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ABSTRACT
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the
Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating
the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfv én wave ex-
citation spectrum for coronal heating models. We examine the motions of internetwork flux elements in a 24
hour long Hinode/NFI magnetogram sequence with 90 second cadence, and study both the scaling of their mean
squared displacement and the shape of their displacement probability distribution as a function of time. We find
that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scal-
ing has been observed in other studies for temporal increments as small as 5 seconds, increments over which
ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed
super-diffusive scaling at short temporal increments is a consequence of random changes in the barycenter
positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the
observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh
to Gaussian. This change in the distribution can be modeled analytically by accounting for supergranular ad-
vection along with motions due to granulation. These results complicate the interpretation of magnetic element
motions as strictly advective or diffusive on short and long timescales and suggest that measurements of mag-
netic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose
that passive trace motions in measured photospheric flows may yield more robust transport statistics.
Keywords: Sun: photosphere — Sun: granulation

1. INTRODUCTION

The motions of small-scale magnetic flux elements in the
solar photosphere are largely determined by plasma flows.
Studying these motions can contribute to our understanding
of the Lagrangian dynamics in the radiative boundary layer
of the highly turbulent solar convection zone. This in turn
can inform models of coronal heating by Alfvén waves, since
the spectrum of those waves depends on the ‘footpoint’ mo-
tions (e.g., Cranmer & van Ballegooijen 2005; van Ballegooi-
jen et al. 2014; Van Kooten & Cranmer 2017). Additionally,
flux-transport models of the solar dynamo rely on cross equa-
torial reconnection of the opposite polarity field along with
poleward transport of the residual to reverse the sign of the
global field every half cycle period (e.g., Babcock & Babcock
1955; Wang et al. 1989; Dikpati & Gilman 2007; Jiang et al.
2014). These processes are often modeled as due to the com-
bined action of meridional flow and supergranular diffusion.

For low molecular diffusivities, turbulent transport in the
continuum approximation can be described in terms of La-
grangian parcel motions (e.g., Toschi & Bodenschatz 2009).
This approach faces some challenges in the context of so-
lar magnetic flux elements because the magnetic field motion
is not strictly passive but back-reacts on the flow, the two-
dimensional motions observed in the photosphere represent
some unknown average of the flow over the range of depths
to which the field extends, and the elements themselves have
finite lifetimes. Of these, the first effect may be small be-
cause the ratio of plasma to magnetic energy density in the
quiet-sun photosphere is large, the second may contribute to
the observed field strength dependence of the element motions
(e.g., Hagenaar et al. 1999; Yang et al. 2015), and the last may

make the interpretation of element transport as a diffusive pro-
cess more challenging (e.g., Yuste et al. 2013), though this is-
sue has not yet been studied in the solar context. While it is
important that these difficulties be examined in future work,
here, as a first approximation and in common with most previ-
ous studies, we treat the magnetic flux elements as Lagrangian
tracers to understand the implications of their motions under
that assumption.

In that context, transport is usually characterized by how
the mean squared displacement of the flux-weighted barycen-
ter of magnetic elements scales with time (e.g., Lawrence &
Schrijver 1993), hr2i  t∝ γ , where r is the Lagrangian dis-
placement of each element over a temporal increment t , and
γ is the inferred scaling exponent. The temporal increment,
or time interval, refers to the time elapsed since any moment
along the trajectory of a flux element, not just the time since
its emergence. Thus, for a given temporal increment, multi-
ple displacement measurements are possible when the trajec-
tory spans a length of time longer than the temporal incre-
ment being considered. For very short time intervals, below
the Lagrangian integral time (the autocorrelation time of the
velocity along a parcel trajectory), the motion of any single
flux element is expected to be highly correlated and the mean
squared displacement of all the elements should scale ballis-
tically ( γ = 2 ). Subsequently, as the Lagrangian motions
de-correlate, both because the trajectories spatially sample a
wider range of the flow, which has a finite spatial correlation
length, and because the flow itself temporally de-correlates,
an intermediate value of 1 < γ < 2 is expected. This scal-
ing is sometimes referred to as super-diffusive. Finally, over
intervals longer than the Eulerian integral time (the autocor-
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relation time of the velocity at a fixed point), the Lagrangian
motions are expected to be fully de-correlated, and the dis-
placements of the flux elements should display a random walk
with diffusive scalingγ = 1 . Once measured, γ can be used to
calculate an effective diffusion coefficient (Abramenko et al.
2011), but, as we shall see, the physical interpretation of the
process as diffusion may be problematic.

Table 1 summarizes the measured values of γ from re-
cent studies, where the studies are limited to those of in-
ternetwork elements, the focus of this paper. The values
of γ vary depending on the data set examined and the fea-
ture tracking algorithm employed, but what is peculiar is that
the scaling, even at very short temporal increments, is super-
diffusive (e.g., Abramenko et al. 2011; Chitta et al. 2012; Ja-
farzadeh et al. 2014), even though one would expect these
increments to be significantly shorter than both the Eulerian
and Lagrangian integral times.

