
 

Nonlinear σ-models in the Eddington-inspired Born-Infeld gravity

J. R. Nascimento,1,* Gonzalo J. Olmo ,2,† P. J. Porfírio ,3,1,‡ A. Yu. Petrov,1,§ and A. R. Soares 1,∥
1Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008,

58051-970 João Pessoa, Paraíba, Brazil
2Departament de Física Teòrica and IFIC, Centro Mixto Universitat de València—CSIC,
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In this paper we consider two different nonlinear σ-models minimally coupled to Eddington-inspired
Born-Infeld gravity. We show that the resultant geometries represent minimal modifications with respect to
those found in GR, though with important physical consequences. In particular, wormhole structures
always arise, though this does not guarantee by itself the geodesic completeness of those space-times. In
one of the models, quadratic in the canonical kinetic term, we identify a subset of solutions which are
regular everywhere and are geodesically complete. We discuss characteristic features of these solutions and
their dependence on the relationship between mass and global charge.
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I. INTRODUCTION

It is well established that topological defects could arise
in the primordial universe due to phase transitions occur-
ring during rapid expansion and cooling periods [1,2].
The most studied types of defects are domain walls, cosmic
strings and global monopoles (GM) characterized by
spontaneous breaking of the symmetries Z2, SOð2Þ, and
SOð3Þ [1]. The last ones are of special interest because they
do not require the introduction of gauge fields, hence
allowing their exploration via gravitational interactions. In
this context, Barriola and Vilenkin obtained the first solu-
tion describing the space-time geometry outside a GM
core [2]. Assuming very light GMs, one finds that their
Newtonian potential tends to zero at astrophysical scales,
yielding negligible gravitational attraction. Nonetheless,
the space-time still presents a solid deficit angle able to
produce a certain deflection of light rays. In [2], the authors
also called attention to the case where the Schwarzschild
radius of the defect is much larger than the radius δ of the
core (M ≫ δ), which can be interpreted as a black hole with

GM charge [3]. As a consequence of the presence of this
charge, both the event horizon and light deflection—in the
weak and strong field regime—increase in comparison with
the Schwarzschild case [4]. However, just like the majority
of other classic black hole solutions of general relativity
(GR), the solution is singular at the origin.
Despite the success of GR in weak and also strong field

astrophysical scenarios, the theory suffers from a severe
conceptual limitation due to the possibility of engendering
singularities, i.e., regions with incomplete geodesics. For
example, in the case of the Schwarzschild solution, any
geodesic (or arbitrary null or timelike trajectory) that
crosses the event horizon is inevitably headed toward
r ¼ 0, and ends there, with no possible extension beyond.
In practical terms, this means that information and observ-
ers simply vanish when r ¼ 0 is reached, leading to an
absurd situation in which nothing is observable by any-
body. When a theory yields absurd answers to physical
questions (such as infinite values for physical magnitudes
or the impossibility of performing measurements) it is
evident that the questions being posed lie beyond that
theory’s capabilities, and an improved description is
necessary. From this viewpoint, we should revisit the
results predicted by GR in such scenarios from the per-
spective of an alternative theory of gravity. Alternatives
to GR have also become very popular recently for very
different reasons related to cosmological observations [5].
In this work we are interested in the so-called Eddington-

inspired Born-Infeld modification of gravity (EiBI gravity
for short) [6,7]. The structure of the gravitational
Lagrangian in this theory is inspired by the nonlinear
electrodynamics of Born and Infeld [8,9], and is formulated
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in a metric-affine approach to avoid the higher-derivative
equations that typically appear in the standard metric
formulation. The EiBI theory provides, already at the
classical level, interesting solutions like regular black holes,
wormholes, nonsingular cosmologies, and many other
results without requiring exotic matter sources (for a review
on EiBI and its applications see [10]). In the absence of
matter, EiBI is equivalent to GR plus possibly an effective
cosmological constant. However it differs from GR in the
presence of matter. In this sense, in the innermost regions of
compact objects, where the energy density reaches its
highest values, new effects arise that can avoid geodesic
incompleteness in some cases [11–14]. Here we will
explore how EiBI combined with global monopoles modify
the internal structure of black holes.
Different studies of the space-time generated by GMs

have already been carried out in the context of alternative
theories of gravity. In [15], Barros and Romero investigated
GMs in the weak field approximation of Brans-Dicke
theories. Later, Carames et al. [16] considered GMs in the
context of fðRÞ gravity, which motivated many other
studies [17–21]. However, at least at the classical level,
these works failed to get rid of the singularity. In our
previous paper [22], the GM in a metric-affine fðRÞ theory
was studied and it was shown that the model supports both
singular and regular (geodesically complete) solutions. In
[23], Lambaga and Ramadhan investigated black holes
with GM topological charge in EiBI, also in the metric-
affine formalism. They explored only the external region of
the solution, favoring a positive value for the theory’s
parameter ϵ which, in this case, leads to a singular solution.
In this paper we will consider also the ϵ < 0 case having as
matter source different types of nonlinear σ-models. In this
context, the GM spacetime will be an exact solution of the
field equations [24]. We will see that for negative values of
the EiBI parameter we can have geodesically complete
solutions with distinct characteristics depending on the
GM charge-to-mass ratio. Thus, we show that unlike in
GR, the presence of GM charge in the EiBI gravity dra-
matically changes the solution profile in the innermost
regions, opening up new possibilities to improve the
classical behavior of GR.
The paper is organized as follows: In Sec. II, we review

the field equations motivated by the more general approach
systematized in [25]. This discussion is appropriate because
of the energy-momentum tensor structure we are going to
use. In Sec. III, we obtain the form of the metric corres-
pondent to a specific kind of anisotropic fluid. In Sec. IV,
we introduce the global monopole as a matter source of
NLSMwhose energy-momentum tensor fits in the structure
considered in Sec. III. There, we consider particular
models, namely, canonical and power law fields, and then
we examine the corresponding solutions. Finally, we
present our conclusions in Sec. V. In the Appendix, we
give a general description of the topologically charged Ellis
wormhole.

