystems, temperature amelioration

and water supply via hydraulic lift are considered com-
mon mechanisms of plant–plant facilitation (G�omez-
Aparicio 2009, Prieto et al. 2011). In our case, where all
individuals were planted at once, root niche partitioning
for water resources may also be a relevant mechanism
behind the positive interactions we found (Table 2). For
example, overall, C. monogyna and P. lentiscus had posi-
tive effects on all target species except their conspecifics,
supporting root niche partitioning. Heterospecific neigh-
bors could be using different soil space for water and
nutrient resources, while conspecific neighbors would be
in direct competition with the target plant (Pretzsch
et al. 2012).

TABLE 2. Neighbor effects on growth (parameter k: height/crown/diameter) for the six target species.

Neighbor species

Target species

Crataegus monogyna
Myrtus

communis
Olea

europaea
Phillyrea

angustifolia
Pistacia
lentiscus

Tamarix
africana

Arbutus unedo +/–†/+ NA NA /–/– +/–/– NA
Crataegus monogyna /–/+ –/–/+ –/+/+ +/+/+ +/+/+ NA
Fraxinus angustifolia +/+†/+ –/–/+ +/–/+ /–/– /–/– +†/+/–
Myrtus communis –/+/+ +†/+/+ NA /–/+ /–/+ /–/–
Nerium oleander NA –/+/+ NA NA NA +†/+/+
Olea europaea +/–/– NA –/–/– +/–/– +/–/– NA
Phillyrea angustifolia /+/+ /–/– –/–/– +/–/– /–/– NA
Pistacia lentiscus +/+/– +†/–/+ +/+/+ +/+/+ –/–/– NA
Quercus coccifera /–/+ NA NA –/+/– –†/–/– NA
Quercus ilex +/+/– NA NA –/+/+ +/+†/+† NA
Retama sphaerocarpa /–/– NA /–/– /+/– /–/– NA
Tamarix africana NA /–/– NA NA /+/– /–/+
Salix spp. NA –/–/+ NA NA NA +/–/–
Populus alba +/–/– NA +/+/+ +/–/+ +/+†/+ NA
Rosa spp. +/+/+ +/+/+ NA /–/+ –/+/+ –†/–/–
Quercus spp. +/+/+ NA NA /–/+ +/–/+ NA
Other /–/–† /+/– +/–/+ –/–/+† +/–/+ –/–/+

Notes: Plus symbols indicate positive interactions, while minus symbols represent negative interactions. We only report parame-
ter values for those interactions that had at least 10 individuals of the target species being affected by the neighbor species. NA, not
applicable (fewer than 10 interactions).
† Statistically significant parameters (95% CI does not intercept zero; for actual parameter values see Appendix S2).
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How neighborhood effects affected growth of the tar-
get species shed some light on the competitive ability of
these species in these particular mixtures. For example,
C. monogyna and P. lentiscus seem to be more competi-
tive in the xerophyte mixture than in the intermediate
mixture, while P. angustifolia showed the opposite pat-
tern (Fig. 4). For the species that were only planted in
one mixture, we can also assess their differential growth
performance. Myrtus communis responded to increasing
number of neighbors by allocating resources to stem
growth, i.e., height and basal diameter, over crown area;
while O. europaea prioritized crown and stem diameter
growth over height; and T. africana showed an overall
negative effect on growth with increasing neighborhood
density (Fig. 4). Our particular experimental set up pre-
cludes us from identifying the actual mechanisms behind
those results. Still, the analyses unveil relationships

valuable for directly informing the design of more opti-
mal planting mixtures (Table 2).
Given the increasing need for restoration operations

(Hobbs 2012) and the large expense associated with
these projects (Kimball et al. 2015), ensuring the success
of a restoration should be a priority objective in the field
of restoration ecology. Ecological restoration uses eco-
logical theory at low, or no, additional cost to enhance
biological and physical processes that optimize the out-
come of the restoration (Tongway and Ludwig 2012).
Therefore, identifying and quantifying the ecological
mechanisms that could contribute to the success of the
restoration is essential for the advancement of this disci-
pline. Co-occurring facilitative and competitive mecha-
nisms are rarely accounted for in restoration projects,
but could be critical in determining the outcome of the
project. Facilitative plants may aid the establishment

FIG. 4. Predicted neighborhood effects as a function of number of neighbors on height, crown, and diameter growth. Solid lines
are means, dashed and dotted lines show 95% PI (Predicted Interval). Intervals (95% PI) including zero indicate a not statistically
significant effect of neighbors. Values above zero represent positive effects and values below the zero line indicate negative effects.
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and performance of others, especially under stressful
conditions. Concomitantly, when resources are limiting,
plant competition may determine the performance, and
ultimately survival, of other planted shrubs and trees.
Therefore, by maximizing facilitation and minimizing
constrains, these mechanisms can guide the design of
restoration efforts to ensure their success. Our findings
assessing plant–plant interactions in the context of a
restoration provide concrete information on the nature
and strength of the mechanisms affecting the perfor-
mance of the target species at least in alluvial plains of
the Mediterranean Basin (Table 2). They also provide
the foundation for incorporating neighborhood interac-
tions into the design of restoration projects. Through the
design and active management involved in restoration
efforts, we can use our knowledge on how the ecological
system works to improve the outcome of these projects.
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