The scaling of the mean-squared displacement with time
provides only limited information about the underlying flows
which guide the motion of the flux elements. The probability
distribution of the Lagrangian displacements is more sensitive
to the flow properties and can capture some of the effects of
turbulent intermittency (Rast et al. 2016). For very short tem-
poral increments, over which the mean squared displacement
of the flux elements should scale ballistically, the probability
distribution of the displacements should reflect the underly-
ing Lagrangian velocity distribution. As the motions of the
flux elements de-correlate and the scaling becomes diffusive,
the probability distribution should, for a two-dimensional mo-
tion, approach a Rayleigh distribution (the distribution would
be Maxwellian for three-dimensional motions). We find that
displacement distributions of internetwork magnetic elements
do not behave as expected.

In §3 we examine the displacement probability distribution
of magnetic elements as a function of time. While the dis-
tribution approaches Rayleigh as the trajectories de-correlate
over granular lifetimes, at longest intervals ( t & 2 hours), it
surprisingly becomes Gaussian. With the help of a simple
correlated random walk model with drift motion we demon-
strate that this is likely due to the presence of an underly-
ing large-scale supergranular flow which dominates granu-
lar motions over long timescales. We expect that transport
by supergranular motions on timescales long compared to
their lifetimes would be similarly affected by the underlying
meridional flow. The multiscale and intermittent nature of the
flows leads to flux transport that cannot be described as either
strictly diffusive or purely advective, scaling is thus subdom-
inant (Rast & Pinton 2011). In §4 we revisit the observed
discrepancy in scaling at shortest times and, with the help of
a radiative magnetohydrodynamic simulation of solar granu-
lation, show that the observed super-diffusive scaling is likely
an artifact of random changes in the barycenter positions of
the magnetic elements, induced by rapid changes in their flux
content or configuration.

2. OBSERVATIONAL DATA AND RESULTS

To investigate the transport of small-scale internetwork
magnetic flux elements, we analyzed observations obtained
with the Narrowband Filter Imager (NFI; Tsuneta et al. 2008)
on-board the Hinode spacecraft (Kosugi et al. 2007). The data
sequence is a part of the Hinode Operation Plan 151 (HOP
151). The measurements are well suited to study the quiet-
sun magnetic fields on temporal scales from minutes to days
because of their high spatial and temporal resolution, flux sen-

Table 1
Recent work on the transport of internetwork magnetic flux elements.

Author Instrument Cadence (s) γa

Abramenko et al. (2011)b BBSO/NST 10 1.48-1.67
Chitta et al. (2012)b SST/CRISP 5 1.59
Giannattasio et al. (2014a)c Hinode/SOT 90 1.55
Giannattasio et al. (2014b)c Hinode/SOT 90 1.44
Jafarzadeh et al. (2014)b Sunrise/SuFI 3-12 1.69
Manso Sainz et al. (2011)c Hinode/SOT 28 0.96, 1.70

This workc Hinode/NFI 90 1.48
a Scaling exponent γ computed using bmagnetic bright points and
cmagnetic flux elements.

Figure 1. Sample Hinode/NFI magnetogram saturated at ±30 Gauss. The
red circle marks the boundary of the internetwork region. Colored curves are
the trajectories of individual flux elements.

sitivity, and long duration.
The data are an uninterrupted time sequence of magne-

tograms, about 24 hours long, starting at 08:32:00 UT on 23
November 2010, taken with 90 second cadence. They cover
a field of view of about 41 × 46 Mm2, with 0”.16 (116 km)
pixel size, and were constructed using Stoke I and V mea-
surements ±160 mÅ from the 589.6 nm Na I D1 line core
center. Post processing of the data and removal of thep-mode
signal by the application of a subsonic filter (Title et al. 1989;
Straus et al. 1992) yields magnetograms with a noise level of
4 Gauss, an estimate based on the standard-deviation of pix-
els with no clear magnetic signal. More details regarding data
processing and calibration can be found in Gǒsić et al. (2014).

The magnetogram sequence employed in this study sam-
ples the quiet sun at disk center, capturing the spatio-temporal
evolution of a single supergranule and its surroundings. A sin-
gle frame from the time series is shown in Figure 1. The red
circle, with radius 9.3 Mm (corresponding to 0.8 times that
of the supergranular cell (Gošić et al. 2016)), outlines the in-
ternetwork region within which flux elements were identified
and tracked. The multi-color curves indicate the trajectories
of some representative flux elements.

2.1. Tracking Algorithm

We used a semi-automatic procedure to determine the tra-
jectories of the magnetic flux elements. Identification and
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tracking were carried out automatically, but the results were
revised manually at each time-step to verify the performance
of the code. In cases of element misidentification or interac-
tion (merging, cancellation or fragmentation), the code out-
put was corrected and the tracking continued from that step
until precise trajectories were derived. The feature identifi-
cation algorithm employed the clumping method of Parnell
et al. (2009), with a minimum unsigned flux density of 12
Gauss (3 times the noise level) and a minimum element area
of 4 pixels. This yielded elements with a mean unsigned flux
density of about 23 Gauss. To identify individual elements
during interactions we used the downhill method of Welsch
& Longcope (2003), which allowed us to maintain their iden-
tification over long periods of time. Our tracking approach
thus overcomes some of the difficulties faced by standard al-
gorithms during element interactions (e.g., Gošić et al. 2014,
2016). The tracking was repeated twice to check for consis-
tency, and nearly identical results were obtained each time.
Further details can be found in Gošić (2012)).

