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ARTICLE INFO ABSTRACT

Although many microorganisms are ubiquitously present in the air, airborne microbial communities have been
much less characterized than those in soil or aquatic environments. Besides its ecological importance, detection
and monitoring of the wide diversity of these aerosolized microorganisms (bacteria, viruses, fungi and pollen) is
relevant for understanding allergy and disease outbreaks, especially in highly populated cities. In this study, we
describe the simultaneous biodiversity of bacteria, fungi and plants present in the urban atmosphere of Madrid
(Spain) along different seasonal periods, using DNA sequencing. Sampling in two different locations (downtown
and peri-urban) we found that changes in the composition of each community are mainly driven by environ-
mental factors, rather than by the features of the specific sampling microenvironments. While pollen particles
are dominated by a few taxa characteristic of each season, bacteria and fungi show a high diversity but stable
core communities along the year. The prokaryotic core is governed by soil and leaf surface bacteria, with pre-
dominance of Actinobacteria (Frankiales and Micrococcales) and Alphaproteobacteria (Sphingomonadales,
Rhodobacterales, Rhizobiales and Acetobacterales). Fungal diversity is characterized by the steady presence of
members of Capnodiales and Pleosporales. Pathogenic bacterial and fungal taxa were also detected across the
year. We also correlated the airborne biodiversity with environmental variables. Air temperature has a strong
influence on the community composition of bacteria, while pollen and fungi seasonal variations are mainly
correlated with precipitation. Our results contribute to the characterization of airborne prokaryotic and eu-
karyotic communities in urban areas and show the suitability of this method for biosurveillance strategies.
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1. Introduction worldwide, currently over several million people (Bousquet et al., 2008;

Crameri et al., 2014). Bacteria from soil and plant surfaces are usually

In addition to chemical compounds, the human population is con-
stantly exposed to a vast diversity of microscopic biological entities
present in the urban atmosphere (viruses, bacteria, archaea, fungi,
pollen, etc.), which are emitted from diverse sources such as soil, sur-
face waters, plant cover, etc. (Després et al., 2012). While most of them
are innocuous, some pollen grains such as grasses, mugwort, ragweed
and birch, and atmospheric moulds like Cladosporium spp., Alternaria
spp. or Aspergillus spp. are proven allergens or pathogens, exacerbating
asthma symptoms and increasing the number of allergy cases

predominant in the urban atmosphere (Bertolini et al., 2013; Bowers
etal., 2011a; Fierer et al., 2008). However, pathogenic bacteria causing
varied disorders such as Legionella spp. (etiological agent of Le-
gionnaires’ disease) are commonly transmitted via aerosols produced
by cooling towers and water sources in metropolitan areas (van
Heijnsbergen et al., 2015).

Besides its relevance for understanding allergy and disease out-
breaks, the study of the airborne microbiota has ecological value. These
biological particles are easily transported both throughout the land and
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across the vertical section of the atmosphere. Thus, their presence is not
limited to a small area close to the source of origin but they can also be
found in the upper troposphere, transported long distances and dropped
in new lands after deposition (Barberan et al., 2015; Céliz et al., 2018;
Damialis et al., 2017; DeLeon-Rodriguez et al., 2013; Smith et al.,
2012). During their stay in the air, it has been proposed that they may
act as ice and cloud condensation nuclei, having an influence on me-
teorology at a local level (Huffman et al., 2013; Morris et al., 2013).
Moreover, since bacteria and fungi play a significant role in biogeo-
chemical cycles, trans-continental transport may modify these cycles
where they are deposited, which is especially relevant in a climate
change scenario (Kanakidou et al., 2018; Zhu et al., 2017). As a con-
sequence, the knowledge of the total diversity, abundance and dy-
namics of these entities in the air is gaining importance both for eco-
logical and health interests.

The collection problems for such variety of particles and the high
influence of the meteorological factors affecting their presence in the
atmosphere make difficult to successfully study all this biodiversity
(Fierer et al., 2008; Fronczek and Yoon, 2015; Jones and Harrison,
2004). Pollen distribution, concentration and seasonality in urban en-
vironments are well known in certain cities thanks to aeropalynological
surveillances that provide daily monitoring and manage long time
series data for predictive evolution of each type of pollen (Oteros et al.,
2013; Ziello et al., 2012). Significantly less is known regarding peaks
and progression throughout the year for airborne fungi and bacteria,
partly because they are frequently surveyed by culture-based methods.

Current shotgun or amplicon DNA sequencing techniques provide a
wide coverage of microorganism diversity at a much deeper taxonomic
resolution than microscopy or culture methods. Recent reports applying
this technology to samples collected in urban spaces have revealed a
huge variety of biological entities in the air (Be et al., 2015; Bertolini
et al., 2013; Cao et al., 2014; Gandolfi et al., 2015; Woo et al., 2013;
Yooseph et al., 2013). Most works addressing this matter are mainly
focused on one particular group of these biological entities and usually
for a short period of time, although a few studies have addressed the
joint analysis of bacterial and fungal communities in aerosol samples
(Barberan et al., 2015; Bowers et al., 2012; Du et al., 2018; Fierer et al.,
2008; Woo et al., 2013), and one study analyzed the relative abundance
of airborne bacteria, plants, fungi, invertebrates and viruses (Be et al.,
2015).

The goal of the present study is to analyze the joint biodiversity of
bacterial, fungal and plant communities in a highly populated urban
area, identifying sources of variability along different temporal periods.
We recently evaluated the suitability of a particle collector, the Hirst
spore trap, to simultaneously monitor and characterize the diversity of
bacteria, fungi and plants by amplicon DNA sequencing (Ntiez et al.,

Table 1
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2017). Using this method, we sampled in two different locations by
synchronously running two traps along four different seasonal periods
(Table 1). One of the locations chosen is placed downtown (Urban, U)
and represents a metropolitan area with an adjacent small park sur-
rounded by highly trafficked streets. The other sampling location is in
an area immediately adjacent to the city (Peri-urban, P), characterized
by larger green zones (parks or natural areas), low buildings and light
traffic. Both locations are representative cases of two different scenarios
found in Madrid, in terms of built and green areas.

In addition to characterizing the main composition of the airborne
communities and their patterns of long-term variation, we also analyze
the influence of different meteorological and pollution factors, identi-
fying the most relevant to explain the bioaerosols’ variability. This work
provides the first simultaneous characterization of prokaryotic and
eukaryotic diversity in the urban atmosphere of Madrid, compiling
meaningful information about these entities of ecological and human
health interest.

