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1 Introduction

The Standard Model of Fundamental Interactions is in a wonderful shape, after the dis-

covery of the Higgs boson in 2012 [1], and it may very well be that a huge energy desert

above the TeV will be painstakingly explored till we could get in contact with even a single

new particle. However, a reasonable hope can alter this unappealing landscape: there it

must be something more than the Standard Model out there, as the Standard Model is

not able to explain what Dark Matter is. The Nature of Dark Matter (DM) is, indeed,

one of the longest long-standing puzzles to be explained in order to claim that we have a

“complete” picture of the Universe. On one side, both from astrophysical and cosmological

data (see, e.g., ref. [2] and refs. therein), rather clear indications regarding the existence

of some kind of matter that gravitates but that does not interact with other particles by

any other detectable mean can be gathered. On the other hand, no candidate to fill the

rôle of DM has yet been observed in high-energy experiments at colliders, nor is present

in the Standard Model (SM) spectrum. Extensions of the Standard Model usually do in-

clude some DM candidate, a stable (or long-lived, with a lifetime as long as the age of

the Universe) particle, with very small or none interaction with Standard Model particles

and with particles of its own kind. These states are usually supposed to be rather heavy

and are called “WIMP’s”, or “weakly interacting massive particles”. Examples of these

are the neutralino in supersymmetric extensions of the SM [3] or the lightest Kaluza-Klein

particle in Universal Extra-Dimensions [4]. The typical range of masses for these particles

was expected to be mDM ∈ [100, 1000] GeV. However, searches for these heavy particles at

the LHC have pushed bounds on the masses of the candidates above the TeV scale, into

the multi-TeV region. Moreover, experiments searching for DM particles through their

interactions with a fixed target, or “Direct Detection” (DD) experiments (see, e.g., ref. [5])

or through their annihilation into Standard Model particles, or “Indirect Detection” (ID)

experiments (see, e.g., ref. [6]) have thoroughly explored the mDM ∈ [100, 1000] GeV re-

gion, pushing constraints on the interaction cross-section between DM and SM particles

to very small values. In addition to this, both DD and ID experiments have a rather lim-

ited sensitivity above the TeV, as they have been mostly designed to look for O(100) GeV

particles. Other hypotheses have, however, been advanced: DM particles could indeed be

“feebly interacting massive particles” (FIMP’s) [7], “strongly interacting massive particles”

(SIMP’s) [8] or “axion-like” very light particles (ALP’s) [9]. All of these new proposals try

to explore the possibility that DM is made of particles lighter than the expected WIMP

range, a region where the exclusion bounds from DD and ID experiments are much weaker.

If we take seriously the possibility that DM is made of O(1) TeV particles other options

can be considered, though. One interesting option is that the interaction between DM and

SM particles be only gravitational. Being, however, the gravitational coupling enhanced

by the existence of more than 3 spatial dimensions. Several extra-dimensional models have

been proposed in the last twenty years to explain a troublesome feature of the Standard

Model, nicknamed as the “Hierarchy Problem”, i.e. the large hierarchy between the electro-

weak scale, ΛEW ∼ 250 GeV, and the Planck scale, MP ∼ 1019 GeV. In short, the mass

of a scalar particle (the Higgs boson) should be sensitive (through loops) to the scale at
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which the Standard Model may be replaced by a more fundamental theory. If there is no

new physics between the energy frontier reached by the LHC and the Planck scale, then

the mass of the Higgs boson should be as large as the latter. Being the experimentally

measured mass of the Higgs mH = O(ΛEW), either the SM is not an effective theory and

it is, after all, the ultimate theory (something not very convincing, as the SM does not

explain Dark Matter, Dark Energy, Baryogenesis, the source of neutrino masses and, of

course, gravity) or an incredible amount of fine-tuning between loop corrections stabilizes

mH at its value. Extra-dimensional models solve the hierarchy problem by either replacing

the Planck scale MP with a fundamental gravitational scale MD (being D the number of

dimensions) that could be as low as a few TeV (Large Extra-Dimensions models, or LED,

see refs. [10–14]), or by “warping” the space-time such that the effective Planck scale Λ

felt by particles of the SM is indeed much smaller than the fundamental scale MD, similar

to MP (see refs. [15, 16]), or by a mixture of the two options (see refs. [17, 18]).