For the analysis that follows, we restrict identification to
elements whose trajectories begin within the internetwork re-
gion defined by the red circle in Figure 1. Further, element
lifetimes ranged from 1.5 minutes to 5.5 hours, and we re-
tained for analysis only those with lifetimes ≥ 4.5 minutes.
This yields a total of 6463 unique magnetic flux element tra-
jectories over the 958 magnetogram sequence. The change
in flux-weighted barycenter positions of these elements as a
function of time forms the basis for the displacement statis-
tics analyzed below.

2.2. Mean Squared Displacement

The mean squared displacement of the flux elements is plot-
ted as a function of temporal increment in Figure 2 (red stars).
It approximates a power law with a super-diffusive scaling
exponent, γ = 1.48 . This is consistent with previous mea-
surements (Table 1), the value falling in-between ballistic and
diffusive values. There is some deviation from the power-law
behavior for time intervals greater than about 2 hours which
exceeds the displacement variance. In §3.2 we suggest that
this deviation at long times reflects advection by the underly-
ing supergranular flow, for which there is strong evidence in
the displacement distributions.

2.3. Displacement Probability Distributions

While the mean squared displacement of the flux elements
closely follows a power-law for time intervals below 2 hours
(Figure 2), the underlying probability distribution of the dis-
placements evolves over this range of increments. The left
column of Figure 3 shows the observed distributions for four
different temporal increments, t = 1.5, 6, 45 and 120 min-
utes, along with the best-fit Rayleigh and Gaussian functions
(blue (dashed) and green (solid) curves, respectively). For
short increments, t = 1.5 minutes (Figure 3 a), the distri-
bution is neither Rayleigh nor Gaussian, but shows an el-
evated probability for large displacements. In §4 we argue
that this is likely due to the apparent motion of the magnetic
element barycenters when they are subject to flux evolution
and element identification uncertainties. For intermediate in-
crements, t = 6 minutes (Figure 3 b), the distribution ap-
proximates a Rayleigh distribution because the motions have
largely de-correlated. Somewhat surprisingly, for longer tem-
poral increments the distribution does not remain Rayleigh
(t = 45 minutes, Figure 3c) but instead becomes nearly Gaus-
sian ( t = 120 minutes, Figure 3d). We show below that a

Figure 2. Mean squared displacement as a function of temporal increment
for the magnetic flux elements in Hinode/NFI data (red stars) and for the
random walk model (blue squares) of §3.2. The best-fit slope for the Hin-
ode/NFI data is 1.48 (red dashed line), computed from fitting the data below
2 hours. The scaling for the model is 1.97 and 1.96 (blue dashed lines) at
the shortest and the longest temporal increments, respectively. The vertical
black dashed lines correspond to the increments for which the displacement
probability distributions are shown in Figure 3. For both observations and the
model, the variance of the squared displacement at each temporal increment
does not exceed the size of the plotting symbol.

larger scale drift component (likely originating with super-
granulation in the observations) superimposed on the granular
motion can explain both this change and the deviation from
power-law scaling at long intervals.

3. MODEL: CORRELATED RANDOM WALK WITH DRIFT

3.1. Model Definition

Under the assumption that magnetic flux elements are ad-
vected passively by the underlying plasma flow, we model the
effects of granular and supergranular flows on magnetic ele-
ment motions as random walk and drift contributions to the
motion of Lagrangian ‘walkers’. The effect of granular flow
is modeled as a correlated random walk, a random walk with
an imposed correlation in the step direction. The random walk
steps are of size vg ∆t , where both vg and the step interval∆t
are prescribed constants. The direction of travel of a walker is
taken to be θ + ∆θ , where θ is the direction of motion during
the previous step and ∆θ , computed anew for each time-step,
is a uniformly sampled random variable between −π/C and
π/C . The parameter C constrains the step direction (induces
memory) and thus controls the time it takes for the motions
to de-correlate. For C = 1 , ∆θ ∈ [−π, π) and the motion is
delta-correlated (step direction de-correlates after one time-
step). If C is large, the change in direction of the walker (∆θ )
at each time-step is small, and the motion stays correlated for
a longer time. When interpreting observations in light of this
model, the parameter C is chosen so that the random walk
component of the motion de-correlates over a granular life-
time.

To keep the number of free model parameters to a mini-
mum, the supergranular contribution to the magnetic element
motions is modeled as a uniform constant drift in a single di-
rection. This approximation is reasonable as long as the ele-
ments being tracked are internetwork elements (as is the case
for our data) and the supergranular flow is approximately spa-
tially uniform and steady over any individual granulation in-
duced random walk trajectory. This is true if the supergranular
motions are directed approximately radially away from their
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Figure 3. Displacement probability distributions for Hinode/NFI data (left column) and for the random walk model (right column) of §3.2, at different temporal
increments, are shown here. The red stars are the distribution values, the blue (dashed) and the green (solid) curves refer to the best-fit Rayleigh and Gaussian
curves, respectively. Note that only ∼ 2% of the flux elements survive to contribute to the Hinode/NFI data distribution at 120 minutes, and since the bin size is
held constant at about 0.13 Mm, the histogram is noisy.
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centers and, over the lifetime of an individual flux element,
the granular motions do not induce a significant deviation
from that radial direction. We can determine if our model is
self-consistent by checking if these conditions are met for the
parameters that approximate granular and supergranular con-
tributions. For these (see §3.2), we find that the average devi-
ation of a random walk trajectory from the direction of drift
is about ±2.3 ◦ over the time it takes for the drift component
to carry the walkers 30 Mm (the characteristic supergranular
length scale, Rieutord & Rincon (2010)). Thus, motion due to
granulation approximately samples only a small region about
the mean supergranular drift direction, though radial gradients
in the supergranular flow may pose difficulties for modeling
very long-lived element displacements that traverse the full
supergranular extent. The same drift can be applied to each
random walk realization, even if in reality the supergranular
flow carries each magnetic element in a radially different di-
rection, because the granular component carries the individual
walkers in all directions, and only the distance traveled, not
the direction of travel, is of interest to the displacement statis-
tics. In practice, when constructing the two-dimensional cor-
related random walk model, we choose the drift to act in the
positive x-direction and vectorially add vsg ∆t to the corre-
lated random walk componentvg ∆t at each time-step, where
vsg is the drift velocity.

