View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Digital.CSIC

Weak decays of magnetized charged pions in the symmetric gauge
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We consider the decay 7z~ — [7; (I = e~, u~) in the presence of an arbitrary large uniform magnetic field,
using the symmetric gauge. The consequences of the axial symmetry of the problem and the issue of
angular momentum conservation are discussed in detail. In particular, we analyze the projection of both the
canonical and the mechanical total angular momenta along the direction of the magnetic field. It is found
that while the former is conserved in the symmetric gauge, the latter is not conserved in both the symmetric
and Landau gauges. We derive an expression for the integrated z~ — [v; width that coincides exactly with
the one we previously found using the Landau gauge, providing an explicit test of the gauge independence
of that result. Such an expression implies that for nonzero magnetic fields the decay width does not vanish
in the limit in which the outgoing charged leptons can be considered as massless, i.e., it does not exhibit the
helicity suppression found in the case of no external field.
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I. INTRODUCTION

Recently, a significant interest has been devoted to the
effect of intense magnetic fields on the properties of strongly
interacting matter [1-3]. This is mostly motivated by the
realization that strong magnetic fields might play an impor-
tantrole in the study of the early Universe [4], in the analysis
of high energy noncentral heavy ion collisions [5], and in the
physics of stellar objects like the magnetars [6]. It is well
known that magnetic fields induce interesting phenomena,
such as the enhancement of the QCD vacuum (the so-called
“magnetic catalysis”) [7] and the decrease of critical temper-
atures for chiral restoration and deconfinement QCD tran-
sitions [8]. More recently, it has also been shown that an
external magnetic field can lead to a significant enhance-
ment of the leptonic decay widths of charged pions [9,10]. It
should be noticed that the hadronic decay rates in external
magnetic fields are important for the stability and equilib-
rium of magnetars. Moreover, their dominant cooling
mechanisms involve (inverse) #-decay, photo-meson inter-
actions and pion decay [11]. Pions radiate energy via inverse
Compton scattering until they decay, imprinting the
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spectrum of the subsequently produced neutrinos [12].
Although several studies of weak decays of hadrons under
strong electromagnetic fields have been reported in the
literature [13-16], in most works the effects of the external
fields on the relevant hadronic matrix elements have not
been fully considered. In the case of charged pions, these
effects have been recently analyzed in the context of chiral
perturbation theory [17], effective chiral models [18-21]
and lattice QCD (LQCD) calculations [9]. The most general
form of the relevant hadronic matrix elements for the
processes 7~ — [, (I = e”, ™) has been obtained through
a model-independent analysis in Ref. [22], where the effect

of amagnetic field Bonboth pion and lepton wave functions
is fully taken into account. In particular, it is found that the
vector and axial vector pion-to-vacuum matrix elements can
be parametrized in general through one and three hadronic
form factors, respectively. Taking into account the expres-
sion for the 7~ — [y, decay width in Ref. [22], quantitative
predictions have been given in Ref. [10] for magnetic fields
uptoeB ~ 1 Ge V2. Those results, based on the estimations
given in Ref. [21] for the hadronic form factors and the pion
mass within an effective Nambu—Jona-Lasino model, show
a strong enhancement of the total width with respect to its
value for B = 0. In addition, itis seen that the presence of the
magnetic field affects dramatically the ratio between muonic
and electronic decay rates [10]. This is related to the fact that
the widths do not vanish in the limit of vanishing lepton
masses, as happens to be the case for B = 0.
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For n~ — Iy, decays, the presence of an external
magnetic field has also an important effect on the angular
distribution of outgoing antineutrinos. In Ref. [9], on the
basis of some assumptions related to angular momentum
conservation and chirality, it is claimed that the momen-

tum k of the antineutrino has to be parallel to the magnetic

field (i.e., the perpendicular component k | has to be zero).
This is in contradiction with the analysis in Ref. [10],

where it is found that k | is in fact the dominant
component of the momentum for magnetic fields larger
than about 0.1 GeV2. According to Ref. [22], conserva-

tion laws do not imply k 1 =0, therefore one should
integrate over all possible values of the antineutrino
momentum. At this point it should be noticed that in
Ref. [22] the calculation of the general form of the 7~ —
lp; decay width has been carried out using expressions for
the charged pion and lepton wave functions in the Landau
gauge. Although this is in fact the most widely chosen
gauge to perform this type of calculations, it may be not
the most convenient one when dealing with arguments of
angular momentum conservation, such as those consid-
ered in Ref. [9]. As noticed in Ref. [23], the consequences
of the axial symmetry of the problem, as well as the
physical meaning of angular momenta, can be better
understood if one works in the symmetric gauge.
Having this in mind, the purpose of the present work is
to rederive the expression for the 7~ — [p; decay width
including the most general hadronic matrix elements in
the presence of a uniform magnetic field, now considering
the symmetric gauge. It is shown that this procedure
enables a detailed discussion of angular momentum
conservation issues in decay processes of magnetized
charged particles. In addition, our calculation is found to
confirm the expected gauge independence of the general
expression for the decay width.

