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Rotational energy surfaces of molecules exhibiting internal rotation 
, ' 

Juan Ortigosoa) and Jon T. Hougen . 
Molecular Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 

(Received 14 March 1994; accepted 28 April 1994) 

Rotational energy surfaces [w. G. Hart~r and c.' W. Patterson, J. Chem. Phys. 80,4241 (1984)] for 
a molecule with internal rotation are constructed. The study is limited to torsional states at or below 
the top 'of the barrier to internal rotation, where the extra (torsional) degree of freedom can be 
eliminated by expanding eigenvalues of the torsion-K-rotation Hamiltonian as a Fourier series in 
the rotational degree of freedom. For acetaldehyde, considered as an example, this corresponds to 
considering vt=O, 1, and 2 (below the barrier) and v t=3 Gust above the barrier): The rotational 
energy surfaces are characterized by locating their stationary points (maxima, minima, and saddles) 
and separatrices. Rather complicated catastrophe histories describing the creation and annihilation 
of pairs of stationary points as a function of J are found at moderate J for given torsional quantum 
number (v t ) and symmetry species (A,E). Trajectories on the rotational energy surface which 
quantize the action are examined, and changes from rotational to vibrational trajectories caused by 
changes iIl the separatrix structure are found as a function of J for v t =2. The concept of a "best" 
quantization axis for the molecule-fixed component of the total angular momentum is examined 
from a classical point of view, and it is shown that labeling ambiguities encountered in the literature 
for torsion-rotation energy levels, calculated numerically in the rho-axis system, can be eliminated 
by reprojecting basis-'set K values' onto an axis passing through an appropriate stationary point on 
the rotational energy surface.-

I. INTRODUCTION 

The concept of a rotational energy' surface '(RES) was 
introduced by Harter and P~tterson,land graphically elabo­
rated by Harter.2 A RES is a radial plot of the energy of the 
molecule as a function of the direction of the total angular 
momentum in the molecule-fixed frame. Harter and Patter­
son proposed studying rotational motions by considering the 
trajectory of the tip of the angular momentum vector on the 
rotational energy surface' much as one studies vibrational 
motions by considering. the trajectory of the mass point on 
the potential energy surface. References 1 and 2 deal with 
rotational clustering phenomena ill spherical tops deformed 
by quartic centrifugal distortion terms, and in asymmetric 
tops, both rigid and centrifugally deformed, using RESs 
based on Hamiltonians expressed as power series expansions 
of the angular momentum operators. ' 

A RES based on a rigid-bender Hamiltonian for the. 
study of triatomic molecules with a large amplitude bending 
vibration was proposed by Makarewicz.3 The advantage of 
this treatment is that it avoids the use of power series, which 
for molecules with large amplitude motions are often diver­
gent or at least slowly convergent. 

A new physical phenomenon in AB2 molecules, namely 
the existence of fourfold clusters caused by strong centrifu­
gal effects, was predicted.4 These clusters were interpreted in 
Ref. 3 using the concept of rotational energy surfaces. This 
phenomenon has already been verified experimentally for the 
H2Se molecule.5 . 

A classification of qualitative changes taking place in 
RESs of isolated effective rotational Hamiltonians when the 

a)Postdoctoral fellow of the CoiJ.sejo Superior de Investigaciones Cientfficas 
of Spain 1993-1994. 

total angular momentum varies has been done.6 This work 
employed the tools of catastropIie theory7 to reduce the num­
ber of criticiu changes to. a ,few cases. Very recently, an 
analysis of the changes suffered by rovibrational states as a 
consequence of rotational or vibrational excitation has been 
published.8 Other kinds of phenomeha such as, e.g., redistri­
bution of energy levels between different branches of the 
eigenvalue spectrum have been studied9 with the use of mul­
tiple rotational energy surfaces. This redistribution is related 
to the existence of degeneracies' or conical intersections 
among different effective rotational energy surfaces. 

Other constructions meant to understand semiclassical 
dynamics have been proposed. Kellman et at. in a series of 
papersJO have introduced the polyad phase sphere to treat 
coupled vibratLons. They obtain a classical phase space from 
a spectroscopic Hamiltonian using the Heisenberg correspon­
dence principle. This Hamiltonian turns out to be integrable. 
Catastrophe theory and semiclassical dynamics have been 
used by Kellman and Xiao to design a method to . assign 
quantum numbers to energy.levels of molecules· with Fermi 
resonance. 11 

In the present work, we discuss some aspects of the ap­
plication of RESs to an asymmetric top containing a hin­
dered symmetric-top internal rotor. Such a system corre­
sponds classically to an asymmetric top containing a 
gyroscope and can be described by using three Euler angles 
for the rotation together with an extra angle to describe the 
internal rotation of the gyroscope. The RES concept is based 
on the adiabatic separation of the rotation. from all other de­
grees of freedom in the molecule. The usefulness of this 
approach for internal plus overall rotation problems will de~ 
pend on the degree of mixing between torsion and rotation. 
For levels below the top of the barrier to internal rotation, the 
separation is fairly good (extremely good for a simplified 
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model Hamiltonian which neglects centrifugal effects), so 
that the torsion-rotation problem can be reduced to an effec­
tive rotational problem for each torsional state. For levels 
above the barrier, where the mixing is stronger, several sur­
faces must be considered at the same time. .' 

As a concrete example in this study,::we consider the 
acetaldehyde molecule CH3CHO, focusing on the torsional 
states below the barrier to internal rotation (UI=O, 1, .and 2) 
and on the first state above the barrier (Ut=3). We present 
rotational energy surfaces constructed from a model Hamil­
tonian based on the spectroscopic Hamiltonian obtained from 
a fit of infrared and microwave transitions'of acetaldehyde, 12, 

and use these surfaces to determine the best choice of axis 
for quantizing the projection of the total angular momentum. 