3.2. Model Displacement Probability Distributions

To qualitatively compare model results with observations,
we take C = 7 , vg = 5.5 km/s and vsg = 0.5 km/s. When
scaled with ∆t = 0.4 seconds, the de-correlation time of ran-
dom walk component is on average about 6 minutes. These
values have not been fine tuned, but are reasonably represen-
tative of granular and supergranular horizontal flow veloci-
ties and typical granule lifetimes (e.g., Rast 2003; Nordlund
et al. 2009; Rieutord & Rincon 2010). Using these param-
eters, we compute the trajectories of the walkers and deter-
mine their displacements as a function of temporal increment.
The resulting displacement distributions (Figure 3e-h) quali-
tatively agree with the observations for all but the shortest in-
crements. As mentioned previously, at these shortest times the
observed distribution reflects the underlying Lagrangian ve-
locity distribution and any pathologies associated with track-
ing the barycenter of magnetic elements. The later issue does
not enter this simplified correlated random walk model, and
we discuss its role in the observations in more detail in §4. It
is worth noting here, that even in the absence of the barycen-
ter complications, the observed distribution at early times is
unlikely to be captured by this simplified model since un-
like for the observations, the Lagrangian velocity distribution
in the model is a delta function. What is important is that
this simple model captures the evolution of the distribution
at longer times. As is the case for magnetic elements in the
Hinode/NFI data, the distribution first becomes Rayleigh, as
the motions de-correlate over temporal increments longer than
the Lagrangian autocorrelation time, and then, for still longer
increments, approaches an offset Gaussian, as the slow drift
comes to dominate the displacement.

This dependence of the shape of the probability distribution
function on temporal increment can be expressed analytically.
For time intervals long compared to the granular correlation
time, the walker motions combine a random walk with a drift.
The former yields a two-dimensional Gaussian spread of the
walkers positions about the origin while the latter advects the
origin downstream. By bivariate transformation of random

variables (e.g., Casella & Berger 2002; Hogg & Tanis 2006;
Rast & Pinton 2009, and this paper’s Appendix A), for spatial
offsets in x and y which are Gaussianly distributed with equal
variances σ about x0 and y0, the radial distance r from a fixed
origin at (0, 0) is distributed as

P (r) =
r

σ2
e−(r−r 0 )2 /2σ 2 e−r 0 r/σ 2 I 0(r 0r/σ 2) , (1)

where r 2
0 = x 2

0 + y 2
0 and I 0 is the lowest order modi-

fied Bessel function of the first kind (Abramowitz & Ste-
gun 1972). In our model of the Lagrangian displace-
ment of the walkers, both r 0 and σ increase with tem-
poral increment due to the drift and random walk com-
ponents of the motion, respectively. For small values of
r 0 compared to σ, the product of the last two terms in
Equation (1) approaches one and the distribution becomes
Rayleigh, as expected for a two-dimensional random walk
centered at origin. For large r 0 and small σ, I 0(r 0r/σ 2) ∼
exp(r0r/σ 2)/

p
2πr0r/σ 2 (Abramowitz & Stegun 1972),

and the distribution becomes

P (r) ∼
r

(r/r 0)
2πσ2

e−(r−r 0 ) 2 /2σ 2 . (2)

Thus for large r 0 and small σ, the distribution is nearly Gaus-
sian around r = r 0, with only slight distortion by the r/r 0
pre-factor to ensure that P (r) = 0 at r = 0 . Note that for a
random walk without drift,x0 and y0 are typically taken to be
zero and the resulting distribution is Rayleigh for all times, but
for our case with finite drift contribution r 0 = x 0 = v sgt , the
distribution evolves from Rayleigh to Gaussian at long times
(Figure 3e-h).

Figure 4a-d displays the positions of the random walk-
ers (black points) in our correlated random walk model at
times corresponding to the displacement distributions shown
in Figure 3e-h. Over very short time intervals, the trajec-
tories are radially ballistic, directed away from the origin.
Over longer intervals, walkers’ positions are distributed as
a two-dimensional Gaussian ‘cloud’ about the drift position
r 0 = v sgt , and the displacement distribution about that posi-
tion is Rayleigh. As r 0 is small compared toσ, the peak of the
Gaussian cloud is still close to the origin, and the displace-
ments, when computed from the origin, are approximately
Rayleigh distributed (see Figure 4b and its corresponding
displacement distribution in Figure 3f). Since the standard-
deviation σ of the random walk component increases as t1/2 ,
while r 0 due to the drift increases as t , after sufficiently long
times the Gaussian cloud drifts away from the origin and the
shape of the displacement distribution, as computed from the
origin, changes from Rayleigh to nearly Gaussian (see Fig-
ure 4d and its corresponding displacement distribution in Fig-
ure 3h). That change is apparent with increasing time in both
the model distributions (right column of Figure 3) and those
derived from the observations (left column of Figure 3).