II. BORN-INFIELD GRAVITY

The action of the EiBI theory can be written as

SEiBI ¼
1

8πGϵ

Z
d4x
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−jgμν þ ϵRðμνÞðΓÞj
q

− λ
ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q i
þ Sm½gμν;Φ�: ð1Þ

Here G is Newton’s gravitational constant, ϵ is a parameter
with dimension of area that controls the nonlinearity of the
theory, vertical bars denote matrix determinant, the Ricci
tensor RðμνÞðΓÞ is symmetrized to avoid ghostlike degrees
of freedom [26] and is constructed assuming that the
connection Γ is a priori independent of the metric gμν.
The term Sm½gμν;Φ� represents the action of the matter
fields Φ. In general, the constant λ defines an effective
cosmological constant λ ¼ 1þ ϵΛ but here it will be set to
λ ¼ 1 for simplicity. In terms of the definitions

hμν ¼ gμν þ ϵRμν; ð2Þ

and κ2 ¼ 8πG, the action (1) reads as

SBI ¼
1

ϵκ2

Z
½
ffiffiffiffiffiffi
−h

p
−

ffiffiffiffiffiffi
−g

p �d4xþ Sm½gμν;Φ�; ð3Þ

where h and g are, respectively, the determinants of the
symmetric tensors hμν and gμν. The variation of the action
with respect to the metric gμν and the connection Γα

μν leads
to field equations

ffiffiffiffiffiffi
−h

p
hμν ¼ ffiffiffiffiffiffi

−g
p ðgμν − ϵκ2TμνÞ; ð4Þ

∇μð
ffiffiffiffiffiffi
−h

p
hαβÞ ¼ 0; ð5Þ

where the energy-momentum tensor is given by Tμν ¼
2ffiffiffiffi−gp δSm

δgμν
, and hαβ formally denotes the inverse of hμν. The

form of (5) assumes vanishing torsion, though for mini-
mally coupled bosonic matter fields this fact is irrelevant
(see [27] for details). From (5), we conclude that the
connection is simply the Levi-Civita connection of the
auxiliary metric hμν, namely, Γα

μν ¼ 1
2
hαλð∂μhλν þ ∂νhλμ −

∂λhμνÞ. The explicit form of hμν can be obtained through
the relation ϵRμνðhÞ ¼ hμν − gμν that follows from Eq. (2)
once gμν is written in terms of hμν and the stress-energy
tensor of the matter fields. For this purpose, we propose that
the auxiliary metric hμν and the physical metric gμν be
related by means of a deformation matrix Ωα

ν according to

hμν ¼ gμαΩα
ν; hμν ¼ ðΩ−1Þμαgαν; ð6Þ

and use these relations in Eq. (4) to obtain

ffiffiffiffiffiffiffi
jΩj

p
ðΩ−1Þμν ¼ δμν − ϵκ2Tμ

ν; ð7Þ
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which shows that the deformation that relates the metrics is
determined by the local stress-energy densities.
Now let us return to Eq. (2). Contracting the equation

ϵRανðhÞ ¼ hαν − gαν with hαμ, we find that ϵRμ
νðhÞ ¼

δμν − ðΩ−1Þμν and then, from Eq. (7), we arrive at

Rμ
νðhÞ ¼

κ2ffiffiffiffiffiffiffijΩjp �ð ffiffiffiffiffiffiffijΩjp
− 1Þ

ϵκ2
δμν þ Tμ

ν

�
: ð8Þ

From this set of partial differential equations one can
obtain hμν and, then, through (6) we can find the physical
metric gμν. From Eq. (7) one can conclude that the
vacuum solutions in this model are the same as in the
GR. Therefore, the presence of matter fields will be
necessary to achieve novelties in the gravitational dynam-
ics, especially in the innermost regions of black holes.

III. STATIC SPHERICALLY SYMMETRIC
SOLUTIONS FOR ANISOTROPIC FLUIDS

Given that the stress-energy tensor determines the
deformation matrix Ωα

ν, it is natural to assume that this
matrix has the same algebraic structure as Tα

ν. For this
reason, if one considers a generic matter source with the
structure of an anisotropic fluid of the form

Tμ
ν ¼ diagð−ρ;−ρ; Pθ; PθÞ: ð9Þ

It follows that

Ωμ
ν ¼ diag½ΩþðrÞ;ΩþðrÞ;Ω−ðrÞ;Ω−ðrÞ�; ð10Þ

where Ω� are functions determined by Eq. (7) which have
the explicit form

Ω− ¼ 1þ ϵκ2ρ; Ωþ ¼ 1 − ϵκ2Pθ: ð11Þ

As we can clearly see, if there is no matter or ϵ → 0, the
deformation matrix becomes the identity and, therefore, hμν
and gμν become identical. In regions with nonvanishing
energy density, however, they will be different. For static
and spherically symmetric solutions, we can adopt the
following ansatz for the line element characterized by hμν:

ds̃2 ≡ hμνdxμdxν ¼ −AðxÞe2ΦðxÞdt2 þ dx2

AðxÞ
þ r̃2ðxÞðdθ2 þ sin2θdϕ2Þ: ð12Þ

Calculating Rμ
νðhÞ, we arrive at

Rt
tðhÞ − Rx

xðhÞ ¼
2

r̃

�
d2r̃
dx2

−
dΦ
dx

dr̃
dx

�
; ð13Þ

Rθ
θðhÞ ¼

1

r̃2

�
1 − r̃

dr̃
dx

�
A
dΦ
dx

þ dA
dx

�

− A

�
r̃
d2r̃
dx2

þ
�
dr̃
dx

�
2
��

: ð14Þ

SinceTt
t¼Tx

x, it follows fromEq. (13) that ðd2 r̃dx2−
dΦ
dx

dr̃
dxÞ¼0.