II. RES CONCEPTS 

Some concepts of classical mechanics from the RES lit­
erature which are important for the present paper can be 
summarized as follows: (i) Consider first a body experienc­
ing no external forces and rotating with constant angUlar 
momentum J, whereJ has both constant magnitude J and 
constant direction in the laboratory-fixed coordinate system 
X,Y,Z. (ii) The total energy of this body depends on tUt! 
magnitude of the angulru;, momen!um vector J and on its 
direction in the body-fixed axis system x,y,z; e.g., for ro~a­
tion about one of the three principal axes of a rigid asym­
metric rotor with rotati6nalconstants A, B, and C, this en­
ergy would be AJ2

, BJ2
, or CJ2 respectively. (iii) By using 

the direction cosine matrix and Eulerian angle definition of 
Wilson, Decius, and Cn;>ss,13 and by placing the laboratory- , 
fixed Z axis along the total angular momentum direction so 
that lz= J and J x= J y = 0, we find that the components of J 
in'the molecule-fixed axis system can be written in terms of 
the magnitude J of the total angular momentum and two of 
the EuleIian angles in the foim 

J.=J cos 8. ' 
- (1) 

Jx= -J sin () cos X, Jy=J sin fJ sin X, 

(iv) Alternatively, the components of J can be written in 
terms of the three EuleIian angles X, 8, and 4> and their 
conjugate momenta in the form 13 

1., = cot fJ cos XP x + sin XP e- csc () cos XP"" 

Jy= -cot () sin XPx+cos XPe+csc 8 sin XP"" (2) 

Jz=px' 

(v) The classical rotational motion of a body described by 
any Hamiltonian H(Jx ,Jy ,lz) written in terms of the angular 
momentum components of Eqs. (2) can be determined from 
Hamilton's canonical equations. (vi) The RES is now con­
structed by plotting in spherical polar coordinates the radius 
vector r«(),x)=::-H(Jx,Jy,lz)=H«(),X) as a function of two 
Eulerian angles 8,X, where the function H(fJ,X) is obtained 
from JA(),x), etc. in Eqs. (1). (vii) At this point, introduce the 
fact that the body not only has constant J, but also constant 
energy E. Then, regardless of the detailed nature of the tra­
jectory for the tip of J defined by the solution to Hamilton's 
equations, this trajectory must correspond to a curve on the 
RES defined by the equation H(e,X)=E. (viii) The trajec-

tory defined by the intersection of the constant energy sphere 
and the RES will be a single point if the intersection takes 
place at a stationary point of the RES, Le., at a maximum, 
minimum, or saddle point. (For a rigid asymmetric rotor with 
A> B > C, maxima, minima, and saddle points of the RES lie 
on theA, C, and B axes, respectively.) Rotational motion for 
trajectoIies consisting of a single point is special in the sense 
that the orientation of the total angular momentum vector in 
the body-fixed axis system never changes. 

III. MODEL HAMILTONIAN FOR INTERNAL ROTOR 
MOLECULES 

We specialize consideration in this work to bodies con­
sisting of a molecule containing one symmetric-top internal 
rotor of C 3u symmetry. i.e., to molecules with one -CH3 top. 
It is well known that a principal-axis-method Hamiltonian 
H PAM for such molecules can be written to a first approxima­
tion in the form 14 

HpAM=F(p",~p.J)2+(1I2)V3(I -cos 3a)+A' J;+'B' J; 

+C' J;, (3) 

where F is a rotational constant for the internal rotation mo­
tion; a is the angle describing internal rotation; p is a vector 
related to the direction of the axis of internal rotation in the 
principal axis system; J is the total angular momentum with 
components J x , J y , and J z in the pIincipal axis system; V 3 is 
the barrier height; and A', B', and C I are the usual asym­
metIic rotor rotational constants, inversely proportional to 
the three principal moments of inertia. 

We now further specialize to molecules with a plane of 
symllletry in the equilibrium configuration (e.g., CH30H, 
CH3CHO, etc). If the plane of symmetry is taken to be the xz 
plane, then Py =0 by symmetry. In this case, a rotation about 
the y axis can be used to eliminate the coupling term pJx, 
yielding a rho-axis-method Hamiltonian15 

HRAM 

HRAM=F(p",- pJz?+(1I2)V3(1-cos 3a)+AJ;+BJ; 

(4) 

which is often used for numeIical computations because the 
diagonalization of H RAM can be carried out in two steps. The 
first step involves diagonalization of only the torsion plus K 
rotation part of the Hamiltonian. In this first step, only rota­
tional matrix elements with AK=O appear. 15 

Consider now the problem of building a RES from the 
Hamiltonian H RAM' A rotational energy surface is a classical 
object based on the adiabatic separation of rotation from. all 
other internal degrees of freedom of the molecule. Therefore 
it is necessary to eliminate the fast degree of freedom in Eq. 
(4), Le., the internal rotation. Perturbation methods can be 
used to achieve this goaL It is possible, e.g., to eliminate the 
torsional degree of freedom in the quantum Hamiltonian by 
means of one or more Van Vleck transformations. The result­
ing effective rotational Hamiltonian (one for each torsional 
state) can be written14 as a rotational operator plus a series in 
powers of (pJz). The classical limit of this etTective Hamil­
tonian ts immediately obtained upon replacing the angular 
momentum operators by the expressions given in Eqs. (1). 
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An alternative method is to apply classical perturbation 
theory to the classical Hamiltonian (obtained by sUbstituting 
coordinates and momenta by their classical analogs). This 
method has been used, e.g., by Patterson16 to generate adia­
batic vibrational surfaces for a triply degenerate anharmonic 
oscillator using first order classical perturbation theory. Per­
turbation methods, quantum or classical, usually are slowly 
convergent or divergent. However, as Patterson pointed out, 
one can use an approximate energy surface, obtained by low 
order perturbation theory, in connection with some other 
method, such as adiabatic.~:vitching17 to calculate quantized 
trajectories of tIle system~ The only requirement is that the 
approximate ·surface must have the same topology as the real 
surface.16 However, it is difficult to know a priori what an 
adequate topology of the approximate surface is. 