The change is also reflected in the mean squared displace-
ment vs. time curve in Figure 2, in which the curve for
walkers (blue squares) is plotted along with measurements
from Hinode data. For the shortest temporal increments, the
walker motions are highly correlated and the scaling is bal-
listic. For longer increments the walker motions de-correlate
and the scaling becomes super-diffusive, flattening towards
what would, in the non-drifting case, become the diffusive
value. With drift, this is interrupted, and the scaling reverts
to ballistic as drift contribution to the displacement comes
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Figure 4. Position of the model walkers (black points) at t = (a) 1.5, (b) 6, (c) 45 and (d) 120 minutes. The Red (dashed) concentric circles are contours of
constant radius and emphasize the drift of walkers along positive x-direction, away from the origin. Black solid lines mark the x and y-axis.

to dominate the motion. Power-law fits to the model data
at the shortest and longest times have indices of 1.97 and
1.96, respectively. This reversion to ballistic scaling occurs
for temporal increments longer than (vg/v sg )2  ∗ τg if the drift
is steady, where τg is a typical granule correlation time. If the
correlation time of the random component and the timescale
on which drift dominates the motions are sufficiently well
separated, then a diffusive scaling between the two ballistic
regimes can be achieved. This is not the case here because
the ratio of the granular random walk velocity to the super-
granular drift velocity is insufficiently large. For temporal in-
crements greater than 2 hours, the Hinode data may show the
beginning of the change in scaling. Unfortunately, the flux
elements do not have sufficiently long lifetimes to recover the
full reversion to a ballistic scaling.

4. FLUX ELEMENTS AND PASSIVE TRACERS IN MURAM
SIMULATIONS

As noted previously, the model of§3, based on a correlated
random walk with drift, does not capture the observed mean
squared displacement scaling for magnetic elements at short-
est time intervals. The observed scaling at shortest time inter-
vals is super-diffusive, rather than ballistic, as in the simplified
model. This is true for element trajectories in our Hinode ob-
servations and for trajectories determined using data with ca-
dences as high as 5 seconds (Chitta et al. 2012, Table 1). One
expects these time intervals to be well below the Lagrangian
and Eulerian integral times, and under the assumption that
flux elements are advected passively, the element displace-
ments should thus scale ballistically.

To uncover the origin of this discrepancy, we analyzed
a small-scale dynamo quiet-sun simulation using a modi-
fied version of the MURaM radiative magnetohydrodynamics
code (Vögler et al. 2005). The simulation is similar to the run
O16b described in Rempel (2014), but with the vertical do-
main size extended to 1.7 Mm above the photosphere and the
radiative transfer computed using four opacity bins. The over-
all domain size is about 6 × 6 × 4 Mm3, with a uniform grid
spacing of 16 km. The simulation has no imposed mean mag-
netic field, but the mixed field is generated and maintained by
a small-scale dynamo. The average unsigned vertical mag-
netic flux density at optical depth unity has a value of about
80 Gauss, which is quite representative of the quiet-sun mag-
netism (see e.g., Orozco Suárez et al. 2007; Danilovic et al.
2016). The simulation spans about one hour with 2.0625 sec-
ond cadence (1801 snapshots). We note that the simulation

captures granular flows only, not those at larger scales, so
the contribution of supergranulation, critical to transport over
longer time intervals ( §3.2 above), cannot be examined. In
this section, we focus on time intervals below 100 seconds
for which we expect the scaling to be independent of super-
granular motions, and are particularly interested in the short-
est temporal increments for which ballistic scaling is expected
but not seen in the observations.

We identified and tracked flux elements in the simulations
using vertical magnetic flux density images at optical depth
unity, employing a minimum unsigned flux density threshold
of three times the standard-deviation above the mean. The
threshold was computed independently for each image. At the
native resolution of the simulation, this corresponds to pixels
with unsigned flux density in excess of about 470Gauss. We
note that the threshold values differ for the simulation and the
observational data (§2.1) due to differing image resolution and
differences in the optical depth surface on which the elements
are tracked. Only magnetic elements with areas greater than
20 pixels and lifetimes in excess of 10 time-steps (about 20
seconds) were included in the study of the displacement statis-
tics in the simulations. We discarded elements that split or
merged over the 100 second interval in order to minimize un-
certainty in the displacement measurement, which was based
on changes in the flux-weighted barycenter positions.

Figure 5 plots the mean squared displacement as a func-
tion of temporal increment for the magnetic elements tracked
in the MURaM simulation (red stars). The curve approx-
imates a power-law with slope 1.69, similar to the scaling
found using observations of magnetic bright points with sim-
ilar cadence (e.g., Chitta et al. 2012; Abramenko et al. 2011,
Table 1). Moreover, the shape of the curve (deviating from
a power-law in detail) is similar to that seen in observa-
tions (compare with Figure 8 in Chitta et al. (2012) and Fig-
ure 5 in Abramenko et al. (2011)). Both the observations and
the simulations show a shallower slope for shortest temporal
increments, with the scaling exponent in the MURaM simu-
lation at shortest increments having a value of 1.21.