This paper is organized as follows. In Sec. II we
present the expressions of the different charged fields
used in our work and discuss in detail angular momen-
tum and chirality properties. In Sec. III we obtain explicit
expressions for the z* leptonic weak decay amplitudes.
We consider both the general case of an arbitrary
magnetic field strength and the limit of strong fields.
Then we obtain the expression for the decay width by
summing and integrating over all possible final states.
Our main conclusions are presented in Sec. IV. We also
include Appendixes A-D to quote some technical details
of our calculations.

II. PRELIMINARIES: CHARGED PARTICLE
FIELDS UNDER A UNIFORM MAGNETIC FIELD
IN THE SYMMETRIC GAUGE

Let us start by quoting the expressions for the different
charged fields considered in our work, written in terms of
particle creation and annihilation operators. We use the

Minkowski metric ¢*¥ = diag(1,—1,—1,—1), while for a
space-time coordinate four-vector x* we adopt the notation
x* = (t,7), with 7= (ry, ry.7;). Assuming the presence
of a uniform magnetic field B, we orientate the spatial
axes in such a way that B= B7,, and consider the sym-
metric gauge, in which A#=(0,A) with A =7 x B/2 =
(=Bry/2,Br,/2,0). The expressions for the charged par-
ticle fields can be obtained using the method described
e.g., in Sec. 19 of Ref. [24]. For the reader’s convenience
we quote here these expressions explicitly, since they are
not commonly given in the literature (in comparison to
those corresponding to the Landau gauge). In the last
subsection we discuss some issues related to the quantum
numbers of particle states.

A. Charged pion field

The charged pion fields can be written as
G (x) = o ()"
zoo: / dp;
2E 0
< [a(p)W3(x) +a~(p) W5 (x)*]. (1)

where Q.. = ole| is the pion charge with 6 =+, s =
sign(Q,-B) and B, = |Q,-B| = |eB|. Note that if B > 0
then s =o0. The pion energy is given by E,. =
Vm2 + (2¢ +1)B, + p2. We have also defined p =
(Ee, p) and p = (¢,1, p.), where p, is an arbitrary real
number while # and : are non-negative integer numbers.
The functions W3(x) are solutions of the eigenvalue
equation

D,D'W5(x) = —[EZ. — (2¢ + 1)B, — p]W(x).  (2)
where D+ =¥ +isB,(r,8*—r,6'")/2. Introducing polar
coordinates p, ¢ in the plane perpendicular to the magnetic

field, their explicit form is given by

W5 (x) = V2 emiEtmpr) emslE=00R, (p),  (3)

where

sz,z(p) = Nf.zg(f_l)/ze_é/zlﬂf_l(5)' (4)

Here we have used the definitions N, = (B, 1!/¢!)"/? and
&= B,p*/2, while L%(x) are the associated Laguerre
polynomials. It can be seen that the functions W3 (x)
satisfy the orthogonality relations

/ drWs, (x) Wi (x) = (22)°8208,8(p. = pL). (5)
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In addition, the creation and annihilation operators in
Eq. (1) satisfy the commutation relations

/

[aﬁ(i))’ a° (p/)T] = 2Eﬂ“(2ﬂ)35ff’5ll’5(pz - p/Z)5O'0'I’
[a(p). a” (p")] = 0. (6)

Note that with these conventions the operators a°(p) turn
out to have different dimensions from the creation and
annihilation operators that are usually defined in absence of
the external magnetic field.

It is also useful to calculate the particle number asso-
ciated with the state |z°(p)) = a®(p)7|0) in a volume V.
Given our gauge choice, it is convenient to consider an
infinite area in the xy plane and a finite length L along the z
axis. We obtain

e = [ @riw D)l 0 = @b ()
=2E,..(2n)*L. (7)
Note that we are normalizing to 8z°E particles per

unit length, which differs from the usual normalization
p=n/V =2E.

e™@2e_R,  ,(p)

ise'?2\/2nB,R, _,(p)

B. Charged lepton field

Assuming the same conventions for the magnetic field
and considering the symmetric gauge, for the charged
lepton fields we have

o0 d .
szzz/m%z

=12 n,o=0
x [6(q. 1)U (x,q.7) + d(g,7)"Vi* (x.g.7)], (8)

where § = (n,v,q.), E;=\/m?+2nB,+¢> and s =

sign(Q;B), with Q; = —|e| (thus, B, = |Q;B|). Here, q.
is an arbitrary real number, while n and v are non-negative
integer numbers. The creation and annihilation operators
satisfy

{6(g.7),0(q.7)"} = {d(q,7).d(q.7)"}
= 2El(2”)35n’5nn’5u0'5((h - qlz)’ (9)

{0(q.7).d(q".7)"} ={d(q.7)". b(¢".7)"} =0.  (10)

For n > 0 the spinors in Eq. (8) are given, in the Weyl
basis, by

—ise™/2\/2nB,R, _,(p)

ei¢/28+ Rnx_,v (:0)

L VT g —is(n—v—
Us(x,§,7) = —me——e {(Eii=a:7) p=isn=0=1/2)¢ | 5 ; +9o ib/2. ) ’
l( ) \/FI_‘T‘—WT[ o e_’¢/2€+ Rn5+,v (;0) " ise_l(/)/z ZnBeR".v+~U (P)
—iS€l¢/2\/ ananS,,U(/)) eld)/zg_ Rns—vu(p>
(11)
ise*\/2nB,R, _,(p) —e" e R, ,(p)
/2 ise't2\/
V]_-v (-x1 éa T) = 7\/5 ei(Elf_Q:rr)e_is(”_u_l/z)‘ﬁ 57 1 e o Rnk’U(p) + 51 2 e ) aneR".r—J’(p) ’
VE +m | ise7/2\/2nB,R,  ,(p) Y % Ry, 0(p)
—el¢/2€_ Rnl\.,,U (p) lsel¢/2 v ZnBeRn.\—*“ (p)
(12)

where e, = E; + m; = g,. Here the non-negative integer index ng, is related to the quantum number n by n,. =

n—(1Fs)/2.