The possibility that Dark Matter particles, whatever they be, may have an enhanced

gravitational interaction with SM particles has been studied mainly in the context of warped

extra-dimensions. The idea was first advanced in refs. [19, 20] and subsequently studied in

refs. [21–29]. The generic conclusion of these papers was that when all the matter content

is localized in the so-called TeV (or infrared brane), after taking into account current LHC

bounds it was not possible to achieve the observed Dark Matter relic abundance in warped

models for scalar DM particles (whereas this was not the case for fermion and vector Dark

Matter). However, an important caveat was that these conclusions were drawn assuming

the DM particle being lighter than the first Kaluza-Klein graviton mode. In this case,

the only kinematically available channel to deplete the Dark Matter density in the Early

Universe is the annihilation of two DM particles into two SM particles through virtual

KK-graviton exchange. However, in ref. [30], we performed a check of the literature for the

particular case of scalar DM in warped extra-dimensions, finding that as soon as the DM

particle is allowed to be heavier than the first KK-graviton, annihilation of two DM parti-

cles into two KK-gravitons becomes kinematically possible and, through this channel, the

observed relic abundance can indeed be achieved in a significant region of the parameter

space within the freeze-out scenario. In the same paper, we included previously overlooked

contributions to the DM annihilation cross-section, such as the possibility that DM an-

nihilation into any pair of KK-gravitons can occur (regardless of the KK-number of the

gravitons), and additional contributions to the thermally-averaged cross-section arising at

second order in the expansion of the metric around a background Minkowski 5-dimensional

space-time (the correct order to reach, once considering production of two KK-gravitons).

Eventually, we also study the impact of a Goldberger-Wise radion [31], both in DM an-

nihilation through virtual radion exchange and through direct production of two radions.

The region of the parameter space for which the observed DM relic abundance is achieved

in the freeze-out framework corresponds to DM masses in the range mDM ∈ [1, 10] TeV,

with first KK-graviton mass ranging from hundreds of GeV to some TeV. The price to

pay to achieve the freeze-out thermally-averaged cross-section is that the scale Λ for which

interactions between SM particles and KK-gravitons occur must be larger than 10 TeV,

approximately. Therefore, in this scenario, the hierarchy problem cannot be completeley
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solved and some hierarchy between Λ and ΛEW is still present. This is something, however,

common to most proposals of new physics aiming at solving the hierarchy problem, as the

LHC has found no hint whatsoever of new physics to date. One of the most interesting

features of the scenario proposed in ref. [30] is that a large part of the allowed parameter

space could be tested using either the LHC Run III or the HL-LHC data. By the end of the

next decade, therefore, only tiny patches of the allowed parameter space should survive in

case of no experimental signal, tipically corresponding to DM mass mDM ∼ 10 TeV, near

the theoretical unitarity bounds.

In this paper, we extend the study of DM in an extra-dimensional framework to the case

of a 5-dimensional ClockWork/Linear Dilaton (CW/LD) model. This model was proposed

in ref. [17] and its phenomenology at the LHC has been studied in ref. [18]. In this scenario,

a KK-graviton tower with spacing very similar to that of LED models starts at a mass gap

k with respect to the zero-mode graviton. The fundamental gravitational scale M5 can be

as low as the TeV, where k is typically chosen in the GeV to TeV range. To our knowledge,

this paper is the first attempt to use the CW/LD framework to explain the observed Dark

Matter abundance in the Universe. In order to study this possibility, we very much follow

the outline of our previous paper on DM in warped extra-dimensions albeit in this case

we will consider DM particles with spin 0, 1/2 and 1. Also in this scenario we have found

that the freeze-out thermal relic abundance can be achieved in a significant region of the

model parameter space, with the DM mass ranging from 1 TeV to approximately 15 TeV,

for DM of any spin. The fundamental gravitational scale M5 needed to achieve the target

relic abundance goes from a few TeV to a few hundreds of TeV, thus introducing a little

hierarchy problem. Notice that the LHC Run III data and those of the high-luminosity

upgrade HL-LHC will be able to test most of this region.

The paper is organized as follows: in section 2 we outline the theoretical framework,

reminding shortly the basic ingredients of the ClockWork/Linear Dilaton extra-dimensional

scenario and of how dark matter can be included within this hypothesis; in section 3 we

show our results for the annihilation cross-sections of DM particles into SM particles, KK-

gravitons and radion/KK-dilatons; in section 4 we review the present experimental bounds

on the parameters of the model (the fundamental Planck scale M5, the mass gap k and the

DM mass mDM) from the LHC and from direct and indirect searches of Dark Matter, and

recall the theoretical constraints (coming from unitarity violation and effective field theory

consistency); in section 5 we explore the allowed parameter space such that the correct

relic abundance is achieved for DM particles; and, eventually, in section 6 we conclude.

In the appendices we give some of the mathematical expressions used in the paper: in

appendix A we give the Feynman rules for the theory considered here; in appendix B

we give the expressions for the decay amplitudes of the KK-graviton; in appendix C we

remind how the sum over KK-modes is carried on; and, eventually, in appendix D we

give the formulæ relative to the annihilation cross-sections of Dark Matter particles into

Standard Model particles, KK-gravitons and radion/KK-dilatons.
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2 Theoretical framework

In this section, we first review the freeze-out mechanism that could produce the ob-

served DM relic abundance in the Universe. We then sketch the basic ingredients of the

ClockWork/Linear Dilaton Extra-Dimensions scenario (CW/LD) needed to compute the

thermally-averaged DM annihilation cross-section.