2. Material and methods
2.1. Locations, sampling methodology and DNA extraction and quantitation

Two different locations were surveyed in Madrid (Spain) by running
synchronously two volumetric spore traps (Burkard Manufacturing Co.,
England, UK), collecting 7-days samples for each season. The city of
Madrid is located near the center of the Iberian Peninsula, 657 m AMSL
and =320km from the closest coastal point, with > 3 million of per-
manent inhabitants. We chose two different sampling sites: the urban
location (U) at Escuela Superior de Ingenieros Industriales, Universidad
Politécnica de Madrid (40.439881° N 3.689409° W, 21 m AGL, 705m
AMSL) represents a downtown metropolitan area, with 99.1% of the
surface built in 1 Km around. The other sampling site is a peri-urban
location (P) at Facultad de Farmacia, Universidad Complutense de
Madrid (40.446025° N 3.725141° W, 18 m AGL, 637 m AMSL) in the
surroundings of the city center, with 90.1% of the surface built in a
radius of 1 Km. Both locations are separated by a distance of about
3km. To evaluate how representative are these sampling sites in terms
of built/green areas, we estimated the same percentage of urbanized
area around 10 random sites, distributed uniformly on a total area of
45 km?, considered the urban center of the city. The built percentages
are in the range 93.9-99.9 (mean = 97.1; median = 97). The two
sampling sites chosen are thus representative examples of the most
different scenarios found in the city, in terms of proportion of built/
green areas around.

To evaluate the influence of environmental factors on airborne
biodiversity, we collected a set of environmental variables from the two

Meteorological and pollution data included in the analysis for both locations. Please note that in the Proof view the columns of Location P and Location U appear with
different width and shifted. All columns of Location P and Location U should be alligned with the shadowed headings.

Assay Sampling date Air Temperatureb [°cl Relative hurnidityb Precipitation® [mm] Wind speed” [m/s] PM;o° [ug/mB] NO° [ug/
[%] m’]

Location P — “Facultad de Farmacia, Universidad Complutense de Madrid”, peri-urban site (90.1% built")

Winter 2-9/Mar 2015 10.3 52 0.0 3.0 12 24

Spring 21-28/Apr 2015 14.3 53 29.2 3.7 15 14

Summer 20-27/Jul 2015 29.2 35 8.5 2.2 28 14

Fall 23-30/Nov 2015 9.1 60 0.2 1.7 18 34

Location U - “Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid”, urban area (99.1% built")

Winter  2-9/Mar 2015 11.3 56 0.0 2.0 14 42

Spring  21-28/Apr 2015  15.1 65 41.3 2.2 16 32

Summer 20-27/Jul 2015 29.8 41 3.6 1.9 22 32

Fall 23-30/Nov 2015 10.0 67 0.6 1.2 21 55

Data from the closest meteorological station (< 1 Km for both cases).

@ Percentage calculated for the area covered in a radius of 1 Km around the sampling location.

b Average of two weeks (sampling week and the previous one).
¢ Total registered in two weeks (sampling week and the previous one).
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meteorological and air pollution stations closest to the sampling sites
(within 0.2-1.5 Km distance), and shown in Table 1.

Sampling, DNA extraction (MO BIO Laboratories, CA, USA) and
quantification (Quant-iT™ PicoGreen® dsDNA Assay Kit; Invitrogen,
MolecularProbes®) procedures were performed as described previously
in Nufez et al. (2017). An additional negative control was set as a 7-
days sample keeping the vacuum of the sampler off. No amplification
by PCR was obtained for this specimen during the preparation of the
amplicon libraries. Nonetheless, this sample was included in the se-
quencing batch to discard contaminations and sequencing issues.

2.2. High-throughput sequencing

High-throughput sequencing analyses were performed using the
purified DNA from each sample. Universal primers attached to adaptors
and multiplex identifier sequences were used to amplify V3-V4 regions
from 16S rRNA for bacteria (Bakt 341 (F): 5'- CCTACGGGNGGCWG-
CAG -3; Bakt805 (R): 5- GACTACHVGGGTATCTAATCC -3’
(Herlemann et al., 2011) and 5.8S - ITS2 for fungi (ITS86 (F): 5'-
GTGAATCATCGAATCTTTGAA-3’ (Turenne et al., 1999) ITS-4 (R):
5’-TCCTCCGCTTATTGATATGC -3’(White et al., 1990), and plants (ITS-
D (F): 5- YGACTCTCGGCAACGGATA-3’ (Cheng et al., 2016) ITS-4 (R):
5’-TCCTCCGCTTATTGATATGC -3’, in a targeted amplicon sequencing
(TAS) approach. Purified-amplicon libraries were sequenced in Illu-
mina® MiSeq platform (2 X 300 bp reads) at “Parque Cientifico de
Madrid” (Madrid, Spain), with a minimum sequencing depth of
100,000 reads/amplicon (see Table 2 for details).

2.3. Sequence assembly and preprocessing

Data from NGS were first submitted to a general checking (total
number of sequences, sequence quality per base and sequence length
distribution) with FastQC software (version 0.11.3, Babraham
Bioinformatics Group, Babraham Institute, UK [www.bioinformatics.
babraham.ac.uk/projects/fastqc/]). Paired-ends sequences were as-
sembled with PANDAseq (Masella et al., 2012) (version 2.8, https://
github.com/neufeld/pandaseq/wiki/PANDAseq-Assembler), which fil-
tered the sequences by Q-score quality (default: 0.6), trimmed the
primers sequences and removed the sequences exceeding the length of
the amplicon (bacteria: min: 400 bp, max: 500; plants: min: 320, max:
550). For fungal ITS2 library, as the sequencing protocol exceeded the
length of the amplicon, we employed “read fastq” from Biopieces
(version 2.0, http://maasha.github.io/biopieces/) to remove the primer
sequence at the end of the amplicon followed by “fastq-join” (Aronesty,
2013) (https://github.com/brwnj/fastq-join) to pair the reads. Global
processing of the sequences was carried out in Qiime suite environment
(Caporaso et al., 2010) (version 1.9.1, http://qiime.org). Potential

Table 2
Sampling periods, locations and sequencing reads/OTUs.
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chimeras were subtracted using default values from USEARCH v8.1
(https://drive5.com/usearch/), and OTUs clustering and taxonomic
assignments were performed with the default algorithm of Qiime
(pick_open_reference_otus.py), using UCLUST as method for picking
OTUs (Edgar, 2010), which were clustered with 97% similarity cutoff.
Taxonomic assignments (UCLUST, minimum consensus: 0.51, simi-
larity > 0.9, max accepts: 3) were performed with Silva database for
bacteria (Quast et al., 2013), release_132, and UNITE (Koljalg et al.,
2013), version 7.0, https://unite.ut.ee/) for fungi. A customized data-
base was created for plants assignment as described previously in
Nufez et al. (2017). The OTUs assigned to chloroplast and mitochon-
dria in 16S analysis were filtered out. For the sake of the analyses, the
OTUs without taxonomic assignment at least at the level of phylum
were removed (2% of the OTUs in bacteria, 0.1% in plants and 0% in
fungi). We checked a possible contamination in our samples by looking
for ‘outlier’ OTUs of very large abundances present in only one of the
samples, and manually identifying the corresponding species by
blasting their sequences against the NCBI nucleotide database. While
pollen and fungi samples were free of contamination, we found in one
of the bacterial samples (P_Summer) two OTUs assigned to parasitic
bacteria of arthropods (Wolbachia sp. and Occidentia sp.), which were
removed.