A nonperturbative procedure often employed in the lit­
erature to build effective rotational energy surfaces for rovi­
brational problems is to take the classical limit for the com­
ponents of the angular momentum, but to treat the vibrations 
quantum mechanically. In our case, this is equivalent to solv­
ing a purely torsional probl~m represented by 
H(a,Pa;lx.Jy.Jz) for fixed Eulerian angl(:s () and X [see 
Eqs. (1)] at a number of Eulerian angle pairs sufficient to 
cover the two sphere. This produces a set of numerical rota­
tional energy surfaces (one surface for each basis function 
employed in the diagonalization procedure). The surfaces de­
pend on a torsional quantum number (or counting index) v t' 
on the value of the total angular momentum I and on the two 
Eulerian angles. These surfaces can be fit to appropriate 
functions of () and X as, for instance, spherical harmonics. 

It is well known14 that the torsion plus K rotation energy 
levels of H RAM can be fit, in the high barrier limit, to a 
Fourier series in cos[(2n7T/3)(pK-u)], where u=Oor ±1 
for energy levels of symmetry species A or E, respectively, 
in the molecular symmetry group 0 6= C3u ' We can thus 
write a rotational energy surface for every torsional state in 
the following way: ." 

E(vpl;(),X) = L Fa~Vt) cos[(2n7T/3)(pl cos ()-u)] 
n 

+ Al2 cos2 fi+ Bl2 sin2 fi cos2 X 

+ C 12 sin2 () ·sin2 X 

-2Dtz1
2 sin ficos fi cos x. (5) 

This Fourier expansion works well until the free rotor 
limit is reached. In that limiting case, the torsion-rotation 
energy levels E tr are given to a first approximation by a 
different expression 

(6) 

where F is the rotational constant for internal rotation found 
in Eqs. (3) and (4), and both m and K are signed integers. 

The RES treatment for torsional levels below the barrier 
can be carried out using one-surface techniques described in 
the literature, because (i) states of differentA,E symmetry 
(different u) cannot interact with each other in the absence of 
hyperfine effects; and (ii) Au=O, AVt*O torsional energy 
intervals below the barrier top are normally much larger than 

the Coriolis interaction energies B 1, CI, and AK for land K 
values in ranges normally encountered iIi room temperature 
(or lower) experiments. Only the states below the barrier and 
the first state above the barrier are considered in this paper. 

Consider now the RES treatment for torsional levels 
above the barrier. In particular, can such levels be treated 
using one-surface techniques, or will they require a multiple­
surface treatment? If nondiagonal matrix elements due to the 
barrier and asymmetric rotor effects are neglected, we find 
from"Eq. (6) that surfaces with different m but the same I 
can intersect for some values of fi. These touching points 
have been termed diabolic points9 and they are associated 
with energy level redistribution in the eigenvalue spectrum 
under the variation of a parameter of the Hamiltonian opera­
tor. Such intersections occur when 

(7) 

i.e., when 

()= arccoS[(ml+ m2)/(2J p)], (8) 

where m 1, m 2, and K must all be c_onsidered to be signed 
integers. Since we are interested only in intersections of sur­
faces of the same symmetry, we must also require in Eqs. (7) 
and (8) that ml =m2 mod 3. 
"If off-diagonal matrix elements due to the barrier are 

included, the intersections given in Eq. (7) will in general 
become avoided crossings. In principle, this avoided crossing 
problem is a two-parameter problem, since Hamiltonian ma: 
trixelements depend on the two angles () and X. It is well 
known that such problems give rise to conical intersections 
between surfaces of the same symmetry, which occur for 
surfaces E; and Ej at points fie' Xc such that the two equa­
tions H/i(fie,Xc)=Hjj(fic'Xc) and Hij«()coXc) =0 are bOth 
satisfied. The second of these conditions essentially means 
for the present problem that centrifugal distortion effects 
must completely annihilate the barrier to intemalrotation, so 
that, in practice, conical intersections will be confined to 
regions of very high 1. (For our model Hamiltonian, they 
will never occur, since centrifugal distortion effects on the 
barrier height are not considered). For normally accessible I 
values, we expect only avoided crossings to occur. When the 
energy gap associated with such an avoided crossing is large 
with respect to some suitable measure, we expect a one­
surface treatment to be adequate; when the gap is small with 
respect to that measure, we expect that a multiple-surface 
treatment will be necessary. 

IV. RES ANALYSIS OF THE TORSIONAL STATES 
VT=O, 1,2, AND 3 OF CH3CHO 

A. Model Hamiltonian for acetaldehyde 

We first use the method of Sec. III to construct single 
rotational energy surfaces for the vt=O, 1,2, and 3 torsional 
states of acetaldehyde. The quantum Hamiltonian is given in 
Eq. (4) and the constants have been taken from Ref. 12. The 
Hamiltonian used there by Kleiner et at. is much more com­
plicated than ours. It involves 48 phenomenological param­
eters needed to fit microwave and far infrared spectra of 
acetaldehyde to the experimental accuracy. Many of these 
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TABLE T. Parameters~ of the model torsion-rotation Hamiltonian used in 
this work from Ref. 12., 

A 
B 
C 

Dab 

1.884874 1(9) 
0.3487163(5) 
0.303 1777(1) 

-0.122709 (3) 

'7.6559(6) 
0.3291(2) 

407.947(2) 
- 12.918(8) 

'All values are in cm~l except for p, which is unitless. Uncertainties are one 
standard deviation in the last digiC 

parameters take into account the variation of the barrier with 
](] + 1) and K2, centrifugal distortion effects, etc., and are 
not directly relevant to the purpose of the present work. We 
thus set most of the 48 parameters to zero, retaining only F, 
p, V3 , V6 , A, B, C; and Dab' which are given in Table r. The 
constant V6 , which is not in Eq. (4), multiplies the operator 
(112)(1 -cos 6a); its main effect is to modify the shape of the 
potential barrier. 