2.1 The DM relic abundance in the freeze-out scenario

The fact that a significant fraction of the Universe energy appears in the form of a non-

baryonic (i.e. electromagnetically inert) matter is the outcome of experimental data ranging

from astrophysical to cosmological scales. This component of the Universe energy density

is called Dark Matter and, in the cosmological “standard model”, the ΛCDM, it is usually

assumed to be represented by stable (or long-lived) heavy particles (i.e. non-relativistic,

or “cold”). Within the thermal DM production scenario, DM particles were in thermal

equilibrium with the rest of SM particles in the Early Universe. The DM density is governed

by the Boltzmann equation [32]:

dnDM

dt
= −3H(T )nDM − 〈σv〉

[
n2

DM − (neqDM)2
]
, (2.1)

with T the temperature and H(T ) the Hubble parameter as a function of the temperature.

The Boltzmann equation depends on a term proportional to the Hubble expansion rate at

temperature T and a term proportional to the thermally-averaged cross-section, 〈σv〉. To

obtain the correct population of DM particles within this scenario, the rate of decay and

annihilation of DM particles should be such that, below a certain temperature TFO, the

DM density nDM(T ) “freezes out” and thermal fluctuations cannot any longer modify it.

This occurs when 〈σv〉 × nDM falls below H(T ), DM decouples from the rest of particles

and leaves an approximately constant number density in the co-moving frame, called relic

abundance. The experimental value of the relic abundance can be derived starting from

the DM density in the ΛCDM model. From ref. [33] we have ΩCDMh
2 = 0.1198 ± 0.0012,

being h the Hubble parameter. Solving eq. (2.1), it can be found for the thermally-averaged

cross-section at the freeze-out 〈σFO v〉 ' 2.2× 10−26 cm3/s [34].

It is very common to compute 〈σv〉 in a given model in the so-called velocity expan-

sion (i.e. assuming small relative velocity between the two DM particles). However, this

approximation may fail in the neighbourhood of resonances. In the CW/LD model, the vir-

tual graviton exchange cross-section is indeed the result of an infinite sum of KK-graviton

modes. For this reason, we computed the value of 〈σv〉 using the exact expression from

ref. [35]:

〈σv〉 =
1

8m4
S T K

2
2 (x)

∫ ∞
4m2

S

ds(s− 4m2
S)
√
s σ(s)K1

(√
s

T

)
, (2.2)

being K1 and K2 the modified Bessel functions and v the relative velocity between DM

particles.

– 5 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
6

2.2 A short summary on ClockWork/Linear dilaton extra-dimensions

The metric considered in the CW/LD scenario (see refs. [17, 18]) is:

ds2 = e4/3krc|y| (ηµνdxµdxν − r2
c dy

2
)
, (2.3)

where the signature of the metric is (+,−,−,−,−) and, as usual, we use capital latin indices

M,N to run over the 5 dimensions and greek indices µ, ν only over 4 dimensions. Notice

that we have rescaled the coordinate in the extra-dimension such that y is adimensional.

This particular metric was first proposed in the context of Linear Dilaton (LD) models and

Little String Theory (see, e.g. refs. [36–38] and references therein). The metric in eq. (2.3)

implies that the space-time is non-factorizable, as the length scales on our 4-dimensional

space-time depending on the particular position in the extra-dimension due to the warping

factor exp(2/3 krc |y|). Notice, however, that in the limit k → 0 the standard, factorizable,

flat LED case [10–14] is immediately recovered. As for the case of the Randall-Sundrum

model, also in the CW/LD scenario the extra-dimension is compactified on a S1/Z2 orbifold

(with rc the compactification radius), and two branes are located at the fixed points of the

orbifold, y = 0 (“IR” brane) and at y = π (“UV” brane). Standard model fields are located

in one of the two branes (usually the IR-brane). The scale k, also called the “clockwork

spring” (a term inherited by its rôle in the discrete version of the Clockwork model [17]),

is the curvature along the 5th-dimension and it can be much smaller than the Planck

scale (indeed, it can be as light as a few GeV). Being the relation between MP and the

fundamental gravitational scale M5 in the CW/LD model:

M2
P =

M3
5

k

(
e2πkrc − 1

)
, (2.4)

it can be shown that, in order to solve or alleviate the hierarchy problem, k and rc must

satisfy the following relation:

k rc = 10 +
1

2π
ln

(
k

TeV

)
− 3

2π
ln

(
M5

10 TeV

)
. (2.5)

For M5 = 10 TeV and rc saturating the present experimental bound on deviations from the

Newton’s law, rc ∼ 100µm [39], this relation implies that k could be as small as k ∼ 2 eV,

and KK-graviton modes would therefore be as light as the eV, also. This “extreme” scenario

does not differ much from the LED case, but for the important difference that the hierarchy

problem could be solved with just one extra-dimension (for LED models, in order to bring

M5 down to the TeV scale, an astronomical lenght rc is needed and, thus, viable hierarchy-

solving LED models start with at least 2 extra-dimensions). In the phenomenological

application of the CW/LD model in the literature, however, k is typically chosen above the

GeV-scale and, therefore, rc is accordingly diminished so as to escape direct observation.