Not only is the super-diffusive scaling at such short incre-
ments surprising in itself, but the increase in the scaling ex-
ponent with increasing increment in the absence of any large-
scale flow (or in situations where the contribution from the
large-scale flow is negligible, as is the case for observations
at these increments) is also hard to understand. Without a
large-scale flow component, the scaling exponent should de-
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Figure 5. Mean squared displacement vs. temporal increment for flux ele-
ments in MURaM simulations tracked at native resolution (red stars), tracked
at degraded 116 km resolution (green diamonds), passive tracers (black dots)
and the model presented in §4 (blue squares). The best-fit slope at the short-
est temporal increments for flux elements tracked at native resolution is 1.21
(red dashed line) and that for passive tracers is 1.99 (black dashed line). Note
that the plots for black dots and green diamonds are shifted vertically upward
to better compare their shape with other curves at long increments. The vari-
ance of the mean squared displacements for all the curves do not exceed the
size of the plotting symbol.
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Figure 6. Lagrangian velocity distribution of the flux elements (red) and the
passive tracers (black) tracked in the MURaM simulations. Plot in the inset
shows the distribution for velocities less than 10 km/s.

crease with increasing increment as the motions de-correlate
with time. Moreover, oddities are found in the Lagrangian
velocity distribution of the magnetic elements in the simu-
lation. The red curve in Figure 6 plots the Lagrangian ve-
locity distribution determined from the flux element barycen-
ter displacements after one time-step. It shows unrealistically
high velocity values, well in excess of the photospheric sound
speed (∼ 7 km/s, e.g., Nordlund et al. (2009)). To check that
this is not an artifact of our tracking algorithm, we analyzed
magnetic bright point displacements in the photospheric con-
tinuum intensity images of the MURaM solution. The track-
ing was done by Samuel Van Kooten using the algorithm de-
scribed in Van Kooten & Cranmer (2017). That algorithm is
independent of the one we employed, yet we found the veloc-
ity and displacement statistics in agreement with those of the
magnetic flux elements presented in this work.

We suggest that both the non-ballistic scaling of the ele-
ment displacements at short time intervals and spurious su-
personic Lagrangian velocities deduced from the element mo-
tions in the simulations are a consequence of using magnetic
elements’ barycenters in determining their positions and mis-
interpreting all changes in those positions as true motions.
Changes in the magnetic flux content of an element subjects
its barycenter to random changes in position. This intro-
duces jitter that is erroneously interpreted as motion. Figure 7
presents an illustrative example. The outline of the magnetic
element at two consecutive time-steps is shown in red and
blue, with blue being the later time. The red arrow indi-
cates the displacement (scaled for illustration), as computed
from the shift in element’s barycenter. As the magnetic ele-
ment evolves, the disappearance of flux displaces its barycen-
ter with a magnitude and direction drastically different from
what would be achieved by passive advection due to under-
lying plasma flow. The black arrow in the figure (scaled as
the red arrow) indicates the displacement computed using the
vector average of the plasma velocities over all grid-points
constituting the element at the initial time-step. Magnetic
flux evolution thus introduces a random component to the de-
duced motions of flux element barycenters which dominates
the scaling at shortest time intervals and can lead to unrealis-
tically large Lagrangian velocity values. This is true irrespec-
tive of whether the barycenter definition is flux-weighted or
position-weighted.

To further assess the impact of this jitter, we compared mag-
netic element motions with passive tracer motions in the sim-
ulation. The motions of passive tracers were evolved using the
photospheric horizontal plasma velocity at their locations, and
are independent of any contribution from flux evolution. For
point-like passive tracers seeded at random locations, the scal-
ing for the shortest temporal increments is ballistic. To ensure
that the flux element positions are not biased, we separately
seeded the passive tracers co-spatially with the flux elements,
so that they initially occupied the same area (the same grid-
point locations) as the corresponding elements. The passive
tracer ‘element’ positions were then evolved using the hori-
zontal velocity field averaged over the area they spanned. This
traces the motions of their position-weighted barycenter and
allows direct comparison between the flux element and pas-
sive tracer statistics if the field distribution over the elements
is nearly uniform. This approximation holds for the mag-
netic elements identified using the employed three standard-
deviation threshold, and for these elements we found consis-
tent velocity and displacement statistics independent of the
barycenter definition.

The barycenter velocity distribution of the passive tracer
‘elements’ shows no pathologically high values (black curves
in Figure 6), and for short temporal increments, the mean
squared displacement of the ‘elements’ scales ballistically
(for black dots in Figure 5), in contrast to the super-diffusive
scaling for magnetic elements (for red stars in Figure 5). For
longer temporal increments, the mean squared displacement
scaling of the flux elements and passive tracers agree, sug-
gesting that over longer timescales the passive advection of
flux elements due to the plasma flow dominates the random
barycenter jitter. For sufficiently long increments (not shown
in the plot), and in the absence of any large-scale flow (dis-
cussed in §3.2), the slope for both curves should approach the
diffusive value, though direct comparison between the flux el-
ement and passive tracer statistics makes the most sense over
short temporal increments over which the passive tracer and
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Figure 7. Red and blue contours mark the boundary of the area covered
by a flux element at two consecutive time-steps (blue being the later time).
Red and black arrows are scaled with respect to each other and signify the
differing magnitude and direction of the displacement of magnetic element
barycenter due to flux evolution and plasma flow, respectively.