In the particular case of the lowest Landau level (LLL) n = 0, only one polarization is allowed. Using the notation
Grir = (0,0, p,), the explicit form of the spinors in this case are

y v
U‘f(x, fILLL) = \/ﬁ

e~ Ei=a:r) olsvd Ry () | 854

e_ 0
e
+ 63‘,—1 N ) ( 1 3)
ey 0
0 e_
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—&_ 0
o s — . 0 £
Vi) = e e R ) 0| o | (14
0 —&_
It can be seen that the spinors satisfy the orthogonality relations
/d3rUS(x,é,T)TUS(x, q.7) = /dSrV‘S(x,é,r)TV‘S(x, q.7) =2E|(2n)8, 46,v.
/d3rUS(x, 4,7)'V>(x, g, 7) = /d3rV_S(x,q,T)TUS(x, q,7) =0,
/d3r(_]“'(x, g.71)U*(x,q',7") = —/d%V‘“’(x,é,r)V‘“’(x, q.7) =2m(2n)38, 46,0,
/d3rU“(x,Zj,r)V‘s(5c, q,7) = /d3r\7‘s(x,é,r)US(5c, g,7)=0, (15)

which are valid for both n = 0 and n > 0. We have used here
the definitions & ; = 6,,,/8,,/6(q, — ¢-) and X = (1, =7).

An alternative representation of the spinors in Eq. (8),
closer to the Ritus representation often used in the Landau
gauge, is given in Appendix A.

C. Commutation relations and quantum numbers
in the symmetric gauge

In this subsection we discuss some properties of the
operators and particle states. We consider first the case of
charged leptons. We recall that, in this case, if a physical
quantity has an associated quantum mechanical operator O,
the field theoretical realization of this operator is given by

@—//d3r:l//j(x)TOz//‘,‘(x):. (16)

Let us recall that the Dirac Hamiltonian for a charged
particle in a uniform magnetic field is given by

-

H:yO[V-P+m]. (17)

Here P is the mechanical momentum, related to the
canonical momentum p = —iV by

P=p-0A, (18)

where A is the vector potential associated to the uniform

magnetic field B. Although the explicit relation between
both momenta depends on the gauge choice, it is seen that

-

P is a gauge covariant quantity. For a magnetic field
orientated along the z direction, the relation

[P, P] = iB(8;1612 = 626:1) 0 (19)

is found to be satisfied (integer indices 1,2,3 are intended to
be equivalent to x, y, 7). Here,

0-0% Y [ Sk 1b(a.0)'b(a.) - d(a.e) d(a.0)

=1.2n0=0

(20)

Using the spinors defined in the previous subsection, a
straightforward calculation shows that, as expected, in the
symmetric gauge one gets

H|I(g.7)) = E|l(g.7)),  H|I(3.7)) = E[l(3.7)). (21)

where E; = \/m? + 2nB, + ¢2.

We introduce now the canonical orbital angular momen-
tum operator [ = ¥ X p and the spin operator S. Given the
fact that the magnetic field breaks the rotational invariance,
only the components of these operators along the z axis are
relevant. Using cylindrical coordinates, the z components /,
and S, are given by

.0 1 .
Z:—z%, Szzidlag(l,—l,l,—l). (22)

Defining the canonical total angular momentum as
j. =1, + S, and using the spinors defined in the previous
subsection we obtain

F@o)y =", Lg.0)=-i"@.7). (23)

with

jgl) =—s(n—v-1/2). (24)
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Thus, as expected, we see that for the charged leptons in the
symmetric gauge one can find energy eigenstates that are
also eigenstates of the z component of the total canonical
angular momentum. Since the energy eigenvalues do not
depend on v, we see that, in the symmetric gauge, a state of
a given Landau level n is in general a linear combination

of an infinite set of degenerate states with well-defined
quantum number jgl) This is consistent with the fact that, in
this gauge, one has [j,, H] = 0, as can be verified from the
previously given expressions for H and j,. We stress here
that j, is not a gauge covariant quantity. In the Landau
gauge, for example, it is not difficult to check that j‘z does
not commute with A, therefore in general it is not expected
to be conserved. Turning back to the symmetric gauge, it is
worth noticing that only the canonical total angular
momentum is well defined, i.e., energy eigenstates are
not in general eigenstates of ZZ and S . separately.