Without loss of generality, this result allows us to take
ΦðxÞ ¼ 0 and r̃ ¼ x. So we can write the line element
for hμν as

ds̃2 ¼ −AðxÞdt2 þ dx2

AðxÞ þ x2ðdθ2 þ sin2θdϕ2Þ: ð15Þ

From Eqs. (6) and (10), one can then write the line element
for gμν as

ds2 ¼ −
AðxÞ
Ωþ

dt2 þ 1

ΩþAðxÞ
dx2 þ r2ðxÞðdθ2 þ sin2θdϕÞ;

ð16Þ

where r2ðxÞ ¼ x2
Ω−
. Therefore, Eq. (11) implies

x2 ¼ r2 þ ϵκ2r2ρ: ð17Þ

With the simplificationsmade above, the componentRθ
θðhÞ

now becomes

Rθ
θðhÞ ¼

1

x2

�
1 − A − x

dA
dx

�
: ð18Þ

Let us now choose the ansatz

AðxÞ ¼ 1 −
2MðxÞ

x
; ð19Þ

from which we are left with

Rθ
θðhÞ ¼

2

x2
dM
dx

: ð20Þ

Now we can express the left-hand side (l.h.s.) of the above
equation through Eq. (8), and we find

2

x2
dM
dx

¼ κ2ffiffiffiffiffiffiffijΩjp � ffiffiffiffiffiffiffijΩjp
− 1

ϵκ2
þ Pθ

�
; ð21Þ

which eventually leads to

dMðxÞ
dx

¼ κ2r2ρ
2

: ð22Þ

So, we have
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AðxÞ ¼ 1 −
2M0

x
−
κ2

x

Z
r2ρdx; ð23Þ

whereM0 is an integration constant.Now, usingEq. (17), the
general solution can be expressed in terms of either x or r,
a choice that should be made upon convenience. In the
next section, we will present a class of nonlinear σ-models
whose corresponding stress-energy tensor fits into the
algebraic structure Tμ

ν ¼ diagð−ρ;−ρ; Pθ; PθÞ. Hence,
from Eqs. (17) and (23) we can get the space-time metric
corresponding to the particular matter source considered.

IV. NONLINEAR σ-MODEL

The action of a generic K-monopole [28] is given by

S ¼
Z �

KðXÞ − λ

4
ðΦ⃗ · Φ⃗ − η2Þ2

� ffiffiffiffiffiffi
−g

p
d4x; ð24Þ

where KðXÞ is a functional of the canonical term X ¼
1
2
∂μΦ⃗ · ∂μΦ⃗, and Φ⃗≡ fΦig corresponds to a triplet of

coupled real scalar fields. The model (24) displays sponta-
neous symmetry breaking Oð3Þ → Uð1Þ. The constants λ
and η are, respectively, the coupling constant and the
energy scale of the spontaneous symmetry breaking. The
specific functional form KðXÞ is chosen in such a way that
asymptotically the canonical term prevails, thus avoiding
the so-called “zero-kinetic problem” [28,29]:

KðXÞ ¼
�−X; if X ≪ 0;

Xα; if X ≫ 0.

�
; ð25Þ

where α is some constant. In the NLSM, the scalar field
Φ⃗ should satisfy the restriction given by the following
equation

Φ⃗ · Φ⃗ ¼ η2; ð26Þ

which defines a manifold, in this case a 2 − sphere (S2), in
the internal parameters space (moduli space). Such a
manifold is known as vacuum manifold, and a particular
choice of the parameters on this manifold leads to a
spontaneous symmetry breaking. Note, in this sense, that
the constant λ in the action (24) is a Lagrange multiplier. In
the vacuum manifold we can define a set of local coor-
dinates fϕag, where a runs from 1 to 2, so that Φ⃗ ¼ Φ⃗ðϕaÞ.
Explicitly,

Φ⃗ ¼ η½sinðϕ1Þ cosðϕ2Þ; sinðϕ1Þ sinðϕ2Þ; cosðϕ1Þ�: ð27Þ

In order to shed light on this, we can proceed as in [30] and
rewrite the action as follows:

S ¼
Z

KðXÞ ffiffiffiffiffiffi
−g

p
d4x; ð28Þ

where X ¼ 1
2
η2ξij∂μϕ

i∂μϕj. The quantity ξij is the metric
of the 2-dimensional Riemannian vacuum manifold: ξij ¼
∂Φ⃗
∂ϕi · ∂Φ⃗∂ϕj. The field equation and the energy-momentum

tensor Tμν ¼ − 2ffiffiffiffi−gp δS
δgμν are, respectively,

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
η2KXξbi∂μϕi� −KX

2
η2∂μϕ

i∂μϕj ∂ξij
∂ϕb ¼ 0;

ð29Þ

Tμ
ν ¼ δμνK − η2KX∂μϕa∂νϕ

a: ð30Þ

The index X in KX denotes a derivative with respect to X.
For a spherically symmetric metric, that is, ds2 ¼
−AðrÞdt2 þ BðrÞdr2 þ CðrÞðdθ2 þ sin2θdφ2Þ, the ansatz
ϕ1 ¼ θ and ϕ2 ¼ φ identically satisfies the field equa-
tions (29) when

ξij ¼
�
1 0

0 sin2θ

�
ð31Þ

[30,31]. This ansatz implies T0
0 ¼ T1

1 ¼ KðXÞ, and
T2

2 ¼ T3
3 ¼ KðXÞ − XKX. Therefore,

Tμ
ν ¼ diagðK;K;K − XKX;K − XKXÞ: ð32Þ

Comparing Eq. (32) with Eq. (9), we then have

ρ ¼ −K and Pθ ¼ K − XKX; ð33Þ

where X ¼ η2

r2. Since the functional formKðXÞ is typically a
given function, it is possible to get the metric generated by
this matter source through Eqs. (17) and (23). In the next
sections, we consider several known forms forKðXÞ whose
studies have already been performed in the context of GR.
We start by considering the canonical case and then go to
more complex ones.