2.4. Filtering and normalization

The probability of spurious OTUs with one or very low count values
in amplicon sequencing increases with sequencing depth, sometimes
due to PCR or sequencing noise (Quince et al., 2011; Weiss et al., 2017).
As a pre-analysis step, we estimated a ‘noise floor’ in our experiments (a
lower limit to count detection) using the following procedure: we first
identified all OTUs with a mix of zero and non-zero values in all the
samples, and for each of these OTUs we took the smallest non-zero
count value. The median of all these values was considered as our
technical detection limit, which were 2 counts for the three different
entities (bacteria, fungi and plants). We filtered out the OTUs that were
below this detection limit in all of the samples. These discarded OTUs
constituted a noticeable fraction of all the identified OTUs: ~34% in
bacteria (3693 out of 10,850 OTUs), ~22.6% in fungi (967 out of 4279
OTUs) and ~49% in plants (1573 out of 3138 OTUs), but their cumu-
lative abundances were low (between 1% and 5% in bacterial samples,
0.1-0.5% in fungi and 0.1-0.4% in plants).

To account for biases due to differences in sequencing depth be-
tween samples, we employed cumulative sum scaling normalization
(Paulson et al., 2013) as implemented in the “metagenomeSeq” package
(version 1.18.0, http://cbcb.umd.edu/software/metagenomeSeq). This
normalization procedure gave results qualitatively similar to rarefac-
tion in our statistical analyses, with the advantage that potentially

Sampling date 02-09 March 2015 21-28 April 2015

20-27 July 2015 23-30 November 2015

Sample ID* U_Winter P_Winter U_Spring P_Spring U_Summer P_Summer U_Fall P_Fall
DNA concentration (pg/m®) 1050.6 1485.2 462.4 1008.2 30.6 130.8 49.0 24.4
No. reads 16S (Bacteria) 164,505 187,059 203,147 246,262 177,074 200,235 133,695 132,682
® No. OTUs(% RA”) 3111(84% RA)  3782(84% RA)  3169(92% RA)  4145(89% RA)  4435(12% RA)  3969(13% RA)  3426(31% RA)  4654(32% RA)
® Final No. OTUs analyzed 1955 2433 1699 2272 2956 2689 2625 3358
No. reads ITS (Fungi) 177,371 180,039 234,183 265,640 188,725 176,228 166,905 198,801
® No. OTUs 2524 2844 4123 4218 1379 1449 2542 2922
® Final No. OTUs analyzed 836 1032 1785 1826 503 560 1283 1447
No. reads ITSD (Plants) 282,449 221,852 235,007 243,993 292,587 200,333 196,112 212,650
® No. OTUs 1381 1321 738 729 949 490 622 588
® Final No. OTUs analyzed 742 743 362 361 342 257 329 352

@ Sample ID: U_: Urban location, “Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid”; P_: Peri-urban location, “Facultad de

Farmacia, Universidad Complutense de Madrid”.

> RA: proportion of the total abundance compiled by the sequences assigned to mitochondria and chloroplasts.
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useful OTUs are not lost (McMurdie and Holmes, 2013).

To characterize OTUs that are present only in one season (‘unique’)
or appearing along the four seasonal periods (‘common’) we imposed a
restrictive criterion of ‘presence’ that takes into account experimental
variability. We analyzed three previous duplicate experiments using
two Hirst-spore traps simultaneously monitoring during a 7-day period
in a given location (Ntfez et al., 2017). First, we identified all the OTUs
present only in one of the duplicate traps. Then, we took the 95%
quartile of the abundance distribution of these OTUs as a threshold to
reliably assess the presence of an OTU in two duplicate and in-
dependent sampling devices. In other words, abundances above this
threshold value (which was around 0.032% in the three entities) can be
detected with 95% confidence during the sampling period, while OTUs
with smaller counts may pass undetected (since they may be observed
in only one of the duplicates). We consider a species as ‘unique’ of a
season if its relative abundance is higher than this threshold in both
locations during the sampling period of the season, and lower in the rest
of the seasons. Species ‘common’ to all seasons are those showing
abundances higher than the threshold in both locations during all
seasonal periods.

2.5. Richness and evenness estimates

Richness in Fig. 1 is calculated as the total number of different OTUs
observed in each sample after filtering by the detection limit and nor-
malizing as described above (2.4. Filtering and normalization). For both
richness and alpha-diversity (evenness) estimates, we subtracted the
detection limit from all the counts, so that counts below the detection
limit where considered as zero (absent), and one count above the de-
tection limit as singletons. To check for the possible underestimation of
richness when many rare (low abundance) taxa are present, we tested
another two non-parametric estimators of richness, Chaol and abun-
dance-based coverage estimator (ACE), that correct this effect (Hughes
et al.,, 2001), which retrieved slightly higher values of richness but
identical trends to those shown in Fig. 1.

We used Pielou's evenness index as a measure of the similarity in
species relative abundance in a community. Pielou's evenness, which is
calculated as the Shannon information scaled by the maximum in-
formation, is a proper measure of ‘relative evenness’ (Jost, 2010) and
ranges between 0 and 1, with larger values representing more even
distributions in abundance among species.

2.6. Correlation with environmental variables

We collected daily environmental variables (maximum, minimum
and average temperature, average wind speed, precipitation and re-
lative humidity) as well as pollution data (concentration of particulate
matter PM, 5 and PM;, NO,) from two meteorological stations close to
the sampling locations, recorded during the sampling week and two
previous weeks. Since linear dependencies between some of the vari-
ables were high (for instance between PM;, and PM, 5) we worked only
with the set of variables shown in Table 1. For these, we calculated one,
two and three week averages to test associations between environ-
mental variables and sample composition changes between locations
and seasons. These associations were found by constraining our PCoA
ordinations to the environmental variables taken as explanatory vari-
ables (distance-based Redundancy Analysis (Borcard et al., 2011), using
Bray-Curtis distance). The variance explained by the variables involved
was corrected as in Peres-Neto et al. (2006) (adjusted R?).