After taking the classical limit for the rotational opera­
tors, a matrix representation for H RAM is constructed for dif­
ferent values of e and X, using a basis set of 35 free rotor 
functions. Since the rotational operators have been converted 
to functions of e and x,they contribute only to the diagonal 
matrix elements and consequently can be taken out of the 
matrix. Thus, it is necessary to diagonalize only the torsion 
plus K -rotation part of H RAM' This Hamiltonian matrix is X 
independent. It was diagonalized for e values such that 
] cos e (= K) was an integer with an absolute value less than 
or equal to 25. 

The resulting eigenvalues were fit to a cosine Fourier 
series in (2n'TT13)(pK-u) as in Eq. (5). The standard de­
viation of the fits was 2.2XlO-8 for vt=O, 1.4xlO-7 for 
vt=l, 4.2XIO-6 for v t=2, and 0.0089 for v t=3, in units of 
em-I. The values of the coefficients Fan obtained in the fits 
are given in Table II. Only three terms were needed to fit the 
vt=O state, but 15 terms were used in the fit of v t =3. 

A-symmetry RESs cannot' interact' with E-symmetry 
RESs and they can be considered as independent objects. We 

could thus have fitA and E eigenvalues independently. How­
ever, we fitA and E levels together to check the goodness of 
the Fourier series expansions. 

B. ,Stationary points of the RES 

The rotational energy surface is organized completely by 
the numoer'and location of stationary points, i.e., those 

"points for ",:,~ch the gradient of the energy with respect to 
the two spherical coordinates () and X is zero. Classically, 
stable trajectories can occur around axes passing through the 
center of th~ RES and maxima or minima on the RES. Stable 
trajectories can also enclose saddle points on the RES, al­
though in that case, they have to also enclose other stationary 
points because the Poincare index of a Closed phase curve18 

has to be 1 (saddle points have index -1, maxima imd 
minima + 1, and regular points have index zero), 

Stationary points for the model Hamiltonian of acetalde­
hyde corresponding to the parameters given in Table I were 
determined for v t =0, 1, 2, and 3 torsion,aJ states, for A and E 
symmetry species, and for various values of J <35. The tor­
sional state v t = 3 of acetaldehyde is the first torsional state 
above the barrier and distinctive characteristics are expected 
to occur in its RES. It can be seen that A-state (u=O) RESs 
for this model Hamiltonian are invariant 'under the C2h co­
ordinate transformations given in Table III. Similarly, E-state 
(u= ± 1) RESs are invariant under the C s transformations in 
Table III. Stationary points for all A and E RESs must there­
fore be distributed so as to preserve these point group sym­
metries. (Their distribution will in general, however, pre­
serve no higher point group symmetries.) Furthermore, 
although we refer to integral values of J in the text, numeri­
cal calculations of stationary points, trajectories, etc., were 
carried out after replacing j in Eq/ (5) by its "quantum­
mechanical" value r J(J + 1)] 112. [It is ofinterest to note, as 
the referee points out, that on the one hand, time reversal 
symmetry is lost in goiIlK from the quantum mechanical 
Hamiltonian in Eq. (4) to the classical RES for u:;60 in Eq. 

TABLE II. Coefficients (in em-I)" of the Fourier series fits [as in Eq. (5)] of the eigenvalues of the torsion-
K -rotation Hanriltonian. The standard deviation (CT) in em -I of the fits is also given. 

v,=O v,=1 v,=2 - v(=3 

Fao 75.355 324,109(3) .. 218.34829806(2) 341.0134296(7) 443.305(1) 
Fa{ -0.048729944(4) 1.209 657 98(2) -10.4900044(8) 33.601(2) 
Fai 0.000031067(4) 0.01488103(2) 0.896943 7(8) 4.533(2) 
Fa, 0.000 308 79(2) , -0.1489023(8) 2.279(2) 
Fa4 0.00000781(2) 0.0295475(8) 1.020(3) 
Fas -0.006538 2(8) 0.587(3) 
Fa6' 0.001 545 2(8) 0.355(2) 
Fa7 -0.0003809(8) 0.225(2) 
Fag 0.000094 3(8) 0.147(2) 
Fa9 -0.000025(1) 0.098(2) 
FaIO 0.070(2) 
Fall 0.051(2) 
FaI2 0.040(2) 
FaI3 -,0.024(2) 
Fa 14 0.017(2) 
CT 2.2XlO-8 1.4XlO-1 4.2X10~6 0.0089 

'Uncertainties are one standard deviation in the last digit. 
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TABLE III. Point group symmetry operations' for A (u=O) and E (u=± 1) RESs obtained from the model torsion-rotation Hamiltonian in Eq. (5). 

E .r,O,X 
.r,O,-X 

.r,7T- (),7T- X 
J,7T- (),7T+X 

A Species (u=O)C 

Jx ,1y,1z 
+Jx,-Jy,+J, 
-Jx,+Jy,-J< 
-Jx,-Jy,-Jz 

E J,8,X 
J,8,-X 

E species (u=' ± 1)" 

Jx,Jy,Jz 
+Jx,-Jy,+J, 

"The J,8,X transformations can beused directly in Eq. (5), The J~,Jy,1, transformations can be used in Eq. (5) after substituting from Eq. (1) to obtain an 
effective classical rotational Hamiltoriia:n of the form H(fx ,Jl' ,1,), but they cannot be used for the quantum mechanical operators Jx ,J y ,1z in Eq. (2). 

"This group is labeled C2h here because the angular momentum components Jx ,1y,1" which function as Cartesian coordinates when drawing the RES, 
transform as ex.pected for Cartesian coordinates under C2h• 

"A and E refer to symmetry species of the torsion-rotation energy levels under symmetry operations oflPe permutation-inversion group G 6 appropriate for 
acetaldehyde and similar molecules. A and E symmetry species correspond to setting u='O or ± 1, respectively, in Eq. (5). 

dThis group is JabeledC; here because the angular momentum components transform as ex.pected [or Cartesian coordinates under C,. 