Notice that, differently from the case of warped extra-dimensions, where scales are all of

the order of the Planck scale (M5, k ∼ MP) or within a few orders of magnitude, in the

CW/LD scenario, both the fundamental gravitational scale M5 and the mass gap k are

much nearer to the electro-weak scale ΛEW than to the Planck scale, as in the LED model.
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The action in 5D is:

S = Sgravity + SIR + SUV (2.6)

where the gravitational part is, in the Jordan frame:

Sgravity =
M3

5

2

∫
d4x

∫ π

0
rcdy

√
G(5) eS

[
R(5) +GMN

(5) ∂MS∂NS + 4k2
]
, (2.7)

with G
(5)
MN and R(5) the 5-dimensional metric and Ricci scalar, respectively, and S the

(dimensionless) dilaton field, S = 2krc|y|. We consider for the two brane actions the

following expressions:

SIR =

∫
d4x

√
−g(4)

IR eS
{
−f4

IR + LSM + LDM

}
(2.8)

and

SUV =

∫
d4x

√
−g(4)

UV e
S
{
−f4

UV + . . .
}
, (2.9)

where fIR, fUV are the brane tensions for the two branes and g
(4)
IR,UV = −G(5)/G

(5)
55 is the

determinant of the induced metric on the IR- and UV-brane, respectively. Throughout

the paper, we consider all the SM and DM fields localized on the IR-brane, whereas on

the UV-brane we could have any other physics that is Planck-suppressed. We assume that

DM particles only interact with the SM particles gravitationally by considering only DM

singlets under the SM gauge group. More complicated DM spectra with several particles

will also not be studied here.

Notice that the gravitational action is not in its canonical form. Going to the Einstein

frame changing G
(5)
MN → exp(−2/3S)G

(5)
MN , we get:

Sgravity =

∫
d4x

∫ π

0
rcdy

√
−G(5)

{
M3

5

2

[
R(5) − 1

3
GMN

(5) ∂MS∂NS + 4e−
2
3
Sk2

]}
(2.10)

+

∫
d4x

∫ π

0
rcdy

√
−g(4) e−

S
3
{
δ(y − y0)

[
−f4

IR + LSM + LDM

]
− δ(y − π)f4

UV

}
,

where now the gravitational action is the Einstein action and from the kinetic term of the

dilaton field we can read out that the physical field must be rescaled as
(
M

3/2
5 /
√

3
)
S.

Eventually, it is important to stress that, in the Einstein frame, the brane action terms

still have an exponential dependence e−S/3 from the dilaton field. This action has a shift

symmetry S → S + const in the limit k → 0, that makes a small value of k with respect

to M5 “technically natural” in the ’t Hooft sense. Using the action above in the Einstein

frame, it can be shown that the metric in eq. (2.3) can be recovered as a classical background

if the brane tensions are chosen as:

f4
IR = −f4

UV = −4kM3
5 . (2.11)

Notice that, in a pure 4-dimensional scenario, the gravitational interactions would be

enormously suppressed by powers of the Planck mass, while in an extra-dimensional one
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the gravitational interaction is actually enhanced. Expanding the metric at first order

around its static solution, we have:

G
(5)
MN = e2/3S

(
ηMN +

2

M
2/3
5

hMN

)
. (2.12)

The 4-dimensional component of the 5-dimensional field hMN can be expanded in a Kaluza-

Klein tower of 4-dimensional fields as follows:

hµν(x, y) =

∞∑
n=0

1
√
πrc

hnµν(x)χn(y) . (2.13)

The hnµν(x) fields are the KK-modes of the 4-dimensional graviton and the χn(y) factors are

their wavefunctions. Notice that in the 4-dimensional decomposition of the 5-dimensional

metric, two other fields are generally present: the graviphoton, hµ5, and the graviscalar

h55. The KK-tower of the graviscalar is absent from the low-energy spectrum, as they are

eaten by the KK-tower of graviphotons to get a mass (due to the spontaneous breaking

of translational invariance caused by the presence of one or more branes). These are, in

turn, eaten by the KK-gravitons to get a mass (having, thus, five degrees of freedom). The

surviving graviphoton zero-mode does not couple with the energy-momentum tensor in the

weak gravitational field limit [40], whereas the graviscalar zero-mode will generically mix

with the radion needed to stabilize the extra-dimension size.