To find the relevant environmental variables associated to the three
different entities, we systematically performed model selection of one,
two and three week averages of our variables against the composition
data for each entity. Model selection was assessed by permutation tests
(1000 permutations) and maximizing the adjusted R for the ex-
planatory variables included (Borcard et al., 2011). We tested model
selection both against the whole set of environmental variables
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(Table 1) and against meteorological and pollution factors separately,
obtaining consistent results. Two and three week averages of environ-
mental variables gave qualitatively similar results, with slightly better
significance for the two-week averages (calculated by permutation
tests). One-week averages sometimes failed to identify relevant vari-
ables or identified only one of them. We thus chose the two-week
averages as the most consistent set of data to test associations. Our
analyses yielded two main environmental variables for each entity,
which accounted for around 50% of the variance and passed tests of
statistical significance in all the cases (Table S4). We checked that
adding another variable only increased very little the amount of var-
iance explained and did not pass significance tests. We therefore kept
the two-variable models as the most explanatory and reliable, and
performed constrained ordinations only against these variables.

2.7. Statistical analyses and software

All statistical analyses were performed in R software environment
(version V3.4.2, https://www.r-project.org/). We used the “phyloseq”
package version 1.20.0 (McMurdie and Holmes, 2013) for data pro-
cessing, multivariate unconstrained statistical analysis (PCoA), richness
and diversity estimates and bar plots. The “vegan” package, version
2.4-472, was used for the following analyses: permutational multi-
variate analysis of variance (PERMANOVA, “adonis” function) for
studying the influence of location and seasonality associated to PCoAs
using the Bray-Curtis distance matrices and 999 permutations; distance-
based redundancy analysis (db-RDA) to study the association between
environmental variables and microbial community composition
(“capscale” function), using Bray-Curtis distance; permutation tests to
validate constrained ordination models (“anova.cca” function); model
selection to explore the relevance and choose the most significant en-
vironmental variables (“ordistep” and “ordiR2step” functions), and the
function “forward.sel” in library “packfor” in R.

The environmental origin of the OTUs assigned to bacteria and fungi
was assigned using Seqenv pipeline (Sinclair et al., 2016), analyzing the
top 10 matches and choosing the most frequent annotation.

2.8. Fungal and pollen identification and quantification by microscopy

One half of the Melinex® tape from each sample was used for
morphological determination and quantification by microscopy fol-
lowing the procedures of the Spanish Aerobiological Network (Oteros
et al., 2013) and described previously (Ntiez et al., 2017). Total pollen
or fungal spore counts per week were expressed as the sum of daily
mean counts per cubic meter of air (Tables S1-S3 in the Supplementary
Material).

2.9. Sequence accession numbers

Raw Sequence Data obtained in this study are available in the
National Center for Biotechnology Information, Sequence Read Archive
under the Accesion No. SRP126725 (Bioproject PRINA422354).

3. Results and discussion
3.1. Richness and diversity estimates for two urban locations across seasons

Previous works have shown that microscopic airborne biodiversity
is affected by changes both from nearby sources and environmental
factors (Bowers et al., 2011b; Fierer et al., 2008; Jones and Harrison,
2004). To reduce short-term variability, we collect and analyze the
accumulated biomass in our particle traps running continuously during
seven-day periods (see Section 2.1. Locations, sampling methodology
and DNA extraction and quantitation). These samples are then re-
presentative of the biodiversity found in a particular site along a week.
Experiments with duplicate traps ((Ntfez et al., 2017), and section 2.4.
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Filtering and normalization) showed a concordance of ~90% in relative
abundance of common OTUs, confirming the reproducibility of the
method employed.

As a first characterization of the total diversity found in the two
different locations, we calculated the richness in each sampling site
along the four seasonal periods (Fig. 1a and b). Both, the urban and
peri-urban locations show very similar values and trends of richness
along seasons for the three communities. Bacteria show a marked rise in
the number of OTUs in Summer in agreement with former studies (Be
et al., 2015; Bertolini et al., 2013; Bowers et al., 2012, 2011a, 2011b)
and likely due to the increase in temperature (Genitsaris et al., 2017),
while some other studies reported higher bacterial diversity in different
seasons, suggesting a large influence of the meteorological character-
istics of the region (Du et al., 2018; Lee et al., 2017). Richness in fungi
peaks in Spring and Fall. Unexpectedly, richness in plants is the largest
in the Winter sample, which is explained by the fact that our ITS marker
is able to differentiate a wide intraspecific genetic diversity. This is the
case of the genus Cupressus spp. (order Pinales), with almost 500 OTUs
assigned to this genus in the Winter sample, spanning around 60% of
the total abundance in this season.

We next analyzed the differences in diversity between locations and
seasonal periods, using Pielou's evenness index (Section 2.5. Richness
and evenness estimates), Fig. 1c—d. Evenness and richness patterns are
similar in fungi and bacteria, with higher values in this last group. This
suggests that the new taxa appearing in different seasons (mainly in
Summer and Fall in bacteria, Spring and Fall in fungi, Fig. 1a-b) have
similar relative abundances to those present in all seasons. In contrast,
evenness for pollen changes in Summer and Fall compared to richness
values, and notably exhibits a high peak in Summer in the peri-urban
location (P; Fig. 1d). This peak is the consequence of a wider diversity
of plants flowering in this period, mostly belonging to the groups
Poaceae (60 OTUs summing up 35% abundance in P) and Fabaceae (45
OTUs summing up 25% abundance). This is in contrast with other
seasons in which there is a dominant pollen type in the atmosphere.

Overall, the similar trends in richness and diversity between both
sampling sites hint to a larger influence of the seasonal period, as re-
flected in former studies (Bertolini et al., 2013; Bowers et al., 2012;
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Franzetti et al., 2011; Innocente et al., 2017), rather than the specific
location, in determining community composition of airborne fungi and
bacteria. However, the diversity of pollen types in a particular period
may be strongly influenced by the presence of different local sources
(gardens or parks).