(5), but that on the other hand, the RESs for a== ± 1 occur in 
pairs related by J---+-J and a--+-a.] 

The search for stationary points requires solving two 
coupled transcendental equations. Once a stationary point is 
found, the eigenvalues of the 2x2 hessian matrix indicate its· 
character. When both eigenvalues are nonzero, the stationary 
points are called Morse critical points and c·orrespond to 
maxima (two negative eigenvalues), "minima (two positive 
eigenvalues), or sa(fdles. (one positive, one negative eigenval-

FIG. L The J = 10 rotational energy surface for the E species tunneling 
component of the v,=2 torsional state of acetaldehyde, calculated from Eq. 
(5) using the constants in Tables I and II (with Fao=O) 'and a quantum 
mechanical J value of ~I 10. The z ax.is (8=0) points vertically upward. This 
RES is essentially a somewhat distorted version of the RES for a near­
prolate rigid asymmetric top with the rotational constants of acetaldehyde. 

o 
• 

11:/2 

o 

• 
o 

x 

FIG. 2. Contour plot of energies for the J = 10, v,=2, E-species acetalde­
hyde rotational energy surface shown in Fig. I as a function of 0"')(",<27T 
(abscissa) and O"'O"'1T (ordinate). Stationary points on the RES are indi­
cated by circles (max.ima), squares (saddles), and triangles (minima). Con­
tour lines indicate the three separatrices (S \ ,S2 ,S3)' which are constant 
energy lines passing through the saddle points. This contour is viewed such 
that the positive z ax.is points upward in the plane of the paper, and the 
positive x and y .ax.es point upward from the plane of the paper at the points 
(8,X)=( 1TI2,1T) and (1TI2,1TI2), respectively. [Note that Eqs. (1) require that X 
increase in a clockwise direction when viewed from the positive z axis.] A 
vertical line at X=O would q>rrespond to the intersection of the xz plane and 
the RES for negative x values. This same intersection would reappear be­
cause of the periodicity in X as a vertical line at X=21T, but stationary points 
are not repeated there to avoid confusion in counting them. A vertical line at 
X=7r would correspond to intersection of the xz plane and the RES for 
positive x values. Vertical lines at X=7T/2 and 31T12 would correspond to 
intersections of the yz plane and the RES for positive and negative y values, 
respectively. A horizontal line at ()= 1T/2 would correspond to intersection of 
the xy "equatorial" plane and the RES. The variation in "width" of the RES 
in Fig. I as a function of ° is not evident in this (8,X) contour plot of the 
energies. An ex.treme ex.ample of this problem would be illustrated by hori­
zontal lines at O=Q and 7r in Fig. 2, each of which corresponds to a single 
point in Fig. 1. As expected, tbe distribution. of stationary points in this 
figure preserves the C, symmetry (reflection in the xz plane) of the RES. 
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EG. 3. The J=10 rotational energy surface' for the E-sj:lecies tunneling 
component of ' the u;=3 torsional state of acetaldehyde, calculated from Eg. 
(5) using the constahts in Tables I and II (with Fao""'O) and a quantum 
mechanical J value of ~110. The z axis w=O) points vertically upward. This 
RES deviates considerably from the RES for a near-prolate rigid asymmetric 
top with the rotational constants of acetaldehyde. ' . 

ue). When 'one or both eigenvali.ies are~zero, the stationary 
points are called non-Morse critical points. These points are 
also called bifurcation points because for them the 
stationary-point structure of the surface undergoes a change. 

For comparison later, we recall' that six stationary points 
are found for the rigid asymmetric rotor: two maxima on the 
a axis, two minima on the c axis, and two saddles on the b 
axis; and no bifurcations appear even when J increases with­
out limit. 

The number of stationary points found for our model 
Hamiltonian for v (=0, I, and 2 A states is six. just as for the 
rigid asymmetric rotor RES. The two minima are located on 
the RAM y axis (Le., on the PAM c axis) at (B,X)=( 'Trl2,'Tr/2), 
('Tr/2, 3'Tr/2). The two maxima and the two saddles lie in the 
RAM xz plane (the PAM ab plane). However, the two 
maxima lie neither exactly on the RAM z axis nor exactly on 
the PAM a axis; though for vt=O, 1, and 2 in CH3CHO, they 
lie closer to the PAM a axis. Furthermore, the axis passing 
through the saddles is not orthogonal to the axis. passing 
through the maxima, though it lies close to the PAMb axis. 
This picture is valid for v(=O, 1, and 2 torsional states of A 
symmetry Jor all J values examined. 

For v (=0 and 1 E-state RESs, the number of, stationary 
points is still six, and axes passing through the maxima, 

o • 

7r/2 

B 

• 
o 

x 

FIG. 4.Contpur plot of e~ergies for thef= 10, u ,==3, E-~pecies acetalde­
hyde rotational energy surface shown in Fig. 3 'as a function of 0""X",,2'7T 
and 0"" fJiE;, 7T. Stationary points on the RES are again indicated by circles 
(maxima), 'squares (saddles), and triangles (minima); contour lines passing 
through the saddles again indicate the separatrices., (See the caption to Fig. 
2 fbi further details.) Note that the separatrices passing above and below the 
maximum near (B,x)==(Li7,7T) are not resolved in this figure and appear as 
a single straight line. 

1l'/4 

1f/2 

B 

31i/4 
~------~------~------~------~~ o 

x 

FIG. 5. Contour plot of energies for the J=25, v,=3, E-species acetalde­
hyde rotational energy surface in the region 0""X""27T and 7T/4""e.;;37f14. 
Maxima, saddles, and minima in this region are indicated by circles, 
squares, and triangles, respectively. Contour lines indicate' the separatrices. 
(See the caption to Fig. 2 for further details). Many of the nine maxima and 
minima 'In this~figure do not support quantizing trajectories and thus do not 
have simple quantum mechanical significance. 

