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TELEMETRY CASE REPORT

Performance of proximity loggers 
under controlled field conditions: an assessment 
from a wildlife ecological and epidemiological 
perspective
Roxana Triguero‑Ocaña1* , Joaquín Vicente1,2 and Pelayo Acevedo1,2

Abstract 

Background: Ecological sciences have, in recent decades, benefited from the ability of proximity loggers (PLs)—i.e. 
devices that transmit and receive radio signals (UHF)—to quantify intra‑ and inter‑specific interactions. These are used 
to estimate the frequency of contacts according to a predefined distance between individuals or between individu‑
als and environmental features. The performance of these devices may, however, be potentially affected by several 
factors, signifying that they require accurate calibration under field conditions in order to correctly interpret the 
information obtained. We assessed the effect of four relevant factors in ecological and epidemiological studies over 
the attenuation of radio waves in terms of the received signal strength indicator (RSSI) and contact success rate at a 
short (3 m) and medium distance (up to 20 m). The factors considered were: height above the ground (0–1 m), the 
presence/absence of vegetation, the presence/absence of live body mass around the devices, the distance between 
devices and the overlaid effects of all of them.

Results: The RSSI was found to be an accurate measure of distance, although its precision decreased over greater 
distances (up to 100 m), with the loss being sharper with vegetation, with body mass and when the devices were 
located on the ground. The success rate at up to 20 m decreased with distance and was also affected by body mass 
and vegetation. A probability of contact success of 81% was obtained in the best conditions (without vegetation and 
body mass) at a distance of 3 m, whereas it was of 56% in the worst conditions.

Conclusions: Our study shows the potential synergistic effects of external factors on the performance of PLs, even 
when they are used to infer near‑contacts. We, therefore, highlight the importance of assessing, for each particular 
study, the combined effect of non‑controllable external factors on the performance of PLs in order to estimate the 
minimum (best scenario) and maximum (worst scenario) level of underestimation in the field data. The sampling 
design described here is a cost‑effective protocol suitable for this purpose.

Keywords: Biologging, Direct–indirect contacts, Ecology, Epidemiology, Proximity loggers, Received signal strength 
indicator, Contact success rate
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Background
Proximity loggers (PLs) are devices that both transmit 
and receive ultra-high frequency (UHF) radio signals. PLs 
are connected to each other by means of the emission 

of an identified pulse and the reception of other nearby 
signals. PLs have been employed, since the beginning of 
the twenty-first century, in ecological sciences to record 
proximity events between animals and/or animals and 
tagged points and to estimate their frequency. This has 
been done with the purpose of understanding processes 
such as behaviour during mating and that of predators 
(e.g. [1, 2]), the social structure of wildlife populations 
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(e.g. [3, 4]) and the spread of pathogens within and 
among populations/species (e.g. [5, 6]). Thus, PLs are 
able to provide data informing about ecological and epi-
demiological processes that can be used for management 
and conservation.

Proximity loggers record the radio signal strength as a 
‘received signal strength indicator’ (RSSI) value, which 
can be calibrated (i.e. check the effect of external fac-
tors over the attenuation of radio waves) against distance 
under controlled conditions. Subsequently, the distance 
obtained may correspond to a contact between individ-
uals according to a specific definition of it. Therefore, a 
previous calibration of the RSSI parameter is necessary 
in order to study contacts. In addition, the reception 
between devices is far from perfect, since some of the 
potential contacts are not recorded owing to the internal 
malfunction of the devices and/or the effect of external 
factors (e.g. [7]). Under experimental conditions, the con-
tact success rate measures the ratio among the contacts 
recorded regarding false negatives (contacts expected but 
not recorded). This information is essential when inter-
preting the accuracy of the contact rate obtained between 
devices under field conditions.