3.2. Seasonal factors shape species communities

To visualize the relative influence of sampling period versus sam-
pling site in the composition of airborne communities, we ordinated all
the samples along the two main components obtained by principal
coordinate analysis (PCoA), using Bray-Curtis distance (Fig. 2a—c). For
the three different organisms, our samples tend to cluster by sampling
period (Season), while sampling site (Location) seems to have a minor
effect. This qualitative result is also observed using other ecological
distances or ordination methods (Fig. S1). However, the community
structure across seasons shows different patterns for each biological
entity. For bacteria, we notice that composition during Spring is more
related to that observed in Winter. This result may be due to the fact
that both sampling periods are closer in time, with similar values of air
temperature and relative humidity, Table 1. On the other hand, the
structure of the fungal communities in Summer and Winter are more
similar between them compared to the rest of the year. This can be
explained by the fact that Summer and Winter fungal communities are
both characterized by a lower diversity (Fig. 1), with a high abundance
of Capnodiales (mainly Cladosporium spp., Table S3) which are typically
found during dry weather (Oliveira et al., 2009).

Since the biological diversity detected is considerable, we asked
whether a subset of the most abundant taxa is able to explain the
dominant gradients in the space of the two main components. If this is
the case, we can delimit the number of OTUs needed to define a bio-
logical community in a particular period. We found that the ~100 most
abundant OTUs of each biological group are enough to obtain a gra-
phical distribution similar to that employing all the diversity, Fig. 2d—f.
These taxa are gathered selecting the most abundant OTUs in each
sample, and although they constitute a small fraction of the total
number of OTUs detected (< 7% for bacteria, < 15% for fungi and <

J‘

Fig. 1. Comparative of richness and evenness
across seasons. (Figure in Color).

Richness (number of OTUs observed) and even-
ness (Pielou's evenness index) of bacteria (cir-
cles), fungi (triangles) and pollen (squares) in
the four seasonal sampling periods. Color lines
are plotted to guide the eye. a, ¢, Urban (U)
sampling site; b, d, Peri-urban (P) sampling lo-
cation. . (For interpretation of the references to
color in this figure legend, the reader is referred

to the Web version of this article.)
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29% for plants), their relative abundances represent a considerable
fraction of the sample (52-68% for bacteria, 83-95% for fungi and
97-99% for plants). These results suggest that, despite the large bio-
diversity, the most abundant representatives and their relative abun-
dances are sufficient to characterize the beta diversity across commu-
nities, a statement consistent with other works (Be et al., 2015; Weiss
et al., 2017). There are however marked differences between the three
groups analyzed. The taxa involved in the characterization of the fungal
and plant communities are less diverse, in terms of number of different
phylotypes (defined as any unique taxonomic rank), than bacterial
samples. Although a potential bias may exist due to the primers and
region selected, this result suggests that the communities of the former
are dominated by few very abundant groups (in agreement with the
microscopy analyses, Tables S2 and S3, and previous studies in the area
(Diez-Herrero et al., 2006; Gutiérrez et al., 2006)), while the latter are
characterized by many taxa with similar but smaller relative abun-
dances (and thus higher evenness, see Fig. 1). Moreover, the PCoA
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biplots in Fig. 2d—f show that many of the dominant taxa in bacteria and
fungi are present in all the seasons (gathered around the origin in the
two component plane), whereas in plants these are more specific of a
given season.

Taken together, these analyses suggest that long-term environ-
mental changes, rather than the local microenvironment, drive week-
long variability in airborne microbial communities. This is in agreement
with other studies showing a large influence of season (Bertolini et al.,
2013; Gandolfi et al., 2015; Genitsaris et al., 2017; Lee et al., 2017;
Maron et al., 2006; Woo et al., 2013). Although urbanized areas are
more homogeneous in microbial composition than rural areas
(Barberan et al., 2015), local sources and fine scale characteristics of
the sampling site, such as plant cover, play an important role in ex-
plaining short-term variability in nearby urban locations (Fan et al.,
2019; Mhuireach et al., 2016, 2019). Therefore, we cannot rule out the
influence of these local factors in our samples, which may be obscured
by the effects of week-long and seasonal sampling.
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Fig. 2. Differences in community structure are mainly determined by season. (Figure in Color)
Top panels: Principal Coordinate Analysis (PCoA) of bacteria, fungi and plants using Bray-Curtis distance, a-c. All OTUs filtered and normalized as explained in
section 2.4. Filtering and normalization are included in the ordination. The eight samples used are shaped according to sampling site and coloured by seasonal period,
PERMANOVA tests to differentiate grouping by Season/Location yielded the following explained variances and p-values, calculated with permutation tests (1000
permutations): Bacteria (a): R> = 0.12, n.s for Location; R? = 0.64, ** for Season. Fungi (b): R?> = 0.06, n.s. for Location; R?> = 0.85, ** for Season. Plants (c):

R? = 0.05, n.s. for Location; R? = 0.86, ** for Season. (*

**p < 0.001, *

*0.001 < p < 0.01,*0.01 < p < 0.05, n.s. Not significant). d-e: PCoA biplots showing

simultaneously ordination of samples and taxa on the two main coordinates with the most abundant OTUs in each sample (top 50 OTUs per sample for bacteria, and
top 30 for fungi and plants). . (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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3.3. Temporal variation of the most abundant taxa

We next analyzed the main taxonomic groups present in the urban
air of Madrid. Since sampling site plays a smaller role in community
composition in our samples, we combined the measurements in both
locations to describe the overall diversity captured in the four sampling
periods across the year. Thus, we ignore the smaller variability due to
location particularities to focus on long-term changes (seasonal). For
each organism, we selected the orders spanning at least the 90% of the
relative abundance in each season. In Fig. 3 we show the dominant
orders in each group and their distributed abundances in the different
sampling periods (see also Fig. S2 for abundances across samples). For
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bacteria and fungi, the main orders are present during the whole year,
with variations in relative abundance, while for pollen some abundant
orders are specific of each period. We also investigated the potential
sources of airborne bacteria and fungi using Seqenv (Sinclair et al.,
2016, section 2.7. Statistical analyses and software). Statistical analyses
and software). Our analysis showed that, for bacteria, around 70% of
the relative abundance for each seasonal period is due to soil-related
sources, 3-8% to plants, 1-2% to water, and 1-4% to animal. Fungal
communities are originated mainly from soil sources (> 70%), as most
of them are saprophytes.

The prokaryotic community is dominated by members of
Actinobacteria and Proteobacteria commonly found in soil (Delgado-
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Baquerizo et al., 2018; Janssen, 2006), also registered by others authors
in the air of different metropolitan areas (Bowers et al., 2011a; Fierer
et al., 2008). In fact, many of these taxa are characteristically found in
the soils of urban parks (Xu et al., 2014). Micrococcales (Actinobacteria)
is the most abundant order and shows a high and consistent presence
between seasons. Alphaproteobacteria are also abundant throughout the
year (> 14%) with members of the orders Sphingomonadales, Rhodo-
bacterales, Rhizobiales and Acetobacterales (Fig. 3a), usually found in
leaves surfaces and soils (Bowers et al., 2011a; Kembel et al., 2014).
The presence of orders including taxa which may potentially come from
animal faeces, Bacillales and Clostridiales (Bowers et al., 2011b), turns
especially abundant in Summer (> 21%).