The eigenfunctions χn(y) can be computed by solving the equation of motion in the

extra-dimension of the fields:[
∂2
y − k2r2

c +m2
nr

2
c

]
ekrc|y| χn(y) = 0 (2.14)

with Neumann boundary conditions ∂yχn(y) = 0 at y = 0 and π. Normalizing the eigen-

modes such that the KK-modes have canonical kinetic terms in 4-dimensions, we get:
χ0(y) =

√
πkrc

e2πkrc − 1
,

χn(y) =
n

mnrc
e−krc|y|

(
krc
n

sinn|y|+ cosn|y|
)
,

(2.15)

with masses

m2
0 = 0 ; m2

n = k2 +
n2

r2
c

. (2.16)

At the IR-brane one gets:

L = − 1

M
3/2
5

Tµν(x)hµν(x, y = 0) = −
∑
n=0

1

Λn
hnµν(x)Tµν(x) , (2.17)

where
1

Λ0
=

1

MP
,

1

Λn
=

1√
M3

5πrc

(
1 +

k2r2
c

n2

)−1/2

=
1√

M3
5πrc

(
1− k2

m2
n

)1/2

n 6= 0 ,

(2.18)
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from which it is clear that the coupling between KK-graviton modes with n 6= 0 is sup-

pressed by the effective scale Λn and not by the Planck scale, differently from the LED

case and similarly to the Randall-Sundrum one.

It is useful to remind here the explicit form of the energy-momentum tensor for a

scalar, fermion and vector field:

TΦ
µν = (∂µΦ)†(∂νΦ) + (∂νΦ)†(∂µΦ)− ηµν

{
(∂ρΦ)†(∂ρΦ)−m2

ΦΦΦ†
}
,

Tψµν = 4

[
−ηµν

{
ψ̄(iγρ∂

ρ −mψ)ψ − 1

2
∂ρ(f̄ iγνf)

}
+

{
1

2
ψ̄iγµ∂νψ −

1

4
∂µ(ψ̄iγνψ)

+
1

2
ψ̄iγν∂µψ −

1

4
∂ν(ψ̄iγµψ)

}]
,

T Vµν =

[
ηµν

{
1

4
Fρσ F

ρσ −
m2
V

2
V ρVρ

}
− FρµFνρ +m2

V VµVν

]
where

Fµν = Fµν = ∂µVν − ∂νVµ (2.19)

for an abelian gauge field and

Fµν = F aµν = ∂µV
a
ν − ∂νV a

µ + gfabcV b
µV

c
ν (2.20)

for a non-abelian gauge field. In both cases, the expressions above refers to the unitary

gauge. For the case of the SM massless gauge fields the expression is T Vµν |mV =0 (whilst we

do not specify how the gauge field Vµ gets a mass).

2.3 Introducing the radion

Stabilization of the radius of the extra-dimension rc is an issue. In general (see, e.g.,

refs. [41–43]), bosonic quantum loops have a net effect on the boundaries of the extra-

dimension such that the extra-dimension itself should shrink to a point. This feature, in a

flat extra-dimension, can only be compensated by fermionic quantum loops and, usually,

some supersymmetric framework is invoked to stabilize the radius of the extra-dimension

(see, e.g., ref. [44]). An additional advantage of supersymmetry in the bulk is that the

CW/LD background metric may protect eq. (2.11) by fluctuations of the 5-dimensional

cosmological constant (see, however, ref. [45] for a non-supersymmetric clockwork imple-

mentation).

In the CW/LD scenario we can use the already present bulk dilaton field S to stabilize

the compactification radius. If localized brane interactions generate a potential for S at

y = π, then we could fix the value of the field S at the UV-brane, SUV = S |π. This is

indeed an additional boundary condition that fixes the distance between the two branes to

be πk rc = SUV/2 [17]:
SIR =

∫
d4x

√
−g(4)

IR eS
{
−f4

IR +
µIR

2
(S − SIR)2 + LSM + LDM

}
,

SUV =

∫
d4x

√
−g(4)

UV e
S
{
−f4

UV +
µUV

2
(S − SUV)2 + . . .

}
,

(2.21)
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with µIR and µUV two parameters with the dimension of a mass. In order to compute

the scalar spectrum, we should introduce quantum fluctuations over the background values

of S(x, y) = S0(y) + ϕ(x, y) (where S0(y) = 2krc|y|) and of the metric, eq. (2.12). After

deriving the Einstein equations for the two scalar degrees of freedom, ϕ and1 Φ, and

imposing the junction conditions at the boundaries, it can be shown that both satify the

following equation of motion:[
�+

1

r2
c

d2

dy2
− k2

]
ekrcy

(
Φ(x, y)

ϕ(x, y)

)
= 0 . (2.22)

Notice that only the combination v(x, y) =
√

6ekrcyM
3/2
5 [Φ(x, y)− ϕ(x, y)/3] has a canon-

ical kinetic term.

Expanding Φ and ϕ over a 4-dimensional plane-waves basis,

Φ(x, y) =
∑
n

Φn(y)Qn(x) ; ϕ(x, y) =
∑
n

ϕn(y)Qn(x) ;
[
�−m2

Φn

]
Qn = 0 , (2.23)

we can eventually derive the scalar fluctuations wave-functions (for example, in Φ):

Φn(y) = Nne
−krcy [sin(βny) + ωn cos(βny)] , (2.24)

with Nn a normalization factor, βn = m2
Φn
− k2, and

ωn = − 3βnµT
2(k2 + β2

n) + kµT
. (2.25)

In the so-called rigid limit, µUV →∞, the scalar spectrum is given by:
m2
r ≡ m2

Φ0
=

8

9
k2 ,

m2
Φn

= k2 +
n2

r2
c

(n ≥ 1) ,
(2.26)

first obtained in ref. [46], where we have identified the radion as the lightest state. Out

of the rigid limit, the spectrum can be obtained expanding in inverse powers of µUV,

introducing the adimensional parameters εIR,UV = 2k/µIR,UV. At first order in the ε’s,
m2
r ≡ m2

Φ0
=

8

9
k2

(
1− 2εUV

9

)
+O(ε2) ,

m2
Φn

= k2 +
n2

r2
c

[
1− 6(n2 + k2r2

c )(εUV + εIR)

9n2πkrc + πk3r3
c

]
+O(ε2) .