Several studies have assessed the effect of different 
factors over the radio transmission of each device indi-
vidually. The distance between PLs has been adjusted 
according to the specific interests of the study, covering 
distances from less than 1 m [1, 8] up to approximately 
50  m [9]. However, the potential of PLs to record con-
tacts over longer distances has not been further evalu-
ated, even when it may be relevant for ecology in, for 
instance, studies related to avoiding behaviours in prey–
predator systems or in territoriality related behaviours 
(but see [2]). Prange et al. [10] noted that the orientation 
of the antenna on the PLs has an effect on the detec-
tion distance between devices. Under field conditions, 
this results in differences in the number and duration of 
pair-to-pair contacts depending on the distance between 
devices. The presence of some natural and artificial ele-
ments between the devices also affects the performance 
of PLs, since the waves may undergo modifications when 
they are reflected or attenuated by, for instance, vegeta-
tion, water or snow, or other individuals nearby [4, 11]. 
It has also been suggested that the mass of animals may 
have an effect on signal reception, and this has sometimes 
been simulated in PLs calibration tasks (e.g. [8, 12]). The 
height above the ground at which PLs are located is also 
relevant, because the soil attenuates the signal that they 
emit [10]; this is relevant in studies in which the spe-
cies of interest are of markedly different sizes (see [5]). 
All these issues make it necessary to check the effect of 
external factors over the performance of PLs according 
to the species of interest and the geographical area in 

which the study will be carried out [4, 13]. Researchers 
have mainly focused on studying the effect of some of the 
aforementioned factors; nevertheless, many aspects of 
their overlaid effects, which are the real situation when 
PLs are used in the field, are still unknown (but see [14]).

In this context, we aimed to calibrate the RSSI as dis-
tance indicator controlling by different external factors 
and to evaluate the effects of these factors on the contact 
success rate. Among the factors, we considered: (i) the 
height above the ground of the transmitter and receiver; 
(ii) the presence of vegetation, and (iii) the body mass of 
individuals, as regards a gradient of distances (3–100 m).

Methods
Study area
The field experiments took place in Ciudad Real province 
(38° 48′ 38.9′′ N, 3° 53′ 24.5′′ W), in the region of Castilla-
La Mancha, south-central Spain, which is 690 m a.s.l. The 
area is characterized by a Mediterranean climate, with 
an average temperature of 14.1  °C and an average pre-
cipitation of 598 mm. The typical vegetation consists of 
evergreen oak (Quercus ilex) scrublands with scattered 
pastures and small crops. The field trials were carried out 
on 27th December 2017, in favourable meteorological 
conditions (daylight, low humidity, 10 °C average temper-
ature and 3.6 m/s average wind speed [Ciudad Real mete-
orological station, https ://opend ata.aemet .es]).

Configuration of proximity loggers
The equipment employed for the trials was manufactured 
by Microsensory S.L. (Microsensory S.L., Fernán Núñez, 
Spain). Proximity technology uses a MS3241-Prox radio 
chip (Microsensory Semiconductor) which operates in 
the 433.050–434.790 MHz band. Devices use a commu-
nication protocol of an ultra-low consumption and long-
range (uLRuIP), with a transmission power from − 20 
to + 10  dBm  (decibels relative to one milliwatt). Two 
parameters can be set in PLs: the time receiving-window 
and the frequency of UHF beeps emission. Both param-
eters have a trade-off with the lifespan of the battery, so 
they must be assessed carefully as regards project objec-
tives and the monitoring period. The time receiving-
window consisted of 10 s each minute, during which the 
devices were able to receive the IDs of other nearby PLs, 
the date, time and RSSI of the contact. The frequency of 
UHF beeps emission was configured to send every 4  s. 
The beep includes the ID information of the transmitter. 
We choose this configuration in order to use the minute 
as a temporal reference in the trials. This configuration 
allows the PLs to register at least two contacts each min-
ute once two devices are within the detection distance.

https://opendata.aemet.es
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Distance, presence of vegetation, body mass of individuals 
and height above the ground of PLs
The effect of four external factors over the radio trans-
mission was considered: distance, vegetation, body mass 
and transmitter/receiver height, and all possible com-
binations between them. The effect of these factors was 
measured on RSSI attenuation and contact success rate. 
To calibrate the relationship among RSSI and distance, 
we used the values of this parameter measured in dBm. 
The RSSI decreases with the distance, so the higher the 
dBm, the higher the intensity of the signal, the lower the 
distance between devices. For the contact success rate, 
we used “attempts” as unit of measure: an attempt is 
defined as a time period of 1 min in which the PLs were 
maintained in the same position.