Associated to the mechanical momentum P we can
define the mechanical orbital angular momentum L=
7x P and the mechanical total angular momentum
J=L+S. In the same way as P, Jisa gauge covariant
operator. An explicit calculation shows, however, that for a
magnetic field along the z-axis one has

[Lm——M@/fwmuw+mﬂwm (25)

which is valid in any gauge. Hence, J, is a gauge covariant
quantity but it is not a conserved quantity. In particular, an
explicit calculation in the symmetric gauge shows that J L1
not diagonal in the basis of energy eigenstates.

Let us consider now the limit in which the charged lepton
mass m; vanishes. This is interesting when the magnetic
field is relatively strong, say B, > m7. In the limit m; = 0
the chirality operator 75 becomes equivalent to the helicity

operator P - S and commutes with H. Consequently, one
can obtain energy eigenstates of well defined chirality/
helicity. For arbitrary n > 0 they can be constructed as
linear combinations of the two polarization states. We get

1. L) = =1 1 D)o+ 0.2
(26)
1R = LG D)+ 1. 2
7)

(subindices ch indicate that the chiral limit m; — 0 has been
taken). On the other hand, as mentioned above, for the LLL
only one polarization is available. Thus, the states asso-
ciated with the spinors that result from taking m; = 0 in
Egs. (13) and (14) are already helicity eigenstates. We get

7sl((Gree

>>ch =9 Sign(‘]x)“(é )>ch7
7s11((qree |

Nen = =ssign(q)[[(@rre))en-  (28)

This implies that for large enough magnetic fields—such
that only the LLL is relevant and m; can be neglected—
a negatively charged lepton (like the muon or the electron)
is lefthanded if B and g, are either both positive or both
negative, and it is righthanded otherwise.

We briefly consider now the pion eingenstates. Their
angular momentum can be analyzed following similar steps
as before. For the canonical orbital angular momentum
we get

Lz (p)) = 1|z (p)), (29)

with
1) = —s(¢ —1), (30)

where s = sign(oB). As in the case of charged leptons, the
mechanical angular momentum L, is not a conserved
quantity, thus, it is not diagonal in the basis of energy
eigenstates.

III. CALCULATION OF THE #n~ — I,
DECAY WIDTH IN THE PRESENCE OF
AN EXTERNAL MAGNETIC FIELD USING
THE SYMMETRIC GAUGE

Let us analyze the decay width for the process 7~ — [y,
with [ = u~, 7, in the presence of a uniform magnetic field
using the symmetric gauge. For definiteness we will take
B >0, i.e.,, s = —1. Following the notation introduced in
the previous section, the initial charged pion state is
determined by the quantum numbers p = (¢,1, p.), the
associated energy being E - = \/m,z,— + (2¢ +1)B, + p2.
The quantum numbers corresponding to the outgoing
lepton state are taken to be ¢ = (n,v,q,), together with
a polarization index 7. In this case the energy is given

by E;=\/m?+2nB,+ g> Finally, being electrically

neutral, the outgoing antineutrino is taken to be in the
cylindrical basis discussed in Appendix B. Thus, the
associated quantum numbers are k = (7, k., k,), where j
is an integer while k| and k, are real numbers, with k; > 0.

VKL 4k

The corresponding energy is Ej, =

A. The decay amplitude

Using the notation introduced in the previous section, the
transition matrix element for the process we are interested
in is given by

034003-5
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(g 0)zi(k, R)| L |7~ (P))

Gr
= —7§cos 0.
x [ @ PO (5300 = 1)V, (5 )
(31)
where H,*(x,p) stands for the matrix element of the

hadronic current,

H " (x,p) = Hy"(x. p) = Hy" (x. p)
) a(x

= Oy, () (1 = rs)ywa(x)|z=(p)).  (32)

Following the definitions and conventions of Ref. [22], the
hadronic matrix elements can be parametrized as

0 0 00
0 0 0 0
1—ys)H " (x.p) = | - — . (35
Yu( }’5) L (x P) H“f HJ_.L 00 ( )
Hyp Hpp 00
with
Hﬁ——z\/_(ef,, _ffjél>)(E,,_+epZ)W,;(x), (36)
HTS = -eV2(f& +ef P — f8) /(22 + 11 €)B,

X Wpie(x), (37)

where p + e = (E,-.£ +¢€,1,p,).

-3
H L =HL *+eH L Using these expressions together with the explicit form
. 0 3 of the charged lepton and antineutrino spinors (see Sec. II B
\/_<€f” )(D +eD )W (x). (33) and Appendix B) we get
HyG = Hp' +ieH;? ;
' (1(g.7)0i (k. R)| Ly |z (D))
= V2 ef ) - £ (D +ieD) W (x).
P (34) = (277:)35(E7r‘ —-E - EDI)S(pz —q;— kz)
X 5f—z,n—1)+]—1 M(i” é’ l;’ T)’ (38)
Rewriting H;* in terms of the parallel and perpendicular
components one gets where
|
o (=i o .
M(p.g. k. 1) _\/EGFCOSQC\/ﬁ[(El+mI 4:)A(P.q.k) + \/2nB.B(p. q. k)],
. —i)/ o v
M(P...2) = V3G cos e = [\/aBLA(. 3. ) + (B my + 4B (.. )] (39)
1 1