J. Chern. Phys., Vol. 101, No.4, 15 August 1994 



2716 J. Ortigoso and J. T. Hougen: Rotational energy of molecules 

saddles, and minima are still close to the a, b, and c princi­
pal axes, respectively. The axes passing through the two 
maxima and the two saddles still lie in the RAM xz (PAM 
ab) plane, but these four axes no longer coincide in pairs 
(i.e., there is no axis containing both maxima and no axis 
containing both saddles). The axes passing through the two 
minima no longer lie on the y axis and no longer exactly 
coincide, though they are related by reflection in the xz 
plane. 

In spite of the qualitative differences described in the 
preceding two paragraphs, RESs for v t=O, 1, and 2 A and 
v t = 0, 1 E torsional tunneling components of acetaldehyde 
are still rather similar to RESs for a rigid near prolate asym­
metric top in the sense that all of these RESs have stationary 
points corresponding to two maxima (M), two saddles (s), 
and two minima (m) lying on, or nearly on, the principal 
inertia axes of the molecule. For higher v t states, new char­
acteristics emerge. Thus, for the Estate RESs with v t =2 and 
J=l, there are only two stationary points (M,m); for 
2".;;J...;:4, there are four (2M,s,m); for 5...;:J...;:7, there are six 
(2M,2s,2m), as for the rigid asymmetric rotor; for 
8".;;J".;;30, there are eight (3M,3s,2m); and for J;;;.,31, there 
are again six stationary points (2M,2s,2m). Evidently, a 
number of catastrophes occur for v(=2 E-state RESs which 
create or annihilate CM,s) or (m;s) pairs of stationary 
points. Classically, all new maxima and minima give rise to 
stable rotation axes. Quantum-mechanical implications of 
these new stationary points are discussed in the next section. 

Figure 1 shows an E-species rotational energy surface 
for v t =2, J=lO, which has been altered by removing the 
constant Fao term of the energy function in order to show 
more clearly the strong deformation in the equatorial region. 
Figure 2 shows a contour plot of this same surface, which 
displays the positions of the stationary points more clearly. 
The separatrices (contour lines passing through the saddle 
points) are also shown. A comparison of the topology of this 
surface with that for a rigid asymmetric top shows that the 
maximum and saddle near e= 1.77 and 1.87 rad, respectively, 
are new. Furthermore, the separatrix structure is considerably 
more complicated (there are now three separatrices instead of 
one). 

In Fig. 3, the E-species rotational energy surface for 
v t =3, J=lO is shown. As Can be seen from the correspond­
ing contour plot in Fig. 4, the number of stationary points 
(5M,7s,4m) has increased dramatically with respect to the 
vt=O, 1, or 2 RESs. The contour plot for J=25 in Fig. 5 
shows 18 of the 20 stationary points (5M,9s,6m) and a 
large number of separatrices. Just as for v t=2, the compli­
cated creation and annihilation history (as J increases) of the 
various stationary points for v t =3 could be chronicled in 
terms of catastrophes, beginning with the, stationary points 
(2M, Is, 1m) which exist for J= 1. 

c. Quantizing trajectories 

A knowledge of the RES topology is convenient when 
searching for trajectories which quantize the action. 16 In 

principle, any axis can be used to write the one-dimensional 
semiclassical quantization condition 

f21r Jo If1'Y=(n+a/4)h, (9) 

where n is an integer, h is Planck's constant, 'Y is an angle 
running from 0 to 2'1T which describes motion around the 
trajectory, J y is the momentum conjugate to this angle, and a 
is the Maslov index,19 which takes into account the effects of 
turning points during the trajectory. For rotations (with no 
turning points), a=O; for vibrations (with two turning 
points), a=2. 

Traditionally, one first seeks the quantizing trajectories 
which surroundcIassically stable rotation axes (Le., axes 
passing through maxima and minima on the RES), beginning 
with trajectories as close to the stationary point as' possible. 
The search for trajectories around a given axis ends when the 
energy of the trajectory reaches the energy of the nearest 
separatrix. From this point of view, the classical catastrophes 
which create new stationary points, as described in the pre­
vious section, will have quantum mechanical significance 
only to the extent that the new stationary points support 
quantizing trajectories. 

The search for trajectories around a given stationary 
point is sometimes simplified by a transformation of the 
original Hamiltonian HRAM given in Eq. (5) to a Hamiltonian 
written in a new axis system with the· new z axis passing 
through the stationary point. If (1, ec ,Xc) are the spherical 
polar coordinates of this stationary point in the RAM system, 
then the angular momentum components given by Eqs. (1) in 
the RAM axis system can be related to those in the new axis 
system in the following way: 

( J ) ("0' X, 
sin Xc 

n ~: RAM ~ -::" X, 
cos Xc 

0 co, 0 
-sin 0,)( J') 

x 0 o Jy (10) 

sin ec 0 cos e lz 
C new 

The RAM momenta expressed in terms of the new momenta 
by Eq. (10) can be substituted in Eq. (5) after converting it 
back from a function of (J,e,X) to a function of 
(1x,ly ,Jz) RAM using Eqs. (1). (1x,ly ,lz)new in this RES can 
then be expressed in terms of coordinates (J,{3,'Y) defined by 
equations analogous to Eqs. (1). Alternatively, (1x,ly ,lz}new 

can be expressed in terms of (1, J Y' 'Y), where J y=J cos {3. 
The rotational energy surface of Eq. (5) in the rotated axis­
system exprf?ssed in these latter coordinates takes the form 
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E(Jy,Y)=2:, Fan cos(2n'IT/3){p[cos OcJy-sin Oc(J2_J;)(1I2) ~os y]-cT}+A"J;+B"(J2 -J;)cos2 y 
/I 

where the constants A", B", C", D~y, D~z' and D~z' defined 
by analogy with the' constants in' the quantum mechanical 
Hamiltonian of Eq. (4), are functions of the constants A, B, 
C, and DXt of HRAM in Eq. (4), and of the coordinates Bc ,Xc 
of the stationary point to which the z axis has been rotated. 
The function J y(E, y) cannot be explicitly obtained, so Eq. 
(11) must be solved numerically when performing the inte­
grations in Eq. (9). 