The effect of the factors was considered over the perfor-
mance of 10 devices in pairwise trials (see the experimen-
tal design in Fig. 1 and the sampling effort in Additional 
file 1: Appendix S1). The PLs were set for 60 min at 3 m, 
6 m, 10 m, 20 m, 50 m and 100 m. The devices had suf-
ficient signal intensity to be recorded by nearby devices 
located at these distances. Body mass effect was tested by 
placing the PLs on stakes (no body mass) or carrying the 
PLs by the field staff (to simulate the body mass of an ani-
mal), at all heights above the ground and distances taken 
into account. With regard to height above the ground, the 
PLs were placed at ground level (0 m) in order to study 
the effects of an animal lying down, or at 1 m to test the 
effect that different heights of receivers or transmitters 
have on contact success and on the loss of the RSSI. We 
randomly selected the devices to be assigned to a given 
situation in the sampling design, namely distance, heights 
and body mass, in order to avoid possible biases due to 
specific malfunction of devices. Finally, this design was 

applied in two areas, with and without dense scrubland 
vegetation.

Statistical analysis
Before the statistical analysis, we checked the collinear-
ity between variables using the variance inflation fac-
tor (VIF). We first checked for reciprocity up to 20  m 
between the devices that would be recording contacts, 
i.e. the probability that if a device A registers a device 
B, then B also registers A. The reciprocity was modelled 
using a generalized linear mixed model (binomial distri-
bution and logit link function) using all the external fac-
tors (see below) as fixed effects, and the ID of the PLs 
as random effects. In this model, a categorical variable 
containing reciprocity/no reciprocity (i.e. both PLs reg-
ister the contact/only one device registers the contact) at 
attempt level was used as a response variable. The results 
showed a low reciprocity (0.4) between PLs at up to 
20 m (see Additional file 1: Appendix S2—Fig. S1). Thus, 
according to this result and to the fact that PLs cannot 
obtain directionality in the contact, we considered in the 
subsequent analysis all the contacts recorded, regardless 
of the device recording the contact and of the reciproc-
ity between devices recording the same contact, i.e. in a 
dyad both devices were considered to have recorded the 
contact if at least one of the devices in the dyad did it.

Three different statistical models were developed to 
assess and quantify the effect of external factors on the 
performance of the PLs in terms of RSSI intensity and 
contact success rate. In order to assess the effect of 
external factors on the loss of the RSSI of the devices, 
we applied a linear mixed model (Gaussian distribution 
and identity link function), using the value of RSSI as the 
response variable, the IDs of the PLs involved in the con-
tact as two random effect factors and the external factors 

Fig. 1 Positions of proximity loggers during the field trials according to the external factors: height above the ground of the devices, presence/
absence of body mass represented by the human/brackets and distance represented by d‑2d (3–6, 10–20, 50–100 m). The same trial was performed 
with/without vegetation. Devices were maintained 60 min in each position, except two PLs that were alternated 30 min between the positions (*⊛)
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(see below) as fixed effects (model i). The marginal and 
conditional R squared (R2c and R2m) were obtained for 
this model. We also modelled the contact success rate at 
3 m (model ii) and for up to 20 m (model iii) in order to 
check the effect of external factors at short and medium 
distances, using generalized linear mixed models (bino-
mial distribution and logit link function). In both the 
short and the medium distance models, a categori-
cal variable containing reception/no reception (1/0) at 
attempt level was used as a response variable, the IDs of 
the PLs were employed as random effects and the exter-
nal factors as fixed effects. All possible two-way interac-
tions between the four external factors were considered 
in the reciprocity and the success rate models, whereas 
only those interactions in which distance was involved 
were checked in the RSSI model (i.e. distance*vegetation, 
distance*height and distance*body mass). In addition, in 
order to estimate the range of potential error of the data 
recorded under field conditions, from the model para-
metrized up to 20 m (model iii) we checked the probabil-
ity of contact success in the worst (presence of vegetation 
and body mass) and the best (no vegetation and no body 
mass) conditions.