A(p.g.k) = a,- (Ey + p.)\/E: —d,-/2¢B,\|E; + k. I,
B(p,3.k) = by (E,- —pz),/El-,l +k Iy — cp-\/2(€ + 1)B,\ | E; — k. I3, (40)
I
and where
LR by =i+ £,
(A1) (A2) (A3) (A1) (A2) (A3) Z(#.1.n.v)
Co =Jfr t I = s de-=fo = =, )
(41) = ZEA dppr.l (p) Rn,u(p) J(f—z)—(n—v)(kJ_p)' (43)
while /;, i = 1, ...4 are radial integrals given by
The evaluation of these integrals for arbitrary particle states
I =Z(¢.1.n—1,0), L=TI(/-1,1,n—1,v), is given in Appendix C.
Note that, due to the é functions appearing in Eq. (38),
=I(¢+ 1L,1n,0), Iy =Z(¢.1,n,0), (42) " notall the variables in the expressions given in Egs. (39) are
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independent. While the first two & functions correspond to (£=0) el x(n=1)/2
the conservation of the energy and the z component of the I = 2x(-1) 1) Fy(x).
linear momentum, the last one leads to the relation ’
£—1=n—v—1/2+j—1/2. Taking into account that Ié”ﬂzo) =0,
for antineutrinos (in our basis) one has jﬁ”” =7—1/2 (see (¢=0) x(n=1)/2
Appendix B), using Egs. (24) and (30), and recalling that I = 2z(-1)" N (x = n)F,,(x),
we are considering s = —1, this relation can be written as /zn.
G5 = 9 4+ %) Therefore, the last & function in Eq. (38) ]£f=°) = 2m(—1)" LFI J(x), (44)
implies that, as expected, the z component of the canonical Vn! "
total angular momentum is conserved in the decay process
when the symmetric gauge is used. where
Now let us concentrate on the situation in which the
decaying pion is in the lowest energy state (LES). This 7! 0 (5mi)/2 27 ot
corresponds to # =0 and p, =0, i.e., Pprgs = (0,1,0). In Fio(x) = a(_l) FxmRe Ly (). (45)
this case the radial integrals /; get simplified. Introducing
x = k% /(2B,), we get The decay amplitudes simplify to
J
y 2(E; — k) x(=1)/2
M (pres, §. k., 1) = Gpcos 0, (=1)"(=i) 2z a< F,,(x
(pLESq ) F ( )( ) El+ml m ,()
X [aﬂ_Eﬂ_ (El +m;— qZ) - bn‘Elr‘(EE, + kz) + Cﬂ‘ZBe(x - n)]’ (46)
M(v o ]} 2) G 9 ( 1)n+l( ')Jz EDI - kZ x(n—l)/Z F ( )
,q,k,2) = Grcosf.(— —i)2x o(x
PLES- 4 F B.E +m) m "
X {aﬂ’Eﬂ’ane - (El + m; + qz)[bzz’Ezf (El_/, + kz) - Cﬂ’ZBe(x - I’l)]} (47)

It is interesting at this point to consider the situation in
which the magnetic field is large enough so that the
outgoing charged lepton can only be in the lowest
Landau level. As mentioned in the previous section, only
one polarization state is allowed in this case. Since we are
considering s = —1, this corresponds to 7 = 2. We get

v

M (pLES ’ QLLL ’ k)

2
= Gpcosf.(—i)/2 F,,(x
0O (~i) 2 | F ()

X (El =+ m + qZ) \/ Ev, + kz[bﬂ’En’ — Cp (Ev, - kz)]’

(48)

with g;;; = (0,v,¢9.). We remark that, due to the &
functions in Eq. (38), the relations g, = —k_, j=v—1+1

and k. = i\/ (E2- + 2B,x — m?)> — 8B,E>-x/(2E,-) are

satisfied. Therefore, recalling that x = k% /(2B,), we see
that for fixed E,- and given definite values of 1 and v the
amplitude is a function of k,. Contrary to the claim in
Ref. [9], we conclude that by no means angular momentum
conservation implies that k; has to be zero. In fact, one

|
should integrate over the full range of values of k, from
zero to infinity to calculate the total width.

A final observation concerns the situation in which
B, > m,2 In this case, we can neglect the charged lepton
mass in Eq. (48), obtaining

9

M(Press Grrrs K)en
= GpcosO.(—i)/2n\/2E/F,,(x)

X[] - Sign(kz)] \/ EU, + kz[bfr‘Ezr‘ — Cpm (Ezq - kz)}v

(49)

where we have used that in the present case E; = |k_|. As
seen, while for k, > 0 the amplitude vanishes, for k, < 0in
general it does not. This can be understood in terms of
helicity conservation. As discussed in Sec. II C, in the limit
m; — 0 for a charged lepton in the LLL we have (recall
once again that we are considering s = —1)

Ysl(Gree))en = —sign(g )| 1(Grir))en- (50)

Noting that g, = —k_, we see that for k, > O the outgoing
charged lepton would be righthanded, which is forbidden
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by helicity conservation since antineutrinos are always
righthanded. This is very different from what happens in
the absence of a magnetic field. For B =0, helicity
conservation implies that the total decay amplitude of a
pion at rest must vanish as m; — 0. At large magnetic
field, however, it only implies that the projection of the

antineutrino momentum in the direction of B must be
opposite to B.