We now apply the quantization condition of Eq. (9) to 
the v[=2, J=IO, E-species RES shown in Figs. 1 and 2, 
since the results obtained for this example illustrate a number 
of general points. The maximum near (O,X)=(O.IO,O) in Fig. 
2 lies approximately on the positive side of the principal a 
axis of the acetaldehyde molecule. This maximum supports 
eight quantizing rotational trajectories with 1O~n~3 in Eq. 
(9). Similarly, the maximum near (3.07, 'IT) lies approxi­
mately on the negative side of the a axis; it supports nine 
rotational trajectories with 1O~-n~2. Note that because the 
Cs symmetry of E-state RESs for acetaldehyde is consider­
ably lower than the D2h symmetry of RESs for rigid asym­
metric rotors, trajectories around the positive and negative a 
axes are not related to each other by symmetry and in par­
ticular are not equal in number. 

The regions between the two minima and their nearest 
separatrix (SO, or between the maximum near (1.77,0) and 
its nearest separatrix (S3)' tum out to be too small to support 
any quantizing trajectories for J = 10. 

Consider next trajectories in regions bounded by two 
separatrices. The region between S 1 and S3 is relatively 
simple .. It supports two rotational trajectories around the a 
axis, with n = -1 and O. The region between S 1 and S 2 is 
more complicated. Inspection of Fig. 2 shows that no rota­
tional trajectories around the a axis are possible. Rotl1-tional 
trajectories around the saddle near (1.38,'IT) are possible, and 
we initially moved the z axis to this saddle and then tried to 
use the resulting trajectories around this new z axis in Eq. 
(9). These attempts were nofsuccessful because such trajec­
tories led to triple-valued functions for f3( y), and conse­
quently also for J i y), which could not be handled by our 
numerical computational procedures. We therefore returned 
the z axis to the maximum near (0.10,0) and treated the 
trajectories in the region between SI and S2 as vibrations in 
Eq. (9). The functions f3( y) were still double valued, bu.t they 
proved to be much simpler to handle in our numerical pro­
cedures, so that three quantizing vibrational trajectories with· 
respect to the a axis were found between S 1 and S2, with 
n=2, 1, and O. 

In summary, all of the 2J +2=22 trajectories expected 
for a primitive semiclassical quantization of an asymmetric 
rotor were found. Of these, 17 correspond closely to the ro­
tational trajectories around the a axis obtained for the simple 
asymmetric-top RES of an acetaldehyde molecule in the ab-

sence of internal rotation. The two trajectories lying between 
separatrices S 1 and S 3 are also rotational trajectories around 
the a axis, and in that sense, they are topologically similar to 
the corresponding trajectories on the simple asymmetric top 
RES. The three trajectories lying between separatrices S 1 and 
S 2, however, which would be rotational trajectories on the 
simple asymmetric top RES, have become vibrational trajec­
tories for J = lOin the v t = 2 E torsional state of acetalde­
hyde. Thus, as expected, the classical catastrophes giving 
rise to altered stationary-point and separatrix structure lead to 
qualitative differences in trajectory structure. 

An examination of RES topology is frequently useful for 
predicting the occurrence of rotational energy level 
clusters. 1,3-5 Such clustering occurs when (i) a number of 
symmetrically equivalent stationary points on the RES give 
rise to the same number of symmetrically equivalent classi­
cal trajectories; and (ii) energy shifts induced by quantum 
mechanical tunneling effects' among the semiclassically 
quantized equivalent trajectories are small. For high J and 
low v t' acetaldehyde RESs (and therefore acetaldehyde ro­
tational energy level clusters) are expected to be similar to 
those for a simple asymmetric rotor. without internal rotation. 
To search for clusters at lower J and higher v t' it is neces­
sary to examine contour plots like those in Figs. 2, 4 and 5. 
For example, the two minima in Fig. '2 are related by reflec­
tion in the xz plane of symmetry, so that trajectories around 
these minima should come in degenerate pairs (twofold clus­
ters). Even though the regions between these minima and 
their nearest separatrices are too small to support quantizing 
trajectories for J = 10, quantizing trajectories should become 
possible at higher J. It would be interesting to search experi­
mentally for the onset of such oblate-type clusters. 

v. APPLICATION-LABELING OF vt=2, J=10, E 
SYMMETRY STATES 

As a final topic, we -examine the quantum mechanical 
implications of the use of various axes in the action integral 
of Eq. (9). Constant energy trajectories very close to a maxi­
mum or minimum stationary point take the form of an ellipse 
whose plane is perpendicular to the stable axis vassing 
through the stationary point. If this axis is used to define y 
and J 'Y' then the integrand J iE, y) in Eq. (9) is nearly con~ 
stant with respect to the angle y for a given trajectory. 

On the other hand, trajectories near separatrices, or tra­
jectories which surround several stationary points, do not 
have such simple forms, and J y in general varies greatly 
along the trajectory. The question then arises of which axis 
leads to the minimum variation in J yo This question· has 
quantum mechanical significance because a quantum calcu­
lation using a basis set with the angular momentum projec­
tion quantum number K quantized along this axis will lead to 
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eigenfunctions with the least mixing of basis functions with 
different K values, Le., to eigenfunttions in which K is as 
good a quantum number as possible. It seems reasonable to 
suppose that from this point of view, the best axis of quan­
tization for an arbitrary trajectory lies along the direction of 
the time average of the angular momentum of the trajectory 
Jt> where (for rotational trajectories) 

. (27T j P 7T Jt ;' Jo J(E,y)y-ldy . Jo y-1dy. (12) 

The three components of J(E, y) are given by equations 
analogous to Eqs. (1); Such a definition of best axis of quan­
tization implies thecuse of different axes of quantization for 
trajectories in different regions. It can be shown that when 
the desire for minimum variation in J y is applied to the dif­
ficult region between the separatrices 8 1 and 8 2 ill Fig. 2, it 
clearly favors use of an axis through the maximum near the 
principal a axis together with vibrational trajectories, rather 
than use of an axis through the saddle near the principal b 
axis together with rotational trajectories. 