In all the models, predictors were selected from a null 
model following a forward stepwise selection proce-
dure using the corrected Akaike’s Information Criterion 
(AICc) [15]. All the statistical analyses were conducted 
using R software 3.3.2 [16]. Mixed models were employed 
using the ‘lme4’ R package [17] and their validation was 
carried out following the protocol established by Zuur 
and Ieno [18]. Finally, fitted values for all the significant 
factors and interactions were plotted using the ‘effects’ R 
package [19] and ‘ggplot2’ [20].

Results
In the analysis performed to study the external factors 
that could affect the reciprocity, 5961 attempts were 
used. To study the effect of external factors over RSSI, 
we recorded 14,742 contacts between devices, so this 
same number of RSSI values was employed in the cali-
bration model (model i). In the model performed for the 
contact success at 3  m (model ii), 2282 attempts were 
used. Finally, for the model up to 20 m (model iii), 7725 
attempts were used. For more information about sam-
pling effort see Additional file 1: Appendix S1.

All predictors had VIF values lower than 3 and there-
fore, none of them was excluded from the models. The 
model for reciprocity included all the external factors 
(distance, height above the ground, vegetation and body 
mass) and the interaction between vegetation and body 
mass (see Additional file 1: Appendix S2—Table S1).

The most parsimonious lineal model fitted to the 
RSSI parameter (model i) included the interactions 

between the distance and all the other factors (see 
Table  1; see also model selection in Additional file  1: 
Appendix S3—Table  S1). The RSSI decreased with the 
distance through a logarithmic distribution (R2c = 0.66, 
R2m = 0.84), signifying a loss in the intensity of the sig-
nal with distance (Fig.  2a). The decrease of RSSI was 
more evident with vegetation and when the devices 
were located on the ground (Fig.  2b, d). The presence 
of body mass significantly affected the intensity of the 
RSSI. Note that when body mass is absent, the RSSI val-
ues increase (Table 1 and Fig. 2c).

The presence of vegetation increased the contact suc-
cess rate of the model parameterized with data at 3 m 
(model ii, see Table  2; model selection summary in 
Additional file 1: Appendix 3—Table S2). On the other 
hand, distance and the interaction between vegetation 
and the presence of body mass were retained in the 
most parsimonious model, explaining the success rate 
up to 20  m (model iii, see Table  3 and Fig.  3; model 
selection summary in Additional file  1: Appendix  3—
Table S3). Specifically, in the model up to 20 m (model 
iii), distance yielded slightly lower success rates for the 
worst scenario (i.e. presence of vegetation and body 
mass around the devices) when compared to the best 
scenario (without vegetation and without mass around 
the devices) (Fig. 4).   

Table 1 Results of  the  final linear mixed model used 
to  explain the  RSSI values (intensity of  proximity loggers 
signal) according to external factors and their interactions

VEG: presence (1) vs. absence of vegetation; DIST: distance; HEIGHT: height of 
the receiver and transmitter (reference class 0 [both devices located at ground 
level]: 0‑0; 1 [both devices located at 1 m]: 1‑1 and 2 [receiver located at 0 m and 
transmitter at 1 m, or vice versa]: 0‑1); BMASS: presence of body mass around 
the receiver and transmitter (reference class 0 [without body mass]: 0‑0; 1 [body 
mass around both the receiver and the transmitter]: 1‑1 and 2 [body mass 
around only one device, receiver or transmitter]: 0‑1)

p values: p ≥ 0.1 “ns”; p < 0.1 “·”; p < 0.05 “*”; p < 0.01 “**”; p < 0.001 “***”