(2.27)

There are no massless states for non-vanishing µ’s (i.e., when the extra-dimension is sta-

bilized). In the unstabilized regime (for µUV, µIR → 0), the graviscalar and lowest-lying

dilaton mode decouple and we expect two massless modes.

1Using the notation of ref. [38], we call Φ the graviscalar h55. Remember, however, that after compact-

ification the KK-tower of h55 is eaten to give a longitudinal component to the KK-tower of gravitons.
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The interactions of the radion and of the dilaton KK-tower with SM fields arises [38]

from the term: ∫
d4x

√
−g(4) e−S/3 [LSM + LDM] . (2.28)

The main difference between the CW/LD case and the Randall-Sundrum case is that in the

former case a dilaton dependence e−S/3 is still present in the brane term action going from

the Jordan frame to the Einstein frame. On the other hand, the Randall-Sundrum action

is already in the Einstein frame (its gravitational action is in the canonical form) and the

brane action term couples to gravity minimally, i.e. through the
√
−g(4) coefficient, only.

Expanding the background metric and the dilaton field at first order in quantum

fluctuations, we get (after KK-decomposition):

Sint = −1

2

∑
n

Φn(0)

∫
d4x

√
−g(4)

0

[
g

(4)
0

]µν [
T SM
µν + TDM

µν

]
Qn

−1

3

∑
n

ϕn(0)

∫
d4x

√
−g(4)

0 [LSM + LDM]Qn . (2.29)

Notice that the scalar fluctuations of metric AND dilaton couple with 4-dimensional

fields through the usual energy-momentum trace and with a direct coupling with the 4-

dimensional lagrangian. This is different from the case of the Randall-Sundrum model,

where only the first kind of coupling is present, being the radion of purely gravitational

origin (see, for example, ref. [47]). In the CW/LD model, thus, there are two kinds of

coupling between the radion and the KK-dilaton fields and the 4-dimensional fields sitting

on the IR-brane. Again, at first order in εUV,IR, we get:

1

Λ0
Φ

≡ Φ0(0)

2
=

1

6

√
k

M3
5

(
1 +

4

9
εUV

)
+O(ε2) ,

1

ΛnΦ
≡ Φn(0)

2
=

2krcn√
3πM3

5 rc

(
n2 + k2r2

c

)−1/2 (
9n2 + k2r2

c

)−1/2
(1− εUV) +O(ε2)

=
2√

27πM3
5 rc

k

mΦn

√√√√√ 1− k2

m2
Φn

1− 8
9

k2

m2
Φn

(1− εUV) +O(ε2)

(2.30)

and 
1

Λ0
ϕ

≡ ϕ0(0)

3
=

2

27

√
k

M3
5

εUV +O(ε2) ,

1

Λnϕ
≡ ϕn(0)

3
=

n

k
√

3πM3
5 r

3
c

[ (
n2 + k2r2

c

)
(9n2 + k2r2

c )

]1/2

εUV +O(ε2)

(2.31)

In the rigid limit (µUV,IR → ∞) the coupling of dilaton modes with the SM lagrangian

vanishes (1/Λ0
ϕ, 1/Λ

n
ϕ → 0). In the rest of the paper, we will work in this limit in order to

get a sound insight of how the radion and dilaton KK-modes may affect the generation of

the freeze-out thermal abundance. A complete study of the impact of scalar perturbations
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to the DM phenomenology would imply considering general values for εUV and εIR and it

is beyond the scope of this paper.

A further simplification that we are going to consider is the following: in the presence

of a scalar field on the brane (such as the Higgs field), a non-minimal coupling of the scalar

with the Ricci scalar is not forbidden by any symmetry. This may arise as a new term in

the action:

∆SIR =

∫
d4x

√
−g(4)eϕ/3ξRH†H . (2.32)

Such term induces an additional kinetic mixing between the graviscalar Φ0, the lowest-lying

dilaton ϕ0 and the Higgs and, therefore, additional couplings with the SM fields. We will

neglect this non-minimal coupling in the rest of the paper, taking ξ = 0.