B. Decay width

On general grounds, the decay width for the process we
are interested in is given by

/ dg. dk.dk k|
L.T—>oo = 27)32E; (27)*2E;,
=12 n,0,j=0

i@ )z (k. R)| Lyl (p))P
2(27)?E,-LT

I'7(B) = lim

, (51)

where T and L are the time interval and length on the z-axis
in which the interaction is active. At the end of the
calculation, the limit L,7 — oo should be taken. Using
Eq. (38) we get

-
X 8(Ey- — E;— Ep) 6(p; — 4. — k)
X 5f—z,n—o—1+j|Mn*—>lz7, 2, (52)
where
M-z | = 212|M(I3s g. k7)) (53)

and the amplitudes for 7 = 1,2 are given in Eq. (39).

2

AP (x) = [E%- = 2B,(n

+ 2Bex{E72r‘ [n|a,[— - bn'|2 -

To proceed we have to evaluate the sum over the charged
lepton quantum number » on the right-hand side of
Eq. (58). As shown in Appendix D, one gets

ZFz,u(x>2 =e (60)

Using this result we arrive at the final expression for the
n~ — ly; decay width, namely

Now, as it is usually done, we concentrate on the
situation in which the decaying pion is in the lowest energy
state. This corresponds to £ = 0 and p, = 0. Moreover, as
it will be shown below, the decay width will not depend on
the value of 1. The expression in Eq. (52) can be worked
out, leading to

~ 1 &S e dk kg
Ir(B) = 167E2- Z/) 2r

dk,
x/zﬂk 6(k, — K.) + 80k, + F) > My

’

v=0

(54)

where we have used the definitions

m2- —mi + B
max __ 7 ¢ , 55
K™ = E, - — \/ml2 + 2nB,, (56)
_ 1

fo=sr VIEL 2B, (n—x)~m}~8B.Ex-x.  (57)

In the amplitudes we must take ¢, =—k, and j =
v+ 1—n—1 Using Egs. (46) and (47) we get

dk 0
/2—;[5(1; k) +8(k, + k)] ;' iy

(0> Fl (58)

v=0

= 167G%cos*0,

where

- x) - mlz] |:% (n|a/r‘|2 +x|bn‘|2) + Be(n - x)(n|a7l_ - Cﬂ_|2 + x|b7r‘ - Cﬂ_|2):|

(n=x)|bs = ci P + (n = x)

mileq-*}. (59)

I (B) =

G%cos?0, &% frxmx 1 x"7
F42CB€ / d.X'T | e_xASZ,i) (X)
ZﬂEﬂ— =0 J0 kz n!

(61)

Our result agrees exactly with Eq. (52) of Ref. [22], where
the calculation was carried out using the Landau gauge.
This provides an additional and explicit confirmation of the
gauge independence of our expression for the decay width.
It should be noted that, since the sum in Eq. (60) turns out
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to be independent of i, the width does not depend on the

charged pion canonical angular momentum jg"_). This is to
be expected due to the fact that, as mentioned in Sec. III,

i) is a gauge dependent quantity.

IV. SUMMARY AND CONCLUSIONS

In this work we study the decay width z= — [p; in the
presence of an arbitrary large uniform magnetic field. We
use here the symmetric gauge, as an alternative to a
previous analysis carried out in Ref. [22] where the
Landau gauge was considered. The usage of the symmetric
gauge has the advantage of allowing for a better under-
standing of the consequences of the axial symmetry of the
problem, as well as for a better treatment of angular
momenta. In our analysis we introduce charged pion and
lepton wave functions and spinors in this gauge, using
cylindrical coordinates. To study the conservation of
angular momentum, we define the canonical (j,) and
mechanical (J,) total angular momentum operators. We
find that, as expected, even though j, is not a gauge
covariant quantity, it turns out to be conserved in the
symmetric gauge. On the other hand, J, is shown to be
gauge covariant but it is not conserved in any gauge. As
shown by explicit calculation [see Eq. (41)], the relevant
matrix element for the process = — [y, turns out to be
proportional to a Kronecker delta which, when expressed in
terms of the j, values of the different fields, clearly reflects
the conservation of the canonical total angular momentum
of the system. Using the symmetric gauge we also obtain an
explicit expression for the decay width z= — [, for the
case in which the decaying pion lies in its state of minimum
energy (i.e., in the lowest Landau level, with zero linear
momentum along the direction of the magnetic field). We
show that the total width does not depend on the charged

pion canonical angular momentum jg” ), a fact that is to be
expected since jé” ) is a gauge dependent quantity.
Moreover, it is seen that the total width is obtained after
integrating over the perpendicular momenta of the outgoing
antineutrinos, k. This confirms that angular momentum
conservation does not imply, as claimed in Ref. [9], that
the momentum of the antineutrino has to be necessarily
parallel to the magnetic field. In fact, it turns out that—as
showed in Ref. [10] for large magnetic fields—the ratio

k,/ \/ki + k2 for outgoing antineutrinos tends to be
relatively large. As expected, the derived expression for
the integrated z~— — [U; width coincides exactly with the
one found using the Landau gauge in Ref. [22]. This
provides an explicit test of the gauge independence of this
result.