Estimate Std. error t value p values

(intercept) − 50.82 3.24 − 15.67 ***

DIST − 12.29 0.14 − 85.91 ***

HEIGHT1 6.79 0.44 15.40 ***

HEIGHT2 3.96 0.39 10.18 ***

VEG1 9.31 0.31 29.64 ***

BMASS1 − 5.45 5.01 − 1.09 ns

BMASS2 − 2.69 2.51 − 1.07 ns

DIST:VEG1 − 3.20 0.11 − 29.31 ***

DIST:BMASS1 1.83 0.18 10.17 ***

DIST:BMASS2 1.28 0.12 10.97 ***

DIST:HEIGHT1 0.33 0.15 2.16 *

DIST:HEIGHT2 − 0.42 0.14 − 3.07 **
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Discussion
Proximity loggers have traditionally been employed in 
ecology in general, and in epidemiology in particular, to 
detect contacts between individuals at short distances 
with high accuracy and precision [1, 10, 21]; however, 

Fig. 2 Statistically significant factors and interactions of the linear mixed model (intensity of proximity logger signal, in dBm) parameterized to 
explain RSSI values. a RSSI vs. distance relationship; b RSSI vs. vegetation (blue = no vegetation, green = presence of vegetation); c RSSI vs. presence 
of body mass (blue = presence of body mass around both PLs; orange = body mass around receiver or transmitter; green = absence of body mass); 
and d RSSI vs. height of receiver or transmitter (blue = both PLs at 1 m; orange = receiver 1 m, transmitter 0 m, or vice versa; green = both PLs at 
0 m)

Table 2 Results of  the  final generalized linear mixed 
model (binomial distribution and  logit link function) 
to  explain the  probability of  contact success according 
to external factors and their interactions at 3 m

VEG: presence (1) vs. absence vegetation

p values: p ≥ 0.1 “ns”; p < 0.1 “·”; p < 0.05 “*”; p < 0.01 “**”; p < 0.001 “***”

Estimate Std. error z value p values

(intercept) 1.28 0.30 4.24 ***

VEG1 0.22 0.11 1.96 *

Table 3 Results of  the  final generalized linear mixed 
model (binomial distribution and  logit link function) 
to  explain the  probability of  contact success according 
to external factors and their interactions up to 20 m

DIST: distance; VEG: presence (1) vs. absence vegetation; BMASS: presence of 
body mass around the receiver and the transmitter (reference class 0 [without 
body mass]: 0‑0; 1 [body mass around both the receiver and the transmitter]: 1‑1 
and 2 [body mass around only one device, receiver or transmitter]: 0‑1.)

p values: p ≥ 0.1 “ns”; p < 0.1 “·”; p < 0.05 “*”; p < 0.01 “**”; p < 0.001 “***”

Estimate Std. error z value p values

(intercept) 1.71 0.32 5.40 ***

DIST − 0.07 0.03 − 2.52 *

BMASS1 − 0.87 0.48 − 1.81 ·
BMASS2 − 0.44 0.25 − 1.78 ·
VEG1 0.05 0.10 0.50 ns

VEG1:BMASS1 − 0.43 0.17 − 2.46 *

VEG1:BMASS2 − 0.14 0.12 − 1.14 ns
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the information collected with these devices should be 
calibrated under local field conditions for a correct inter-
pretation. When the distance between devices is crucial 
for a precise ecological inference (e.g. the transmission of 
information and/or the transmission of pathogens), then 
the conversion of the RSSI measure into a distance esti-
mation (or a contact, after we have defined it) should be 