Fungal communities are dominated by the presence of the phylum
Ascomycota along the four sampling periods, consistent with similar
studies (Bowers et al., 2012; Fierer et al., 2008; Oh et al., 2014). This
phylum is mainly composed by Capnodiales, which exceed the 60% of
the total abundance in Winter and Summer samples (Fig. 3b). Pleos-
porales have also a significant presence throughout the year, with a
peak in Fall sample of around 25% of abundance. These groups have
very frequent conidia (asexual spores) and live mainly on soil as sa-
prophytes and vegetal parasites.

The pollen community shows a pattern of high seasonality (Fig. 3c),
also supported by the morphological identification (Tables S1-S2) and
phenological studies that have stated the pollen calendar of the city
(Gutiérrez et al., 2006). For instance, the Winter sample is dominated
by Pinales (67% of relative abundance), while Fagales govern the
community composition in Spring.

To assess whether variations in relative abundance across seasons in
bacteria and fungi are due to changes in abundance of few taxa, or to
the appearance of new species under particular environmental condi-
tions, we increased the taxonomic resolution to the Genus level, and
gathered the most abundant genera in each time period, Fig. 4. We
observe that a core of prevalent genera dominates bacterial community
composition, with changes in abundance along the year (Fig. 4a).
Among the group of Proteobacteria, it is remarkable the shift of Pseu-
domonas spp., with high abundance during the sampling periods with
low temperatures (Winter and Spring samples). This fact could favour
the growth of some species of this genus, since they have been pre-
viously described as promoters of ice nucleation in the atmosphere
(Attard et al., 2012). It is also noticeable the increase in abundance in
Spring and Summer samples (> 3% abundance in Summer) of Pantoea
agglomerans, a well-known phytopathogen (formerly named En-
terobacter agglomerans = Erwinia herbicola) (Brady et al., 2008), likely
because of the proliferation of plant cover.

Fungal communities (Fig. 4b) follow a similar pattern of dominance
by few abundant taxa present along the year, especially Davidiella/
Cladosporium spp., making most of the Capnodiales abundance in
Fig. 3b, while the genera Alternaria and Epicoccum dominate the
abundance of Pleosporales. We observe, however, more clusters of taxa
that are specific of a given season, mainly belonging to Basidiomycota
(Fig. 4b).

The pattern for pollen (Fig. 4c) shows that the seasonality noticed in
Fig. 3c is originated by specific highly abundant genera: Cupressus in
Winter (order Pinales) and Quercus in Spring (order Fagales), both an-
emophylous (distributed by wind), while the most abundant Genus in
Summer, Styphnolobium (order Fabales), is entomophylous (spread by
insects).

To further investigate seasonal specificity, we quantified the
number and relative abundance of OTUs that were observed in only one
season (unique) and of those observed along the four seasonal sampling
periods (common). To characterize OTUs as unique or common, we
used a restrictive criterion of presence/absence for taxa taking into
account the experimental variability of our sampling method, as ex-
plained in section 2.4. Filtering and normalization. We found that most
of bacterial and fungal taxa are common to the four seasonal periods
and span more than 50% of the relative abundance of each season, Figs.
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S3a-b. On the other hand, those unique of a given season are scarcer,
especially in bacteria, and represent less than 10% in relative abun-
dance. Summer and Spring are the samples with a larger outbreak of
unique taxa in bacteria and fungi, respectively, consistent with the
pattern of richness shown in Fig. 1. For plants we found that unique
taxa appear frequently, and in Spring and Summer samples their
number and abundance exceeds those of the species present throughout
the whole year, Fig. S3c.

The most abundant genera corresponding to the unique taxa for
each type of biological entity are shown in Fig. S4. The increase in
number and abundance of unique bacterial genera in the Summer
samples is due to the appearance of the soil-related genera Kurthia,
Bhargavaea and Lechevalieria. Gut bacteria (Nosocomiicoccus, Anaero-
coccus, Agathobacter, and members of the families Ruminococcaceae and
Christensenellaceae) are also detected only in Summer, contributing to
the general trend observed for Bacillales and Clostridiales, and probably
associated to the changes in the city dynamics (more people walking
their pets, increase of trash in the streets, etc.). The appearance of
Cellvibrio spp., a bacterium with a reported capability to degrade plant
material (Attia et al., 2018), coincides with the decay of vegetation
during the Fall period.

With respect to fungi, it is significant the presence and abundance of
the genera Schizophyllum (wood-rotting fungi) and Ustilago (parasite of
grasses) in the Spring samples, when the plant cover increases in
Madrid.

In the case of plants, the appearance of unique taxa follows the
flowering dates of the main pollen type in the city (Gutiérrez et al.,
2006), although high-throughput sequencing provides a better resolu-
tion for cryptic groups such as Poaceae. Moreover, since pollen may act
as a carrier for bacterial microbiome (Ambika Manirajan et al., 2016;
Oteros et al., 2019), it is quite interesting that the increase of unique
species of plants during the Summer period is concomitant with the
same phenomenon in bacteria.

3.4. Potential pathogenic bacteria and fungi are present in urban air at all
seasons

In addition to allergenic pollen and harmless microorganisms, the
air may transport human pathogens, especially those causing re-
spiratory diseases (Abd Aziz et al., 2018; Be et al., 2015; Cao et al.,
2014; Fan et al., 2019; Kowalski and Bahnfleth, 1998). Although with
much lower abundance than soil and leaf surface bacteria, a total of 39
bacterial genera (596 OTUs) with pathogenic representatives were
found in our samples and compiled in Table 3.

Our results show that most of these genera were present in all the
seasons. Roseomonas and Corynebacterium, alongside with the well-
known pathogenic genera Staphylococcus and Streptococcus were con-
sistently found among the most abundant, in agreement with other
studies (Zhang et al., 2019). The cumulative abundance of the patho-
gens peaked in the Summer samples (14.47%), and the greatest di-
versity was found during the Fall period (38 genera). This is consistent
with the general trends in richness of our bacterial samples, showing
the largest diversity in Summer/Fall (Fig. 1a-b). Recently, Fan et al.
(2019) showed a strong association between the proportion of patho-
genic bacteria and particulate matter (PM). We notice that the con-
centration of PM;, particles is significantly higher during our Summer
and Fall sampling periods (Table 1). Enterococcus, Bacteroides, Pre-
votella, Fusobacterium and several members of the family En-
terobacteriaceae (Enterobacter, Escherichia-Shigella, Klebsiella), all of a
likely animal/faeces origin, increased their relative abundance in the
Summer samples, in accordance with the observed increase of this
potential source during this period (Section 3.3).