It is worth noticing that Eq. (61) implies that for finite
magnetic fields the decay width does not vanish in the limit
m; — 0, i.e., it does not exhibit the helicity suppression
found in the case of no external field. As shown in the
present work, for a sufficiently large magnetic field (so that
the outgoing charged lepton has to be in the LLL, and its
mass can be neglected), helicity conservation only implies
that the projection of the antineutrino momentum in the
direction of the magnetic field should be antiparallel to the
magnetic field. As a consequence, for large values of
B the ratio I', /T, might change dramatically with respect
to the B =0 value [10]. This could be interesting e.g.,
regarding the expected flavor composition of neutrino
fluxes coming from the cores of magnetars and other
stellar objects. In addition, for large B the angular dis-
tribution of outgoing antineutrinos is expected to be highly
anisotropic, showing a significant suppression in the
direction of the external field.
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APPENDIX A: ALTERNATIVE
REPRESENTATION OF MAGNETIZED
FERMION SPINORS IN THE
SYMMETRIC GAUGE

For completeness, in this Appendix we present an
alternative way to express the charged fermion spinors.
This form follows quite closely the Ritus representation
notation often used in the Landau gauge (see e.g.,
Appendix A.3 of Ref. [22]). In fact, the spinors in
Eq. (8) can also be written as

V(e q.7) = Ng* ()07 (8. ), (A1)

where ¢ = (¢°, ¢), with ¢° = E,. The spinors u} and v}
are given in the Weyl basis by

ui(d.7) = R <(E, + m; + sv/2nB,ty — g, 73) ) (a2)
e 2(E; +my) \ (E; +m; — s\/2nB,t, + qzr3)¢(7) ’
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’U_S(Z] T) = ; < (El + mp— Sy aneT2 - qZT3)¢3(T) > (A3)
: ’ 2(E1+ml) _(El+ml+S\/2nBeT2—|—qu3)$(T) ’

where 7; are the Pauli matrices while ¢ = —(;5(2” =

(1,0) and ¢p@F = (T = (0, 1). They satisfy the relations

> ui(q.0)#}(g.7) = s + my,
=12
> (.00 (G.1) = oy - (A4)

=12

where ¢ = (E;,0,—s\/2nB,, q.). In Eq. (Al), N; (x) and
Ng“ (x) are the symmetric gauge equivalents of the Landau
gauge Ritus functions. They are solutions of the eigenvalue
equation

PNy (x) = —[E} — 2nB, - ¢2IN3(x),  (AS)
where P = 4J — isB,(rcy

these functions is

- ryyl). The explicit form of

()= N3, (x)A =) N72,(x)*a% (A6)
A=+ A==%
where A = (1 £ iy'y?)/2 and
Nfiii(x) - WfEI-"s1~l’an)(x)’ (A7)

W (x) being given by Eq. (3). Here the non-negative
integer index ng; is related to the quantum number n by
ng =n—(1Fys)/2.

APPENDIX B: NEUTRINO FIELD
IN A CYLINDRICAL BASIS

It is usual to write the neutrino field as a linear
combination of operators of well-defined linear momentum

k. However, this is not very convenient for the purpose of
the present work. As mentioned in the main text, we are
interested in dealing with the decay of charged pions in the
presence of an external field using the symmetric gauge.
Thus, as in the case of charged pions and leptons, it is more
convenient to introduce an expansion of the neutrino field
using cylindrical coordinates p, ¢ and z, where 7 is a spacial
axis parallel to the magnetic field. We can then expand the
usual plane wave functions in terms of eigenfunctions of
the z component of the orbital momentum, /,. Next, we can
couple these wave functions to the eigenstates of S,
(z component of the spin operator), and write the neutrino

field in terms of operators with “good” total angular
momentum j, = [, +S,. The resulting expansion reads

dk dklkl .

v =3 / el (COUNER 99
J== ”’

+d(k,R)'V, (x,k,R)], (B1)

where k = (7,k, . k.) and E, = E; = \/k} + k2. Here, ;
is an integer number, while k;, and k, are real numbers,
with k; > 0. In the Weyl basis, the spinors U,, and V,, are

given by

UU, ()C, 767 L) = —ife_i(Eill‘—k,rz)

AY4 ED, - kZJ] (kip)

% =it i/Eg, +ke?J, y(kip) . (B2)
0
0
V,,(x,k,R) = —(~i)’ e/ En=hers)
Ey, —k.J,(k.p)
x e—i1b —i\/mei¢lj_1(kip) (B3)
0

0

Note that, as it is clear from the explicit form of the spinors,
in the expansion we have already taken into account that
neutrinos (antineutrinos) are lefthanded (righthanded). The
creation and annihilation operators satisfy

{b(k,L),b(K',L)"} = {d(k,R),d(K',R)"} =2E; (27)25 .
{b(k,L),d(K',R)"} = {d(k,L)",b(K',R)"} =0, (B4)
where

O =9, 5(/@]& “) 8(k, — k%) (BS)

It can be seen that the spinors in Egs. (B2) and (B3) satisfy
the orthogonality relations
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/d3rU(x, k,L)'U(x, kK .L) :/d3rv(x, k.R)'V(x,k,R)

= 2E51(27T)257(j{/, <B6)

/d3rU(x, k,L)'V(x,K,R) _/d3rv(x, k,R)'U(x,k' L)
=0. (B7)

Using methods similar to those mentioned in Sec. II C it
can be shown that, given a set of quantum numbers
(7. k. k), the eigenvalue of the total angular momentum

operator j, acting on a neutrino state is jg”’ ) = —(y—-1/2),

while for an antineutrino state one has jf‘ ) = J—1/2.