as accurate as possible. Tambling and Belton [2] observed 
a strong and significant relationship between a distance 
of up to 400  m and signal intensity (R2 = 0.9). Similarly, 
our statistical model showed a strong significant rela-
tionship between the distance (up to 100  m) and the 
RSSI (R2 = 0.84; Fig.  2a), and that the RSSI values were 
more variable at greater distances, which is also consist-
ent with previous studies [14]. Apart from distance, we 
observed a significant decrease in the signal intensity 
when the devices were located at ground level, possibly 
owing to the capacity of the soil to absorb the UHF waves 
[10]. Moreover, we noticed that the effect of the height 
was greater when the contacts took place over long dis-
tances, which could have implications for the study of, 
for instance, contacts between small species. According 
to Böhm et al. [5], the height of both the receiver and the 
transmitter must be taken into account when estimat-
ing the distance of a contact between individuals from 
the same species or between species of different heights. 
With regard to other interfering factors, previous stud-
ies have registered a decrease in RSSI intensity of 20% 
in areas with vegetation [22]. In this study, we registered 
a significant effect of vegetation decreasing the signal 
intensity, but we also observed that this effect was more 
noticeable at greater distances. This is of great impor-
tance as regards assessing the different types of contacts, 
depending not only on the environment and its different 
signal attenuation properties [2, 8], but also on combin-
ing the effect of the habitat with the distance at which the 
contact occurred. Finally, although in previous studies 
the body mass around both the receiver and transmit-
ter devices was thought to absorb UHF waves [11, 12], 

Fig. 3 Probability of proximity logger contact success up to 20 m in function of distance (a) and vegetation vs. body mass (b). (Vegetation: absence 
of vegetation [0], presence of vegetation [1]; body mass: absence of body mass around both PLs [BMASS 0], presence of body mass around the 
receiver or transmitter [BMASS 0/1] and presence of body mass around both PLs [BMASS 1])

Fig. 4 Probability of proximity loggers contact success in the 
worst conditions (presence of vegetation and body mass around 
devices—in green) and in the best conditions (without vegetation 
and without body mass—in blue) at different distances. Probabilities 
were obtained with the contact success rate model up to 20 m (see 
Table 3)



Page 7 of 9Triguero‑Ocaña et al. Anim Biotelemetry            (2019) 7:24 

we observed that this factor interacted with the distance, 
decreasing the loss of signal at greater distances when 
body mass was present. This result suggests that the 
mass of a collared animal probably acts as a directional 
antenna to receive the signal (but see below). In spite of 
these external factors, the intrinsic differences in the per-
formance of PLs are also known [23] and the estimation 
of the distance through the use of the RSSI parameter 
must be necessarily probabilistic [8]. Our results, there-
fore, showed that although PLs are efficient at detecting 
contacts at short distances with high spatial accuracy, 
their use could also be recommended to detect contacts 
that are further away, by using specific emission frequen-
cies and controlling for external factors.

The performance of PLs has normally been studied 
by comparing the contact rates registered with PLs and 
direct observations of these contacts [4] or by using the 
reciprocity between PLs registering contacts [11, 12, 23]. 
Although there is no preferred method to assess this rate 
under field conditions, it is always necessary to consider 
the possible sources of bias that may interfere with the 
correct performance between devices. In our study, reci-
procity was explained by almost the same factors than 
contact success up to 20 m. Thus, reciprocity is suggested 
to be just a matter of success rate and no other processes. 
Our PLs achieved a low probability of reciprocity (0.4), 
similar to the registered by Drewe et  al. [12]. Although 
previous studies selected only reciprocally recorded con-
tacts [24], we considered contacts independently of the 
device registering the contact. Considering all the con-
tacts, and under optimal conditions, the probability of 
reception increased up to 81%. This result is consistent 
with those of recent works in which contact success rate 
was 89% [7]. In spite of the high probability of success, 
the ideal conditions used here are not frequent in the field 
(e.g. two animals sufficiently close for 1 min) and the real 
probability of success could be lower than that reported 
in this field experiment, and near-contacts among ani-
mals could be lost. The configuration of beep emission 
and reception could improve the accuracy of the moni-
toring system by increasing the frequency of emission 
and, principally, expanding the receiving-window. How-
ever, this configuration has a trade-off with the lifespan 
of batteries (e.g. [25]) and therefore researchers must use 
the parameters (i.e. frequency of emission and receiving-
window) that better fit with the aim of the study.