element locations remain contiguous.
The scaling behavior of the magnetic flux elements in MU-

RaM (for red stars in Figure 5) can be reproduced using a
simple two-component model of their motion: motion due to
a correlated random walk (corresponding to passive advection
by granular flows) and motion due to delta-correlated jitter
(mimicking random barycenter motion due to flux evolution).
The correlated motion follows the same formulation as that
in §3.1 without the supergranular drift component (C = 8.4 ,
vg = 2.0 km/s, vsg = 0 km/s). The parameter C is chosen
so that, when scaled with MURaM time-step ∆t = 2.0625
seconds, the motion de-correlates over a typical granular life-
time (about 6 minutes). The granular velocity vg is chosen
to be the mean of the passive tracer barycenter velocity mag-
nitudes when the tracers are seeded co-spatially with the flux
element locations (as described above). We note that vg here
is distinct from that used in §3.2. Here, since it is based on
passive tracers in the plasma velocity field, it does not include
the barycenter jitter due to flux element evolution. The jitter
component is instead explicitly modeled as a vector of con-
stant magnitude with random orientation and is added to the
correlated granular motions at each time-step. Plotted in Fig-
ure 5 with blue squares is the model displacement when using
the values above, along with a jitter magnitude 3.5 km/s. The
value of 3.5 km/s is arbitrary but demonstrates that this model
can capture the scaling observed for the magnetic flux ele-
ments over short temporal increments. The real distribution
of jitter velocity magnitudes in the simulation can be deter-
mined by the difference between the measured flux element
barycenter values (red distributions in Figure 6) and their pas-
sive tracer counterparts (black distributions in Figure 6). It is
broad with a mean value of 2.3 km/s and a standard-deviation
of 3.8 km/s. What is important is that this highly simplified
model captures the effect of both the correlated granular flow
(which would alone yield ballistic scaling) and the random
apparent motions due to flux element evolution (which would
alone yield diffusive scaling). Together these two components
explain the super-diffusive scaling at the shortest time inter-
vals and the increase in scaling exponent as the temporal in-
crement increases.

Table 2
Scaling vs. image resolution, computed for flux elements tracked in

MURaM simulations

Pixel resolution Flux density thresholda γ0
b σv

c

(km) (Gauss) (km/s)
16 470 1.21 3.39
27 412 1.32 2.74
38.5 377 1.44 2.43
47 354 1.50 2.25
100 254 1.73 1.62
116 234 1.75 1.58

a average of three times the standard-deviation values for all magnetograms,
bscaling at the shortest temporal increments, cstandard-deviation of the
Lagrangian velocity distribution of the flux elements.

4.1. Magnetic element displacement vs. image resolution

The barycenter jitter contribution to magnetic element mo-
tion is sensitive to the physical processes governing flux evo-
lution, image resolution and cadence, and the feature track-
ing algorithm and identification parameters. Green diamonds
in Figure 5 illustrate the effect of image resolution on the
mean squared displacement. Flux elements were identified
and tracked after convolving the MURaM images with a two-
dimensional Gaussian kernel, degrading the MURaM image
resolution to ∼116 km (Gaussian full-width at half maximum
equal to the ratio of target pixel size and MURaM pixel size).
The scaling exponent obtained (for green diamonds) has a
larger value at the shortest increments than that obtained when
tracking elements at the native resolution (for red stars). Ta-
ble 2 shows the monotonic increase in the short increment
scaling exponent γ0 with decreasing resolution. While at
these timescales the flow contribution to the displacement is
ballistic, the barycenter jitter contribution to the scaling de-
creases with decreasing resolution. This is because the flux
elements being tracked in a degraded image are on average
larger so their barycenter positions are less sensitive to small
changes in the field configuration, the probability for large
changes in flux density is reduced by the reduction in resolu-
tion, and the shape of the elements in a low-resolution image
are less irregular making the barycenter definition more robust
and its position less sensitive to barycenter jitter.

It is important to also note that the plot for the low-
resolution results for flux elements (green diamonds) in Fig-
ure 5 were shifted vertically upward to better compare its
shape with the native resolution (red star) displacements at
longest increments. The magnitude of the displacement de-
pends on the Lagrangian velocity distribution which decreases
in width with decreasing resolution ( σv in Table 2). The ve-
locity distribution captures both the advective and the jitter
contributions, both of which are reduced when the image is
degraded. This leads to smaller mean squared displacements
for the same temporal increment. Thus, both the scaling coef-
ficient at the shortest time intervals and the magnitude of the
mean squared displacements are not robust and depend on the
image properties and the feature tracking parameters.

5. SUMMARY AND CONCLUSION

We examined the transport of internetwork magnetic flux
elements in Hinode/NFI data and found, as in previous stud-
ies (e.g., Chitta et al. 2012; Abramenko et al. 2011; Jafarzadeh
et al. 2014), that their mean squared displacement scales
super-diffusively with time even for the shortest temporal in-
crements. In addition, the shape of the underlying displace-
ment probability distribution evolves from Rayleigh to Gaus-
sian as the increment increases. Using a correlated random
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walk model with a drift component, we have demonstrated
that this is likely due to supergranular motions dominating
granular motions for time intervals long compared to the gran-
ular correlation time. We suggest that over intervals longer
than supergranular correlation times, the distributions would
be similarly affected by the underlying meridional flow. Thus,
the interpretation of flux element motion as a strictly diffusive
process is likely incorrect.