Other criteria for choosillg the best quantization axis are 
possible, however, depending _on the purpose for which the 
axis is to be used; At least three candidates for best axis_ 
suggest themselves for a near prolate rotor with a symmetric­
top internal rotor: (i) the principal axis of smallest moment 
of illertia; (ii) the symmetry axis of the internal rotor; or (iii) 
the direction of the vector p appearing in Eq. (3). The Hamil­
tonian most often used for quantum mechanical calculations 
of torsion-rotation energy levels is H RAM described above, 
because it can be diagonalized easily in a two-step proce­
dure. Kleiner et al. 12 have reported finding ambiguities in the 
labeling of many states obtained from H RAM during the pro­
cess of analyzing the spectra. of acetaldehyde, because for 
many cases, several basis functions contribute with approxi­
mately the same weight to a given .eigenvector. This problem 
complicates the assignment procedure. Although a scheme 
has been devised20 to analyze unassignable spectra based on 
the use of energy ordering to label states, it is not appropriate 
to apply such a method to the acetaldehyde spectrum for 
several reasons. First of all, the spectrum is not congested 
enough to prevent assignment. Second and more important, 
the spectrum is fit to a phenomenological Hamiltoruanusing 
an iterative procedure. When the parameters change from 
one cycle to the next, the energy ordering can easily change 
ill such a way that ill different cycles, different assignments 
would be used. Kleiner and co-workers managed to solve 
their problems using the essentially experimental criterion of 
requiring smooth B values for _ calculated series of energy 
levels of given K and increasing J. 

The problems encQuntered. when using the RAM z axis 
for K labeling purposes (as Kleiner .and co-workers did) is 
illustrated graphically by the dashed lines in Fig. 6,- which 
connect values of the squares of coefficients of RAM basis 
set functions of various K for: three selected eigenvectors of 
E symmetry characterized by v t =2 and J= 10. Based on 
these RAM coefficients, the three energy levels should be 
called Iv t ;J,K)=12;1O,3), 12;10,4), and 12;10,3). This result 
is clearly awkward, since there are two eigenfunctions la­
beled by exactly the same quantum numbers. 
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FIG. 6. Squares of the coefficients (c}) of basis functions of given K for 
three selected v ,=2 eigenvectors of acetaldehyde with' E torsional symmetry 
and J = 10. Dashed lines connect coefficients in the rho-axis-method basis 
set (HRAM) used for actual calculations in Ref. 12. These coeffici6hls lead to 
the awkward K labels of 3, 4, 3 for these three, eigenvectors.- Solid lines 
connect coefficients of the same eigenvectors using basis functions referred 
to an axis system whose z axis passes through the appropriate maximum of 
the rotational energy surface. These coefficients lead to the reasonable K 
labels of 2, 3, 4 for these three eigenvectors. 

This ambiguity can be removed completely by making a 
rotation of the eigenvectors to the RES axis system, which 
for v t =2 of acetaldehyde is almost coillcident with 'the PAM 
axis system. Such a rotation is easily accomplished by using 
the Wigner D matrices. Coefficierits based on this axis sys­
tem (connected by solid lines in Fig. 6) indicate that these 
same three energy levels should be called 
IV t ;J,K) =12;10,2), 12;10,3), and 12;10,4), so that all ambigu­
ities have disappeared. 

VI. CONCLUSION 

The present work represents the first step in the descrip­
tion of rotational energy surfaces of acetaldehyde-like mol­
ecules for torsion-rotation levels below the barrier to inter­
nal rotation .. It was hoped' at the start of this work that the 
classical description of various quantizing trajectories on the 
RES would be more enlightening than the traditional quan­
tum mechanical eigenvectors expressed in the free-rotor 
times overall-rotation product basis set. 
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On the one hand, however, the large number of catastro­
phes which occur as J varies (together with changes in sepa­
ratrix structure, changes in trajectories from rotational to vi­
brational, etc.) suggest that a simple general classical 
treatment of the RESs for all J (even with given v t and A ,E 
symmetry species) will be difficult, and that it may be nec­
essary to treat the RESs for many J values as special cases. 

On the other hand, the b..J = 1 rotational energy intervals 
(B values) calculated quantum mechanically vary smoothly 
with J, suggesting that "catastrophic" effects on the rota­
tional energy structure may be absent. Their eiIect on other 
spectroscopic observables in the internal rotor problem has 
not been investigated, however, and the classical catastro­
phes found in the rotational energy surfaces could be associ­
ated with a breakdown of the K quantum number, giving rise 
at the quantum level to changes in the intensity of particular 
lines, or to the presence of forbidden transitions. It is easy, 
e.g., to imagine cases where fairly pure K projections (for 
labeling purposes) can only be obtained by using axes pass­
ing through different maxima on the rotational energy sur­
face, so that the quantum mechanical selection rules written 
in terms of these different K's would have little validity. 

To obtain more information on this question, we will 
continue this work in two ways. First, we plan to investigate 
in detail the relation between changes in classical trajectories 
and changes in quantum mechanical eigenvalues and eigen­
vectors for v t=2 in acetaldehyde, i.e., for the last torsional 
level below the top of the barrier. Second, we plan to inves­
tigate torsional levels above the barrier, although for such 
levels, an accurate method for treating quantum tunneling 
and interference effects between neighboring or close-lying 
trajectories on intersecting RESs is essential if the classical 
description is to be truly useful, and not just interesting, for 
the internal rotation problem in acetaldehyde. 
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