A. Canonical case: K= −X
According to (33), for this model we have ρ ¼ η2

r2 and
Pθ ¼ 0, which turns (17) into

r2 ¼ x2 − ϵκ2η2: ð34Þ

From this it is easy to see that if ϵ < 0, then r2ðxÞ attains a
minimum r2min ¼ ϵκ2η2 at x ¼ 0, thus signaling the pres-
ence of a wormhole. If ϵ > 0 it is x2ðrÞ which has a
minimum, pointing toward the existence of a wormhole in
the auxiliary geometry associated to hμν. Substituting ρ in

(23), we have A ¼ 1 − κ2η2 − 2M0

x , so the general solution is
given by

J. R. NASCIMENTO et al. PHYS. REV. D 101, 064043 (2020)

064043-4



ds2 ¼ −
�
1 − κ2η2 −

2M0

x

�
dt2 þ

�
1 − κ2η2 −

2M0

x

�
−1
dx2

þ ðx2 − ϵκ2η2Þðdθ2 þ sin2θdϕ2Þ; ð35Þ

which in terms of r becomes

ds2 ¼ −
�
1 − κ2η2 −

2M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ϵκ2η2

p �
dt2

þ r2

r2 þ κ2ϵη2

�
1 − κ2η2 −

2M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ϵκ2η2

p �
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð36Þ

Despite the nonlinear dynamics of the EiBI theory, the
simplicity of this solution is remarkable, since it is identical
to that found in GR up to the constant shift −ϵκ2η2
characterizing an angular deficit. It was first obtained by
Lambaga and Ramadhan [23], who focused on the ϵ > 0
case, though the internal wormhole geometry was over-
looked. It is worth noting that for M0 ¼ 0 the solution
describes an Ellis-like wormhole with topological charge
(see the Appendix). On the other hand, focusing on ϵ < 0,
if M0 ≠ 0, one finds that the solution is geodesically
incomplete. Indeed, considering the equatorial plane
θ ¼ π

2
, radial geodesics satisfy the following equation [25]:

�
dx
dλ

�
2

¼ Ω2þE2 − AðxÞΩþ

�
L2

r2ðxÞ þ k

�
; ð37Þ

where E, L, and λ are, respectively, energy, angular
momentum, and affine parameter associated with the
geodesic, with k ¼ þ1; 0;−1 standing for the timelike,
null, and spacelike geodesics, respectively. To illustrate
this, let us consider a timelike geodesic. From (35), near the
origin we have �

dx
dλ

�
2

≈ E2 − Veff ; ð38Þ

where Veff ¼ − 2M0

x ð L2

jϵjκ2η2 þ kÞ plays the role of an effective
potential for a particle of energy E2. For a particle on the
x > 0 region, this effective potential is negative and
represents a divergent attractive force as it approaches
the center. However, as soon as it crosses the x ¼ 0
boundary, the particle finds an infinite potential barrier
which makes the right-hand side negative and is incon-
sistent with the positivity of the left-hand side. Thus,
particles are accelerated toward x → 0þ but are suddenly
smashed at x ¼ 0, with no possibility of going through to
the other side. Those geodesics, therefore, are incomplete.
Had we considered initially particles coming from x < 0
toward x → 0−, then such particles would approach the
center up to a minimal distance, at which E2 ¼ Veff ,
bouncing back safely to the x < 0 region again. Null radial

geodesics, on the contrary, do not have any problem in
going through the wormhole from either side. The geom-
etry, however, must be regarded as singular.

B. Power law case: KðXÞ= −X − βX2

Let us now consider the power law model

KðXÞ ¼ −X − βX2; ð39Þ

with β > 0. From the GR perspective this model was
considered in [29,30], the latter being in higher dimensions.
Note that in the limit β → 0 we get the canonical model. So
from (39) and (33), we have

ρ ¼ η2

r2
þ β

η4

r4
and Pθ ¼ β

η4

r4
: ð40Þ

If we define Q2 ≡ βη4 we will have ρ ¼ η2

r2 þ Q2

r4 , which
represents the sum of the energy densities produced by a
GM (outside of its core) plus an electric charge Q [32]. In
this way we can interpret the NLSM (39) as engendering
an electric chargeQ plus a GM charge η. Individually, each
of these cases has been studied in the context of EiBI
gravity [23,25].
Using (17) it is easy to find the dependence of rðxÞ with

x, which becomes

r2 ¼ ðx2 − ϵκ2η2Þ
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − ϵκ2η2Þ2 − 4ϵκ2Q2

q
: ð41Þ

Inserting now the density function ρ ¼ η2

r2 þ Q2

r4 in Eq. (23),
one finds

AðxÞ ¼ 1 − κ2η2 −
2M0

x
−
κ2Q2

x

Z
dx

r2ðxÞ ; ð42Þ

which can be combined with (41) to obtain the exact form
of AðxÞ. Before doing that, it is useful to consider some
particular situations. In the far limit, x → ∞, and regardless
of the sign of ϵ, this expression boils down to