Super-diffusive scaling is found in studies using observa-
tional data with cadences as short as 5 seconds (e.g., Chitta
et al. 2012), much shorter than the expected Lagrangian
and Eulerian integral times of the flow and thus capturing
timescales over which the displacement scaling should be bal-
listic. We investigated the underlying causes for this discrep-
ancy by tracking flux elements in a MURaM simulation with 2
second cadence and found similar super-diffusive scaling for
short temporal increments. Comparison between the flux el-
ement and passive tracer statistics in the simulation suggests
that the super-diffusive scaling over short temporal intervals
is a consequence of misinterpreting flux element barycenter
motion as strictly due to plasma flows. In addition to mo-
tions induced by the underlying flow, barycenter positions are
subject to jitter induced by magnetic flux evolution. This im-
parts a random component to the measured motions and con-
tributes strongly to the scaling at the shortest temporal incre-
ments and results in the observed super-diffusive scaling. The
measured Lagrangian velocity distribution reflects these spu-
rious motions as well, showing values well in excess of the
photospheric sound speed. Moreover, the jitter contribution
depends on the underlying physical processes governing flux
evolution, image resolution and cadence, and the magnetic el-
ement identification scheme employed.

These results suggest that using displacement measure-
ments of flux element barycenters to directly determine
diffusion coefficients or wave forcing by magnetic element
motions in the solar photosphere may be problematic.
However, the artifacts identified may be partially overcome
by employing passive tracers as a proxy, as their motion is
independent of flux evolution. Rather than tracking magnetic
elements over long periods of time, it may be preferable to
compute the photospheric horizontal plasma velocity using
methods such as structure or correlation tracking (e.g., Simon
et al. 1988; Roudier et al. 1999; Potts et al. 2004; Roudier
et al. 2012; Attie et al. 2016). The velocity field could then be
used to compute passive tracer trajectories and displacement
statistics. In addition to likely being more robust, this
would avoid the ubiquitous difficulties associated with flux
element sparsity, identification and evolution, and allow the
investigation of displacement along many more trajectories
than is usually possible, with each lasting longer than typical
magnetic element lifetimes. From the trajectories, one could
measure both the drift contribution of larger scale flows and
the effective diffusive component of the random motions by
fitting the observed displacement probability distribution with
the analytic function of Equation 1. The fit would yield both
the width of the displacement distribution σ(t) , a measure
of the diffusive component of the motion, and the average
displacement due to the drift motion r 0(t) . The success
of this method would rely on the accuracy of the derived
photospheric plasma velocity field and the ability to separate
the diffusive and the drift components if the large-scale flow
is not uniform in space and time, but from this work, we
expect the method to yield a more authentic measure of the
magnetic flux element motion.
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APPENDIX

BIVARIATE TRANSFORMATION OF RANDOM VARIABLES

To determine the probability density of a function u = f (x, y) of independent random variables x and y, with individual
probability densities P (x) and P (y) and joint probability density Pxy (x, y) = P (x)P (y) , define a second function v = g(x, y)
chosen so that its probability density can be integrated out of the joint probability density, leaving that of the target function
behind. For u and v with inverses x = h 1(u, v) and y = h 2(u, v), the joint probability density of u and v is (e.g., Casella &
Berger 2002; Hogg & Tanis 2006)

Puv (u, v) = P xy (h1, h2)

∂h 1
∂u

∂h 1
∂v

∂h 2
∂u

∂h 2
∂v

(A1)

and

P (u) =
Z

P (u, v) dv . (A2)

To derive Equation 1 in Section 3.2, consider P (r) with r =
p

x2 + y 2, where as in §3.2, x and y are independent random
spatial offsets Gaussianly distributed about x0 and y0 with equal variance σ. By bivariate transformation, the joint probability
density

Pxy (x, y) =
1

2πσ2
e− [(x−x 0 ) 2 +(y−y 0 ) 2 ]/2σ 2

. (A3)

can be written in terms of r (u in the general notation above) and θ = tan −1 (y/x) (v in the general notation above), with
inverse functions x = r cos θ (h1 in the general notation above) and y = r sin θ (h2 in the general notation above), by evaluating
Equation A1,

Prθ (r, θ) =
r

2πσ2
e− [r 2 +r 2

0 −2r 0 r cos(θ−φ) ]/2σ 2
=

r

2πσ2
e−(r−r 0 ) 2 /2σ 2 e−r 0 r/σ 2 er 0 rcos(θ−φ)/σ 2 , (A4)

with φ = tan −1 (y0/x 0) and r 0 =
p

x2
0 + y 2

0 . Integrating over all θ then yields the probability density of r (Equation 1 in the
main text),

P (r) =
r

2πσ2
e−(r−r 0 ) 2 /2σ 2 e−r 0 r/σ 2

Z 2π

0
er 0 rcos(θ−φ)/σ 2

dθ =
r

σ2
e−(r−r 0 ) 2 /2σ 2 e−r 0 r/σ 2 I 0(r 0r/σ 2) , (A5)

where, I 0 is the lowest order modified Bessel function of the first kind (Abramowitz & Stegun 1972).
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