APPENDIX C: THE RADIAL INTEGRAL

In this Appendix we quote the result for the radial
integral appearing in Eq. (43). It can be calculated using the
relation (see Eq. (5) of Ref. [25])

/dxx”“e‘“"zL’;,,_"(axz)LZ(axz)J,,(xy)
(2
2a 2a 4a
2 2
XLa—m+n y Ly o+m—n y
" 4a 4a

x [y > 0,Rea > 0,Rev > —1], (C1)
together with (see Eq. (3.6.2) of Ref. [26])
n!
Lit(x) = (=) "L (), (€2)

which is valid for all the values of n and v we are interested
in. We get
> (£=1)=(n-v)

i'n!

Z(¢,1,n,0) =2x(- l+v“f'u’<
ZBLI)I f .
< (g5 )1 (35

APPENDIX D: SUM OVER THE
QUANTUM NUMBER » OF THE
OUTGOING CHARGED LEPTONS

In this Appendix we will prove the validity of Eq. (60).
From the definition of F,,(x) in Eq. (45) we have

iFl 1)

v=0

(C3)

= e 28, (x), (D1)

where

(5]

5,00 = Y L e L ()

v=0

(D2)

We want to show that S,(x) = e*, for all 2eN. For 1 = 0 one
has L{(x) = 1, therefore the relation is clearly satisfied. For
1 =1, using LY"!(x) = v — x, one has

] xv—l
X =x+) ! (
v=1 :

:x+i|:xu+l

v=1

oxv~! 27
o o= (o= 1)!]’ (D3)

from which S;(x) = e* easily follows. For ¢ > 2, let us
calculate the derivative of S,(x) with respect to x. Using
Eq. (C2) one can write

1—1 )
v! 1!
Sl(x) = ZO ; xi- l)Ll v )2 4 Zaxv—zL;)—l(x)Z (D4)
In this way, using the general relation
dLjj(x) «
a2 — L (x), (D3)
one has
ds,(x) _ X' @
A A S 2L (x)L! S , (D6
= oyt W 2L WL () 457 (). (D6)
where
1—1 '
ZU_ l _ l) l—v—lL;)—u(x)Z
- 2x""L§,‘"(x)L,’J__“l+1 (x)],
(2) _ S 1! v—1—17 v—1 2
8% (x) = U;IE (0= 0)x "7 ILY (%)

— 2" LY (x) LY (x). (D7)

The sums in Eqs. (D7) can be worked out using the
relations

aLy(x) = xLy™ (x) + (n + DLe (x)  (D8)
and
Ly, (x) = Lt (x) = Lit (x). (D9)

For the first sum one has
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1 =0 -0 U ! 1—0— =0
SV () =Yl - o)L () = DAL ()] A L () (D10)
v=1 '
—1
U' I VJ I—0 (U + 1)‘ I V— 11— 1)— =0 U! =0 J I—0 =0
=3[ + O e L (L ) = L L 1)
= L,(x)LL,(x) - g (D12)

where we have used L} (x) = 1, L' (x) = 1 — x. The second sum is given by

2 > l! U—1 V-1 (l + 1)‘ 1) 11— 15 V-1 l' V-1 V-1 v—1
sP@ = [— Ly~ (x)? S L ()L () =L ()L ()
v=1+1 : : :
®© )
= 3 B R L (L) + 3 e+ DL L () — oL (L (). (DI13)
v= t+l v:l+20’
Here one can use the relation
(n+1)L%, (x) = (n+a+ 1)L5(x) — xLi+ (x) (D14)
together with Eq. (D9) to obtain
(e + DL )Ly (x) = oLy (x) LY (x) = oLy~ (%) = xLy ™ (x)*. (D15)

Replacing into Eq. (D13) and performing an adequate change in the index of the sum it is easy to arrive at

2 S l! V—ILJ -1 X
P (x) = Zl R (x)> + Ly (0L (x) + hL—lel(X)z- (D16)
v=I+

Now replacing the expressions for S,(l)(x) and S (x) in Egs. (D12) and (D13) into Eq. (D6), and using Eq. (D9), one
obtains

—1

v!
Zﬁ l_“Li v +Z xv sz l +L ( ) Lz+1(x) —LI(X) +

v=0 V=1

Ll(x)], (D17)

where the last term on the right-hand side vanishes, according to Eq. (D14). Thus, taking into account the definition of S, (x)
in Eq. (D4), it is seen that dS,(x)/dx = S,(x). Since, in addition, for all z one has S,(0) = L,(0)?> = 1, one obtains
S,(x) = e*. From Eq. (D1) one has finally

D Fu(x)?=e.

v=0
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