A ≈ 1 − κ2η2 −
2M0

r
þ κ2Q2

r2
with Ωþ ¼ 1; ð43Þ

and recovers the Reissner-Nordström solution with topo-
logical charge expected in GR [30,33] (this requires setting
to zero an integration constant). The structure of horizons,
therefore, will be similar to the Reissner-Nordström case if
the topological charge is sufficiently small.
The other limit of interest corresponds to x → 0. A

glance at Eq. (41) indicates that for ϵ < 0 the function r2ðxÞ
has a minimum value given by

r2min ≡ 1

2

	
jϵjκ2η2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵj2κ4η4 þ 4jϵjκ2Q2

q 

; ð44Þ
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which occurs at x ¼ 0. If x is extended to negative values,
r2ðxÞ grows again, defining a (symmetric) wormhole struc-
ture. On the other hand, for ϵ > 0 the situation is quite
different because it is the function x2ðrÞ ¼ r2 þ ϵκ2η2 þ
ϵκ2Q2=r2 which attains a minimum of magnitude x2min ¼
ϵκ2η2 þ 2jQjκϵ12 when r4 ¼ ϵκ2Q2. Thus here the worm-
hole structure seems to arise in the geometry associated to
hμν. Moreover, given that the two-spheres of hμν grow
without bound in the limits r → ∞ and r → 0, it is evident
that the wormhole structure in this case is asymmetric. The
situation, however, is more subtle because at r4 ¼ ϵκ2Q2

the function Ωþ in the line element (16) vanishes when
ϵ > 0, implying that this hypersurface is null. One can
check that at this location the gtt ¼ −A=Ωþ component
diverges, which indicates that the Killing vector ξ ¼ ∂t has
divergent norm there. This anomaly can be cured by
considering a different normalization for this vector, such
as ξ̃ ¼ Ωþ∂t. In this case, at infinity ξ̃ coincides with ξ but
its norm is finite everywhere. Given that the norm of ξ̃ now
vanishes at r ¼ rc this null hypersurface can certainly be
regarded as a Killing horizon.
From a physical perspective, since the matter fields

are coupled to the metric gμν, the relevant thing to consider
is the behavior of the metric gμν as r → 0. In this limit

(and for ϵ > 0), we have x ≈ κjQjϵ12=r, which leads to
AðxÞ ≈ κ2Q2=3r2. This behavior is essentially the same
(up to a constant) as one finds in a standard Reissner-
Nordström black hole in GR when r → 0, where AðrÞGR ≈
κ2Q2=2r2. Thus, the ϵ > 0 case is geodesically incomplete
(because radial null geodesics hit the central singularity in
finite affine time).
Let us now consider the x → 0 limit in the ϵ < 0 case. In

this region we find r2ðxÞ ≈ r2min þ r2minx
2=ð2r2min − jϵjη2Þ,

obtaining the approximated expression

A ≈ 1 − κ2η2 −
2M0

x
−
κ2Q2

r2min

−
κ2Q2C

x
; ð45Þ

where C is an integration constant with relevant physical
implications, since it controls the behavior of the
metric as x → 0. In particular, if C > −2M0=κ2Q2, then
limx→0AðxÞ ¼ þ∞, whereas if C < −2M0=κ2Q2, then
limx→0AðxÞ ¼ −∞. In the particular case in which
C ¼ −2M0=κ2Q2, then the metric is finite at the origin,

taking the value Að0Þ ¼ 1 − κ2η2 þ κ2Q2

r2min
. This shift in the

apparent topological charge would have an impact in the
deficit angle of the geometry and could, in principle, be
observable.
The implications of C ≠ −2M0=κ2Q2 can be derived

from the geodesic equation (37) considering the approxi-
mation (45). Dividing (37) by Ω2þ and interpreting Veff ¼
A
Ωþ

ð L2

r2ðxÞ þ kÞ as an effective potential, it is easy to see that if

Cþ 2M0=κ2Q2 < 0 then for particles with k ¼ 1 or
L2 > 0 approaching x → 0 from the right (x > 0) the
potential barrier diverges, implying that the right-hand side
vanishes at some finite x > 0 for every given value of the
energy E. Accordingly, those particles will bounce before
reaching the wormhole throat, staying in the x > 0 region
safely. However, particles approaching from the left (x < 0)
will see an infinite potential well attracting them toward the
throat. The problem comes when they attempt to continue
their path into the x > 0 region, because they find an
infinite potential barrier, which prevents them from going
through, thus causing an undesired physical situation in
which all such geodesics terminate. On physical grounds,
therefore, one should restrict the validity of the solution
to the region x > 0. The opposite situation happens if
Cþ 2M0=κ2Q2 > 0, with particles from x > 0 feeling a
growing attraction toward x → 0 to face suddenly an
infinite potential wall that prevents their transmission into
the x < 0 region. Thus, the most favorable physical
situation is that in which C ¼ −2M0=κ2Q2 because then

all particles with energy E2 > ð1 − r2min
jϵj Þð L2

2r2min
þ k

2
Þ can move

freely from one side of the wormhole to the other. The
traversable wormhole case, obviously, corresponds to con-

figurations with r2min
jϵj < 1. For r2min

jϵj > 1 we have an horizon,

and for r2min
jϵj ¼ 1 we find an extremal situation.

From the approximations made so far, the explicit
numerical value of the constant C remains completely
undetermined. In order to improve this situation, it is useful
to look for an exact solution of Eq. (42) which may shed
light on this parameter. To progress in this direction, one
can use the relationship (41) between the auxiliary coor-
dinate x and the radial coordinate r, to show that (23) can be
written as

A ¼ 1 −
2M0rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 − κ2jϵjðη2r2 þQ2Þ
p −

κ2Q2 þ κ2η2r2

3r2

−
2r

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − κ2jϵjðη2r2 þQ2Þ

p IðrÞ; ð46Þ

where IðrÞ ¼ I1ðrÞ þ I2ðrÞ, and

I1ðrÞ ¼
Z

2κ2Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − κ2jϵjðη2r2 þQ2Þ

p dr;

I2ðrÞ ¼
Z

κ2η2r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − κ2jϵjðη2r2 þQ2Þ

p dr: ð47Þ

Taking the proper limits (Q ¼ 0 or η ¼ 0) we directly
retrieve the cases already studied [23,32,34]. To simplify
the analysis, it is useful to write IðrÞ in terms of the
minimum radius rmin, which leads to
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I1ðrÞ ¼
Z

2κ2Q2

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1 − r2min

r2


	
1þ κ2jϵjQ2

r2minr
2


r dr;

I2ðrÞ ¼
Z

κ2η2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1 − r2min

r2


	
1þ κ2jϵjQ2

r2minr
2


r dr: ð48Þ

The explicit results for these integrals are

I1 ¼ −
2κ2Q2

r
AppellF1

�
1

2
;
1

2
;
1

2
;
3

2
;