In our study, contact success rate data were modelled 
at 3 and up to 20 m in order to dilute the effect of the dis-
tance on the other factors and in order to simulate stud-
ies in which PLs devices are used to record both close and 
distant contacts. As expected, at 3 m the effect of external 
factors affecting contact success was lower than at greater 
distances. However, some factors had a significant effect, 

even at this short distance. Contrary to expectations, the 
presence of vegetation increased the probability of con-
tact success at 3 m. This could respond to a low absorp-
tion of radio waves by vegetation at short distances that 
could even produce a rebound of the waves, increasing 
in this way the contact success. The effect of this fac-
tor differed in the up to 20 m model, signifying that the 
probability of contact success decreased with distance 
and with the interaction of vegetation and presence of 
body mass. When devices are located at close distances, 
a significant decrease in the contact success rate with the 
presence of vegetation can be interpreted as the poten-
tial barrier effect that vegetation cover may have on the 
transmission of the signal [10]. The presence of vegeta-
tion magnified the loss of contact success that the mass of 
an individual could cause. In fact, some authors have sug-
gested the need to check the effect of the mass of collared 
animals [12, 23]. However, no studies have analysed this 
factor in detail. Although the effect of factors such as veg-
etation have also been taken into account [22, 26, 27], to 
the best of our knowledge, there are no previous studies 
that assess the overlaid effect of these factors at medium 
ranges of distance.

Interestingly, although the body mass had a negative 
effect on the contact success rate up to 20 m, this factor 
had a positive effect on the RSSI parameter by decreasing 
the loss of signal intensity. Although the mass of individ-
uals has been simulated in previous experiments owing 
to its potential effect on the performance of PLs [8, 12, 
27], this finding has not, to the best of our knowledge, 
been previously reported in the literature. We hypoth-
esize that body mass may help the emission of the PLs 
signal in a determined direction, thus reducing the loss 
of the RSSI. However, body mass could also attenuate the 
signal received, thus reducing the reception capabilities 
of PLs. More studies should be designed in order to carry 
out a more detailed exploration of the effect of this rel-
evant factor when PLs are used in ecology.

Conclusions
Proximity loggers (PLs) are becoming popular in eco-
logical studies due to their capacity to detect contacts 
between individuals. However, a misinterpretation of 
PLs-derived data could lead to an underestimation of the 
contact rate between individuals or the recording of false 
positives, thus misvaluing the role that certain individuals 
may play in the ecological process under study, for exam-
ple, pathogen transmission. Although multiple sources 
of error (namely presence of vegetation between devices, 
height, etc.) have been deeply studied with other tech-
nologies commonly employed to study animal behaviour 
(e.g. GPS technology [28]), only few studies have delved 
into the error caused by external factors in PLs devices. 
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Our results showed a relevant effect of external factors 
(pure and overlaid effects) on PLs performance in both 
the intensity of signal and the contact success. We, there-
fore, recommend the use of a sampling protocol, such as 
that described here, to quantify the effect of non-control-
lable factors that may interfere with the performance of 
PLs according to three practical considerations: (i) the 
specific definition of interaction (distance and duration); 
(ii) the characteristics of the target species (height, weight 
and behaviour), and (iii) the characteristics of the habi-
tat (topography, canopy). Employing this method would 
make it possible to report a range of interaction frequen-
cies, taking into account the uncertainty as regards the 
real effect of the factors on the performance of PLs in the 
field. This range is more accurate and honest than only 
the underestimated value directly registered by the PLs.
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