Summarizing, in the rigid limit and in the absence of a mixing between the Higgs and

the other scalar fields, the scalar perturbation interaction lagrangian with SM and DM

particles at first order is:

LSM
v =

∞∑
n=0

1

ΛnΦ

[
TSM +

αEM CEM
8π

FµνF
µν +

αSC3

8π

∑
a

F aµνF
aµν

]
vn , (2.33)

where r = v0 is the radion field and vn for n ≥ 1 is the dilaton KK-tower, and TSM is

the trace of the SM energy-momentum tensor. The coefficients of the coupling between

scalar perturbations and massless gauge fields are given in appendix A.2. Notice that

massless gauge fields do not contribute to the trace of the energy-momentum tensor, but

they generate effective couplings from two different sources: quarks and W bosons loops

contribution and the trace anomaly [48].

2.4 Contributions to 〈σv〉 in the CW/LD scenario

We are not assuming any particular spin for the DM particle; our only assumptions are

that there is just one particle responsible for the whole DM relic abundance and that this

particle interacts with the SM only gravitationally. Therefore, in the following we label

such particles generically by DM’s. The total annihilation cross-section is:

σth =
∑
SM

σve(DM DM→ SM SM) +
∑
n=1

∑
m=1

σGG(DM DM→ GnGm) (2.34)

+
∑
n=0

∑
m=0

σΦΦ(DM DM→ Φm Φn) +
∑
n=1

∑
m=0

σGΦ(DM DM→ Gn Φm) ,

where in the first term, σve (“ve” stands for “virtual exchange”), we sum over all SM

particles. The second term, σGG, corresponds to DM annihilation into KK-gravitons Gn.

Notice that we do not consider DM annihilation into zero-mode gravitons G0, as it is

Planck-suppressed. The third term, σΦΦ, corresponds to DM annihilation into radions and

KK-dilaton modes. Eventually, the fourth term, σGΦ, is the production of one tower of

KK-gravitons in association with a tower of radion/KK-dilatons (a channel previously over-

looked in the literature on the subject). Notice that the KK-number is not conserved in the

second, third and fourth term of eq. (2.34) due to the explicit breaking of momentum con-

servation in the 5th-dimension induced by the brane terms and, therefore, we must sum over
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all values of (m,n) as long as the condition 2mDM ≥ mn +mm (being mn the mass of the

n-th KK-graviton or radion/KK-dilaton) is fulfilled. If the DM mass mDM is smaller than

the mass of the first KK-graviton and of the radion, only the first channel is open. Formulæ

for the DM annihilation into SM particles through virtual KK-graviton and radion/KK-

dilaton exchange are given in appendix D in the small relative velocity approximation,

expanding the centre-of-mass energy s around s ' 4m2
DM. Notice that, when computing

the contribution of the radion/KK-dilaton exchange and KK-graviton exchange to the an-

nihilation DM cross-section into SM particles, it is of the uttermost importance to take

into account properly the decay width of the radion/KK-dilaton and of the KK-gravitons.

Formulæ for the radion/KK-dilaton and KK-graviton decays2 are given in appendix B.

If the DM mass is larger than the radion or the first KK-graviton mass,3 mDM ≤
(mr,mG1), the direct production of KK-graviton and/or radion/KK-dilaton towers be-

comes possible and the other three channels of eq. (2.34) open. The analytic expressions

for σGG(DM DM → GmGn), σGΦ(DM DM → Gm Φn) and σΦΦ(DM DM → Φm Φn) in the

small relative velocity approximation are given in appendix D.

A DM singlet could have other interactions with the SM besides the gravitational one,

through several so-called “portals”. Such scenarios have been extensively studied in the

literature and are strongly constrained (see for instance [49, 50] for recent analyses), so we

will neglect those couplings and focus only on the gravitational mediators that have not

been previously considered.

3 DM annihilation cross-section in CW/LD model

In this section we study in detail the different contributions to the thermally-averaged

DM annihilation cross-section, comparing the results for scalar, fermion and vector DM

particles.

As we reminded in the previous section, for relatively low DM particles mass the first

annihilation channel to open is the annihilation into SM particles through KK-graviton or

radion/KK-dilaton exchange. Differently from the RS case (see ref. [30]), both the virtual

KK-graviton and radion/KK-dilaton exchange cross-sections do not behave as the sum

of relatively independent channels with well-separated peaks, one per KK-mode. For the

typical values of M5 and k that may solve the hierarchy problem, in the CW/LD case a

huge number of KK-modes must be coherently summed in σve(DM DM→ SM SM).

In order to understand easily the difference between the cross-sections for scalar,

fermion and vector DM particles, we remind in table 1 the dependence of the thermally-

averaged annihilation cross-section 〈σv〉 on the relative velocity v, from appendix D. Recall

that v acts as a suppression factor and, therefore, the larger the power to which it appears,

the smaller the cross-section.

2Recall that, due to the breaking of translational invariance in the extra-dimension, the KK-number is

not conserved and heavy KK-graviton and KK-dilaton modes can also decay into lighter KK-modes when

kinematically allowed.
3Notice that, in the rigid limit, both the radion/KK-dilaton and KK-graviton masses only depend on

the parameter k and rc that are chosen to solve the hierarchy problem, differently from the RS scenario

where the radion mass is an additional free parameter of the model.