�
rmin

r

�
2

;−
κ2jϵjQ2

ðrrminÞ2
�
;

ð49Þ

I2 ¼ κ2η2rAppell F1

�
−
1

2
;
1

2
;
1

2
;
1

2
;

�
rmin

r

�
2

;−
κ2jϵjQ2

ðrrminÞ2
�
:

ð50Þ

In the above integrals, we have chosen their integration
constants in order to match the asymptotic behavior given
by (43). The condition to avoid divergences at the throat of
the wormholes is that

2M0 ¼ −
2

3
IðrminÞ; ð51Þ

which was already observed in [34]. With this condition
(51) and using l’Hopital rule, it can be shown that (46) is
regular at r ¼ rmin and tends to

lim
r→rmin

A ¼ A0 ¼ 1 −

 
κ2η2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ4jϵj2η4 þ 4κ2jϵjQ2

p
2jϵj

!

¼ 1 −
r2min

jϵj : ð52Þ

The relation (52) means that if r2min
jϵj > 1 then the minimal

surface will be hidden behind an event horizon, which turns

out to be regular. If r2min
jϵj < 1, then the solution describes a

traversable wormhole. And when r2min
jϵj ¼ 1, we have an

extremal black hole. Therefore, from (51) we get

M0 ¼
2κ2Q2

3rmin
K

�
−
jϵjκ2Q2

r4min

�

þ rminκ
2η2

2

�
K

�
−
jϵjκ2Q2

r4min

�
− E

�
−
jϵjκ2Q2

r4min

��
; ð53Þ

where K½x� is the complete elliptic integral of the first
kind and E½x� is the complete elliptic integral of the second
kind. As aforementioned the interesting situation takes
place as C ¼ −2M0=κ2Q2, so from the above equation,
we have

C ¼ −
4

3rmin
K

�
−
jϵjκ2Q2

r4min

�

−
2rminη

2

3Q2

�
K

�
−
jϵjκ2Q2

r4min

�
− E

�
−
jϵjκ2Q2

r4min

��
: ð54Þ

From this expression it follows that if we take Q ¼ 0,
the condition (53) implies M0 ¼ 0. This means that the
canonical model only supports regular solutions when the
mass is zero, as seen in the previous subsection. Now, if
we take η ¼ 0, the solution boils down to that of an

electric charge, where δ1 ≡ κ2Q2

2M0rmin
≃ 0.5721 [32,34]. When

one allows for the simultaneous coexistence of both
charges (η ≠ 0, Q ≠ 0), the effect of the GM charge
translates into a “regularization” constant δ1 bigger than
that predicted in the pure electric case, as illustrated
in Fig. 1.
Let us go back to the original formulation of the problem

and restore the dependence of Q on η. In this case the
constant δ1 is given by

δ1 ¼
�
4

3
K

�
−
jϵjκ2Q2

r4min

�

þ 2r2minη
2

3Q2

�
K

�
−
jϵjκ2Q2

r4min

�
− E

�
−
jϵjκ2Q2

r4min

���
−1
;

ð55Þ

where Q2 ¼ βη4, and it is apparent that for a given model,
characterized by a pair ðϵ; βÞ, the value of δ1 is fixed. To see
how δ1 depends on ϵ and β, in Fig. 2 we plot δ1ðβ; jϵjÞ,
where limβ→∞δ1 ≃ 0.57, limβ→0δ1 ≃ 0.95, limjϵj→0δ1≃
0.57, limjϵj→∞δ1 ≃ 0.95. This allows us to conclude that
δ1 increases when jϵj grows and decreases when β grows.

FIG. 1. The “regularization” constant δ1, for the case Q ¼ 1,
κ2 ¼ 1.

1Here we are following the same notation introduced in
[32,34].

NONLINEAR σ-MODELS IN THE EDDINGTON- … PHYS. REV. D 101, 064043 (2020)

064043-7



From the relation (53) we can also find how the charge-to-
mass ratio (η=M0) determines what kind of solution we will
have. The relevant expression to use is the following:

η

M0

¼ λ

r2min=jϵj
; where λ ¼ 3

jϵjκ2
�
2β

ξ3=2
K

�
−
κ2jϵjβ
ξ2

�

þ 1

ξ1=2

�
K

�
−κ2

jϵjβ
ξ2

�
− E

�
−
κ2jϵjβ
ξ2

���
−1
; ð56Þ

which is plotted in Fig. 3, here ξ ¼ jϵjκ2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵj2κ4þ4jϵjκ2β

p
2

.
There we see λ as a function of various parameters of
the model. As one can see, λ decreases when the values of
jϵj and β increase. In the context of the discussion below
Eq. (52), we see that (56) allows us to conclude that if
η
M > λ, we will have a traversable wormhole, but if η

M < λ
then we have a regular black hole. We thus conclude that
the further we move away from GR and the canonical
NLSM the less GM charge is required to obtain regular
solutions. Nonetheless, recall that the regularity of the
solution is only possible thanks to the nonlinearity of the
NLSM kinetic term.