Detected fungal pathogens, mainly from soil origin, spanned 27
genera (428 OTUs), with similar maximum cumulative abundances in
Summer and Winter samples (~77%), but a greater diversity in the
latter. The allergenic fungi Cladosporium/Davidiella spp. and Alternaria
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Fig. 4. Seasonal variations of the most abundant genera. (Figure in Color)
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Genus

Davidiella
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Alternaria
Aureobasidium
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Epicoccum
Botryotinia
Penicillium
Cladophialophora
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Thermomyces
Neoerysiphe
Chaetomium
Capnobotryella
Aspergillus
Dothiorella
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Ustilago
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Heatmaps of the most abundant genera in each sampling period for the three different organisms: Bacteria (left), Fungi (middle), Plants (right). The collected taxa are
the top 40 per season in bacteria, top 30 in fungi and top 20 in pollen. These top genera span the 50%-70% abundance in bacteria (out of 1145 total genera), 60-84%
in fungi (576 total genera) and 80-99.6% in pollen (165 total plant genera). Color scale indicates relative abundance (%) of the corresponding genera (rows). Taxa
are ordered by decreasing abundance in Winter within each Phylum type. Phyla are shown with different colors as a left bar in each heatmap (see legends). (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

spp., which may also cause human diseases, contributed greatly to these
harmful taxa. The genera Aureobasidium, Epicoccum and Cryptococcus
were also abundant and present at all seasons.

3.5. Environmental factors correlated with airborne biodiversity

In order to assess the relative influence of different environmental
variables on seasonal changes in community composition, we per-
formed a constrained analysis of principal coordinates (CAP, see section
2.6. Correlation with environmental variables) with environmental
factors (air temperature, relative humidity, rainfall and wind speed)
and atmospheric pollution data (PM;(, NO,), Table 1. Permutation tests
obtained significant values (p < 0.05) for all constrained ordinations,

Fig. 5, showing a clustering of samples very similar to those obtained in
the previous PCoAs (Fig. 2). Other statistical tests and variance in the
species data explained by the different environmental factors are shown
in Table S4.

For bacteria, we see that average temperature plays an important
role in the dispersion of samples along the main axis, Fig. 5a, with PM;o
concentration also contributing to this dispersion. These two variables
show strong associations with the variations in species composition
found in Summer and Fall, and partially explain the separation of these
samples from those of Winter/Spring. The influence of temperature on
airborne bacterial communities has been previously reported by other
authors (Bowers et al., 2012; Fang et al., 2008; Genitsaris et al., 2017;
Lee et al., 2017). In our case, high temperatures (Summer) coincide
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Table 3
Potential pathogenic genera found in air samples and their relative abundance distribution (%).

Organism Genus” Winter Spring Summer Fall Source

Bacteria
Acinetobacter (45) 0.37 0.46 1.12 0.90 Soil/Water
Actinomyces (8) 0.00 0.00 0.03 0.01 Soil
Aerococcus (4) 0.07 0.07 0.27 0.15 Soil
Aeromonas (3) 0.02 0.02 0.01 0.05 Water
Arcobacter (4) 0.05 0.05 0.02 0.07 Water
Bacillus (55) 0.28 0.63 2.00 0.36 Soil
Bacteroides (52) 0.11 0.07 0.30 0.27 Animal
Campylobacter (6) 0.01 0.01 0.03 0.02 Animal
Clostridium_sensu_stricto (39) 0.65 1.23 1.14 1.00 Soil
Corynebacterium (72) 0.64 1.08 4.18 1.32 Animal/Soil/Water
Enterobacter (6) 0.02 0.04 0.02 0.06 Animal/Soil/Water
Enterococcus (7) 0.04 0.01 0.21 0.09 Animal/Soil/Water
Erysipelothrix (9) 0.01 0.00 0.02 0.05 Animal
Escherichia-Shigella (3) 0.01 0.02 0.14 0.06 Animal/Soil/Water
Fusobacterium (5) 0.09 0.03 0.13 0.15 Animal
Geodermatophilus (11) 0.41 0.71 0.55 0.41 Soil
Gordonia (8) 0.02 0.02 0.01 0.09 Soil
Haemophilus (3) 0.02 0.01 0.04 0.02 Animal
Helicobacter (3) 0.00 0.00 0.04 0.00 Animal
Klebsiella (1) 0.03 0.01 0.14 0.07 Animal/Soil/Water
Lactococcus (3) 0.01 0.00 0.00 0.08 Soil/Water
Legionella (7) 0.00 0.00 0.04 0.02 Soil/Water
Micrococcus (1) 0.02 0.02 0.06 0.04 Soil
Micromonospora (5) 0.11 0.06 0.14 0.09 Soil
Mycobacterium (17) 0.16 0.21 0.33 0.36 Animal/Soil/Water
Mycoplasma (1) 0.00 0.00 0.00 0.02 Animal/Water
Neisseria (5) 0.00 0.00 0.00 0.02 Animal/Soil
Nocardia (5) 0.00 0.03 0.04 0.01 Soil
Porphyromonas (4) 0.00 0.00 0.04 0.00 Animal
Prevotella (25) 0.09 0.06 0.24 0.16 Animal
Pseudomonas (81) 3.99 6.43 1.15 1.14 Phyllosphere/Soil/Water
Roseomonas (27) 1.47 1.61 0.26 0.73 Soil
Serratia (6) 0.02 0.04 0.02 0.08 Soil
Staphylococcus (21) 0.40 0.19 0.77 0.93 Animal
Stenotrophomonas (7) 0.02 0.05 0.10 0.15 Soil
Streptococcus (25) 0.62 0.41 0.81 1.03 Animal
Thermoactinomyces (4) 0.02 0.02 0.06 0.14 Soil
Thermomonospora (5) 0.01 0.01 0.01 0.04 Soil
Vibrio (3) 0.00 0.00 0.00 0.01 Water
Total (596) 9.79 13.60 14.47 10.20