V. CONCLUSION

In this work we have considered two different nonlinear
σ-models minimally coupled to EiBI gravity as a way to
explore new gravitational phenomena related with a global
monopole symmetry breaking [SOð3Þ → Uð1Þ]. The first
model, which we refer to as canonical model, simply
reproduces the analysis of [23] but unveils new features
of the solutions besides considering another branch of the
allowed parameters of the gravity theory. The second model
describes a theory with quadratic kinetic term and leads to
an effective configuration closely related to an electric field
coupled to a global monopole.
As a general feature, we found that for the two models

considered the asymptotically far solution coincides with
that of GR but wormhole geometries arise with different
peculiarities as one approaches the central region. When
ϵ < 0 the wormhole is associated to the physical metric,
gμν, while for ϵ > 0 it is associated to the auxiliary metric
hμν. Though none of the models considered managed to
yield completely regular space-times, the power law model
showed signs of improvement in this direction. In fact, in
that case there exists a family of solutions for which the
metric is finite everywhere and allows particles to go from
one side of the wormhole to the other. This happens when
the charge-to-mass ratio satisfies a specific constraint
encoded in the integration constant C, which must take
the value given by (54). When C is smaller or greater
than this value, the geodesics of massive particles can
terminate on the wormhole throat, thus leading to a phy-
sically undesirable situation. Something similar happens in
the canonical model studied when ϵ < 0. This provides
additional evidence to the fact that wormholes do not
necessarily guarantee the completeness of geodesics.
The regular case somehow generalizes the solution

found in [32] to cases with nonzero topological charge.
We have shown that the parameter δ1, which is related to the
constant C, is bounded below by the purely electric case.
This parameter controls the traversability of the wormhole,
in the sense that depending on the charge-to-mass ratio of
the monopole charge an event horizon may be present or
not. In [32] the wormhole is always traversable even for
massive particles, without the pathologies found here
regarding geodesic motion.
An important remark concerning the nature of the solu-

tions is in order. In GR, solutions with a global monopole
corresponding to the ansatz considered here have a diver-
gence in ∂μϕ

a at r ¼ 0, where the space-time exhibits a
conical singularity generated by the topological defect [1].
In our modified gravity context, the existence of a worm-
hole at finite r (if ϵ < 0) indicates that those fields must
have a topological origin, not being related to any defects
but to topological fluxes (even in the case with ϵ > 0, for
which the wormhole throat lies at r ¼ 0). The charges
associated to the scalar fields, therefore, can be seen as
emergent properties of the wormholes, as topologicalFIG. 3. Representation of λ as a function of β and ϵ.

FIG. 2. Representation of the function δ1 in terms of jϵj and β.
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virtues rather than defects, which allows to interpret them
as geons in Wheeler’s sense [35]. Further analyses in this
direction are currently underway and will be reported
elsewhere.
To conclude, it should be noted that the solutions found

here generated by scalar fields (nonlinear sigma models)
have astrophysical implications completely different from
those found in the case of coupling EiBI to a massless free
field [36]. In that case, compact solutions strongly modify
the geometry far from the center, possibly having a
substantial astrophysical impact as compared to the pre-
dictions of GR. In the case considered here, the geometry is
only substantially modified in the innermost regions close
to the center, in much the same way as it happens with
electric fields. This indicates that the nonlinear dynamics of
EiBI gravity can manifest itself in very different ways,
depending intimately on the type and properties of the
matter fields coupled to it.
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APPENDIX: TOPOLOGICALLY CHARGED
ELLIS WORMHOLE

We saw that the conditionM0 ¼ 0 provides a traversable
wormhole, well behaved everywhere and as simple as that
of Morris and Thorne [37], with the difference that we have
a solid angle deficit. Such a scenario can be interpreted as a
result of the complete evaporation of the black hole,
therefore, only the topological charge does not disappear
[3]. Next, let us takeM0 ¼ 0 and ϵ < 0 to analyze this case
in more detail. Thus, the (36) can be represented as

ds2 ¼ −dt2 þ dr2

ð1− κ2η2Þð1− jϵjκ2η2
r2 Þ

þ r2ðdθ2 þ sin2θdϕ2Þ;

ðA1Þ

where we have absorbed the factor ð1 − κ2η2Þ into a
rescaled time coordinate. This is the metric of a wormhole
with a deficit solid angle. Comparing with the Morris-
Thorne metric given by

ds2 ¼ −eΦðrÞdt2 þ dr2

1 − bðrÞ
r

þ r2ðdθ2 þ sin2θdϕ2Þ; ðA2Þ

we identified that the redshift function is zero, ΦðrÞ ¼ 0,
and the shape function is given by

bðrÞ ¼ rκ2η2 þ ð1 − κ2η2Þ jϵjκ
2η2

r
: ðA3Þ

We note that limr→∞
bðrÞ
r ¼ κ2η2. Thus, the solution (A1) is

not asymptotically flat [38], which is natural due to the GM
charge. We can build the embedding diagram. For this, it is
enough to consider the time constant and the equatorial
plane, that is, θ ¼ π

2
.

ds2 ¼ dr2

ð1 − κ2η2Þð1 − jϵjκ2η2
r2 Þ

þ r2dϕ2: ðA4Þ

Now we want to construct a surface in three-dimensional
Euclidean space with the same characteristics as the metric
above, for this we will consider the three-dimensional
metric in cylindrical coordinates (z; r;ϕ): ds2E ¼ dz2 þ
dr2 þ r2dϕ2, where we have

FIG. 4. zðyÞ=rmin. The full line corresponds to κη ¼ 0.2 and the
dotted line, κη ¼ 0.4.

FIG. 5. Embedding diagram of a section θ ¼ π
2

and
t ¼ constant. We are take and κη ¼ 0.2.
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ds2E ¼
�
1þ

�
dz
dr

�
2
�
dr2 þ r2dϕ2: ðA5Þ

Identifying the metrics (A4) and (A5), we have

1

r2min

�
dz
dy

�
2

¼ 1

ð1 − κ2η2Þð1 − 1
y2Þ

− 1; ðA6Þ

where rmin ¼
ffiffiffiffiffijϵjp
κη is the radius of the throat and y ¼ r

rmin
.