Fungi
Acremonium (12) 0.03 0.02 0.00 0.14 Soil
Alternaria (57) 3.07 5.67 7.59 7.70 Soil
Aspergillus (35) 0.17 0.13 0.32 1.28 Soil
Aureobasidium (18) 2.33 4.07 1.10 4.81 Soil/Water
Botrytis/Botryotinia (8) 0.74 1.01 0.61 1.18 Soil
Candida (10) 0.01 0.00 0.03 0.06 Animal/Soil/Water
Chaetomium (18) 0.18 0.07 0.11 0.16 Soil/Water
Cladosporium/David. (39) 67.42 39.44 64.85 26.94 Soil
Cryptococcus (44) 1.02 1.10 0.77 2.55 Animal/Soil
Emericella (3) 0.02 0.01 0.05 0.30 Soil
Epicoccum (24) 0.82 0.63 1.23 2.81 Soil
Eurotium (2) 0.13 0.09 0.08 0.40 Water
Exophiala (13) 0.07 0.05 0.02 0.16 Soil
Fusarium (16) 0.16 0.05 0.16 0.32 Soil
Geomyces (4) 0.05 0.00 0.00 0.03 Soil
Helminthosporium (1) 0.00 0.00 0.00 0.02 Soil
Mucor (6) 0.05 0.04 0.10 0.03 Soil
Oidiodendron (6) 0.02 0.00 0.02 0.02 Soil
Paecilomyces (5) 0.03 0.01 0.00 0.02 Soil/Water
Penicillium (61) 0.42 0.46 0.46 2.06 Soil
Phoma (18) 0.11 0.13 0.04 0.28 Soil
Rhizopus (4) 0.18 0.04 0.30 0.13 Soil
Scopulariopsis (5) 0.16 0.03 0.09 0.21 Soil
Stachybotrys (2) 0.03 0.01 0.00 0.00 Soil
Talaromyces (11) 0.05 0.03 0.00 0.09 Soil
Trichoderma (4) 0.01 0.01 0.02 0.03 Soil
Ulocladium (2) 0.00 0.01 0.00 0.00 Soil
Total (428) 77.28 53.1 77.95 51.73

@ List compiled from Abd Aziz et al. (2018), Fan et al. (2019), and Kowalski and Bahnfleth (1998). The no. of OTUs assigned to the genera are indicated between

parentheses.
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with high bacterial richness, Fig. 1, suggesting that the values reached
favour the multiplication of these organisms. PM;, particles are also
positively correlated with richness and diversity of bacterial samples,
with the highest concentration of PM; particles in Summer and lowest
in Winter/Spring (see also Fig. 1). The relationship between particulate
matter and microbial communities have been previously studied by
different methods, from culture-dependent (Lee et al., 1973) to NGS
(Bowers et al., 2012; Du et al., 2018; Franzetti et al., 2011; Gandolfi
et al., 2015; Lee et al., 2017), finding also significant correlations. In
fact, because of their size, these microorganisms could be attached to
larger inorganic particles and be transported jointly (Ambika Manirajan
et al., 2016; Oteros et al., 2019).

Precipitation and relative humidity are correlated with fungal
communities Fig. 5b, Precipitation is usually a key factor related to
fungal growth and dispersion. The major component in this community
(Cladosporium/Davidiella, Fig. 4 and Table S3) has been reported to be
negatively correlated with rainfall (Katial et al., 1997; Oliveira et al.,
2009). This is in agreement with the decrease in relative abundance of
this fungal spore observed in Spring and Fall, when the precipitation
and relative humidity are higher.

In the case of pollen and other plant material, Fig. 5c, rain and PM;,
concentration are the factors associated to most of the observed var-
iation. In particular, the amount of precipitation clearly separates the
Spring samples from those of the other seasons in ordination space. We
notice that the statistical associations obtained with CAP do not imply
causality, and in this case they seem to merely reflect the fact that
rainfall is especially high in Spring, a season where the flowering of
plants favors the appearance of many pollen species not present during
the rest of the year. Moreover, the strong association between compo-
sition of the pollen samples and PM; particles has no a priori ecological
explanation since the average size of pollen grains is over that range.
Therefore, these associations must be taken with caution, as also dis-
cussed in Sousa et al. (2008). For instance, it has been reported that
wind speed and direction in a particular area is a main factor influen-
cing pollen concentration (Recio et al., 2010; Rojo et al., 2015). In the
present study, the influence of this factor may be masked by the
stronger variation of other environmental factors.

4. Conclusions
The results of the present study suggest that long-term variability of

airborne diversity in urban areas is largely influenced by environmental
changes, in agreement with other works (Bertolini et al., 2013; Bowers
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et al., 2013, 2012; Franzetti et al., 2011; Innocente et al., 2017), and to a
less extent by the features of the local microenvironment. However, each
community (bacteria, fungi or pollen) shows characteristic patterns of
temporal variation in composition and abundance. Thus, microbial
communities (bacteria and fungi) have a steady core of taxa present in
high abundance along the year. On the contrary, the main contributors to
the airborne plant community change remarkably and show a clear sea-
sonal pattern, dominated by the anemophilous species present in the
metropolitan area and used as ornamental (genera Cupressus, Ulmus, Po-
pulus) and the plants of the natural areas in the surroundings (especially
Quercus in Spring). DNA sequencing approaches not only yielded a better
taxonomic identification than microscopy, but also allowed us to detect
other representatives of the kingdom Viridiplantae as Chlorophyta and
Bryophyta (usually overlooked in aerobiological studies), which may
support and launch further studies in the field.

The core of the airborne bacteria is quite diverse but constituted by
representatives typically associated to soil and plant surface, mainly
Actinobacteria  (Kocuria, Nocardioides, Arthrobacter, Blastococcus,
Modestobacter), and Proteobacteria (Sphingomonas, Pseudomonas,
Paracoccus). The fungal community is mainly composed of Capnodiales
(mostly  Cladosporium/Davidiella), Pleosporales (Alternaria) and
Dothideales (Aureobasidium). Potentially harmful taxa were detected at
all seasons, coming from soil, water and animal fecal matter, suggesting
a steady presence of these microorganisms from environmental sources,
which is relevant to the knowledge of the human exposome.
Nonetheless, further studies with a higher resolution are necessary to
discern the pathogenic species from those that are not, and also to
address whether they are active. Finally, we observed that each biolo-
gical kingdom (bacteria, fungi or plant) is correlated with different
environmental factors: high temperatures promote an increase in bac-
terial diversity, while precipitation and relative humidity seem to have
a strong influence on fungal and plant communities.

The present study constitutes a first step towards a more complete
survey of the biological diversity of a highly populated city of a
Mediterranean country. Further investigation would increase the
number of sampling locations and involve longer time periods with
higher temporal resolution, which would allow tracing a map of the
main urban airborne species and the influence of different sources of
microorganisms. This knowledge will be useful both from an ecological
perspective, for instance by identifying ecological markers of long term
climatic changes or chemical contamination of the air, as well as for
designing preventive strategies in public health to minimize the ex-
posure to airborne pathogens.
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