Evaluating numerically the equation (A6), we get the
function zðyÞ=rmin given by Fig. 4 and the immersion
diagram depicted at Fig. 5.
Notice that the shape of the wormhole is conical, due to

the GM charge. As far as we know, this is the simplest

wormhole solution found in EiBI gravity. In [39], Jusufi
also obtained a static and asymptotically conical wormhole,
but in the GR context. For this, he considered the minimal
coupling of the GM tensor (Tμ

ν ¼ diagð−η2=r2;−η2=r2;
0; 0Þ to the gravity plus an anisotropic fluid. The fluid
obeys the state equation of the form PrðrÞ ¼ ωρðrÞ com
ω < 1, corresponding to the phantom energy as it must
be for the wormholelike solutions. As we can see, the
model describes a triplet of scalar fields whose topological
charges depend on the side of the wormhole where the
observer is positioned. At x > 0, the topological charge is
positive while at x < 0 it is negative. In other words,
observers at x > 0 (x < 0) face a some kind of a global
monopole (anti-monopole) [40].
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[26] J. Beltrán Jiménez and A. Delhom, Eur. Phys. J. C 79, 656

(2019).
[27] V. I. Afonso, C. Bejarano, J. Beltran Jimenez, G. J. Olmo,

and E. Orazi, Classical Quantum Gravity 34, 235003
(2017).

[28] E. Babichev, Phys. Rev. D 74, 085004 (2006).
[29] X. H. Jin, X. Z. Li, and D. J. Liu, Classical Quantum Gravity

24, 2773 (2007).
[30] I. Prasetyo and H. S. Ramadhan, Gen. Relativ. Gravit. 49,

115 (2017).
[31] M. Gell-Mann and B. Zwiebach, Phys. Lett. B 141, 333

(1984).
[32] G. J. Olmo and D. Rubiera-Garcia, Phys. Rev. D 86, 044014

(2012); G. J. Olmo, D. Rubiera-Garcia, and H. Sanchis-
Alepuz, Eur. Phys. J. C 74, 2804 (2014).

[33] K. Jusufi, Astrophys. Space Sci. 361, 24 (2016).
[34] R. Shaikh, Phys. Rev. D 92, 024015 (2015).
[35] J. A. Wheeler, Phys. Rev. 97, 511 (1955); G. J. Olmo and

D. Rubiera-Garcia, Fundam. Theor. Phys. 189, 161 (2017);
C. A. R. Herdeiro, A. M. Pombo, and E. Radu, Phys. Lett. B
773, 654 (2017).

J. R. NASCIMENTO et al. PHYS. REV. D 101, 064043 (2020)

064043-10

https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1007/BF02845552
https://doi.org/10.1007/BF02845552
https://doi.org/10.1088/0264-9381/28/1/015001
https://doi.org/10.1088/0264-9381/28/1/015001
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/340118
https://doi.org/10.1103/PhysRevLett.62.376
https://doi.org/10.1088/0264-9381/15/5/001
https://doi.org/10.1088/0264-9381/15/5/001
https://doi.org/10.1103/PhysRevD.69.064030
https://doi.org/10.1103/PhysRevD.69.064030
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1016/j.physrep.2017.11.001
https://doi.org/10.1140/epjc/s10052-016-3999-7
https://doi.org/10.1140/epjc/s10052-016-3999-7
https://doi.org/10.1103/PhysRevD.92.044018
https://doi.org/10.1103/PhysRevD.92.044047
https://doi.org/10.1103/PhysRevD.93.064016
https://doi.org/10.1103/PhysRevD.56.6688
https://doi.org/10.1103/PhysRevD.56.6688
https://doi.org/10.1142/S2010194511000961
https://doi.org/10.1142/S2010194511000961
https://doi.org/10.1142/S0217732312501775
https://doi.org/10.1142/S0217732312501787
https://doi.org/10.1142/S0217732312501787
https://doi.org/10.1103/PhysRevD.87.044002
https://doi.org/10.1103/PhysRevD.92.024004
https://doi.org/10.1103/PhysRevD.92.024004
https://doi.org/10.1140/epjc/s10052-017-5057-5
https://doi.org/10.1103/PhysRevD.99.064053
https://doi.org/10.1140/epjc/s10052-018-5906-x
https://doi.org/10.1140/epjc/s10052-018-5906-x
https://doi.org/10.1088/1674-1056/27/3/030401
https://doi.org/10.1088/1674-1056/27/3/030401
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1140/epjc/s10052-019-7149-x
https://doi.org/10.1140/epjc/s10052-019-7149-x
https://doi.org/10.1088/1361-6382/aa9151
https://doi.org/10.1088/1361-6382/aa9151
https://doi.org/10.1103/PhysRevD.74.085004
https://doi.org/10.1088/0264-9381/24/11/001
https://doi.org/10.1088/0264-9381/24/11/001
https://doi.org/10.1007/s10714-017-2278-8
https://doi.org/10.1007/s10714-017-2278-8
https://doi.org/10.1016/0370-2693(84)90256-9
https://doi.org/10.1016/0370-2693(84)90256-9
https://doi.org/10.1103/PhysRevD.86.044014
https://doi.org/10.1103/PhysRevD.86.044014
https://doi.org/10.1140/epjc/s10052-014-2804-8
https://doi.org/10.1007/s10509-015-2609-8
https://doi.org/10.1103/PhysRevD.92.024015
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1007/978-3-319-55182-1_8
https://doi.org/10.1016/j.physletb.2017.09.036
https://doi.org/10.1016/j.physletb.2017.09.036


[36] V. I. Afonso, G. J. Olmo, E. Orazi, and D. Rubiera-Garcia,
J. Cosmol. Astropart. Phys. 12 (2019) 044.

[37] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
[38] F. S. N. Lobo, F. Parsaei, and N. Riazi, Phys. Rev. D 87,

084030 (2013).

[39] K. Jusufi, Phys. Rev. D 98, 044016 (2018).
[40] R. Rajaraman, Solitons and Instantons: An Introduction

to Solitons and Instantons in Quantum Field Theory
(North-Holland, Amsterdam, 1982).

NONLINEAR σ-MODELS IN THE EDDINGTON- … PHYS. REV. D 101, 064043 (2020)

064043-11

https://doi.org/10.1088/1475-7516/2019/12/044
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevD.87.084030
https://doi.org/10.1103/PhysRevD.87.084030
https://doi.org/10.1103/PhysRevD.98.044016