– 13 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
6

Scalar Fermion Vector

Graviton Virtual Exchange v4 (d) v2 (p) v0 (s)

Radion/Dilatons Virtual Exchange v0 (s) v2 (p) v0 (s)

Annihilation into Gravitons v0 (s) v0 (s) v0 (s)

Annihilation into Radion/Dilatons v0 (s) v2 (p) v0 (s)

Annihilation into Dilaton + Graviton v0 (s) v0 (s) v0 (s)

Table 1. Velocity dependence of the different DM annihilation channels and the corresponding s-,

p- or d-wave.

The thermally-averaged virtual exchange cross-section, 〈σvev〉 = 〈(σve,G + σve,Φ)v〉, is

depicted in figure 1 for a scalar (left panel), a fermion (middle panel) and a vector (right

panel) DM particle, respectively, for the particular choice k = 1 TeV and M5 = 7 TeV.4

Virtual radion/KK-dilaton exchange is shown with (green) dot-dashed lines, virtual KK-

graviton exchange with (blue) solid lines. In all cases, σve(DM DM→ SM SM) is extremely

small below mDM ∼ 500 GeV, whilst rapidly increasing when mDM approaches half the

mass of the lightest mode (the radion). From that point onward, for larger and larger DM

masses the cross-section starts to rapidly oscillate crossing threshold after threshold with

new KK-modes entering the game. This behaviour can be clearly seen in the dot-dashed

lines representing radion/KK-dilaton virtual exchange, where the difference between on-

peak and off-peak cross-section can be as large as one order of magnitude. The sum over

KK-dilaton modes does not increase the cross-section going to larger DM masses, as inter-

ferences from the near-continuum of modes collectively result in a slow decrease of σve,Φ go-

ing from mDM ∼ 1 TeV to mDM ∼ 10 TeV. The KK-graviton exchange cross-section shows a

different behaviour: the difference between on- and off-peak is extremely small, and the sum

over virtual KK-graviton modes gives a net (albeit slow) increase of the cross-section going

to larger DM masses. These results are common to scalar, fermion and vector DM particles.

In the three panels, we also show the DM annihilation cross-section into real KK-

gravitons, represented by an (orange) dashed line, and the freeze-out thermally-averaged

cross-section 〈σFOv〉, represented by the horizontal red-dotted line . The DM annihilation

cross-section into two real radion/KK-dilaton towers and into one KK-graviton and one

radion/KK-dilaton tower are not shown, as both are much smaller and, therefore, irrelevant.

For a scalar or a vector DM particle the real KK-graviton production cross-sections are

very similar. This component of the total cross-section takes over both the radion/KK-

dilaton and KK-graviton virtual exchange and rapidly dominates the total cross-section for

mDM above a few TeVs. On the other hand, the fermion DM real KK-graviton production

cross-section is substantially smaller than those for scalar and vector DM particles in the

considered range of mDM and its growth with mDM is much slower (the corresponding

cross-sections can be found in appendix D.1). We can see that, for the considered values

4Although the observed DM relic density can be obtained for lower values of (k,M5), our choice is

motivated by the fact that these are currently allowed by LHC data, as we will see in the next section.
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Figure 1. Comparison of the thermally-averaged DM annihilation cross-section into SM particles

through virtual radion/KK-dilaton exchange 〈σve,rv〉 (green dot-dashed lines) and virtual KK-

graviton exchange 〈σve,Gv〉 (blue solid lines), as a function of the DM particle mass, mDM . Left

panel: scalar DM. Middle panel: fermion DM. Right panel: vector DM. In all panels, the orange

dashed line represents the thermally-averaged DM annihilation cross-section into KK-gravitons,

〈σGGv〉, summing over all kinematically allowed KK-gravitons in the final state. The horizontal

red-dotted line represents 〈σFOv〉. The results have been obtained for M5 = 7 TeV and k = 1 TeV.

of M5 and k, the total fermion DM annihilation cross-section is dominated by virtual

KK-graviton exchange up to mDM ∼ 10 TeV.

Comparing the results for different spin of the DM particle, we see that the scalar DM

case is the only one where, for relatively low DM masses, the radion/KK-dilaton virtual

exchange cross-section actually dominates over the KK-graviton virtual exchange one. The

difference between the two contributions can be as large as two orders of magnitude for

mDM smaller than a few TeV, whereas the two become comparable for mDM ∼ 10 TeV (at

a scale where, however, the real KK-graviton production has already become the dominant

process). In this particular scenario, as it was the case for the RS model, the thermally-

averaged virtual KK-graviton exchange cross-section is much lower than 〈σFOv〉. On the

other hand, the virtual radion/KK-dilaton exchange cross-section can actually reach the

target value for m2
DM ∼ m2

r/4 (i.e. m2
DM = 2/9k2 in the rigid limit). For fermion and vector

DM particles, this is not the case: the virtual radion/KK-dilaton exchange cross-section

is of the same order or smaller than the virtual KK-graviton exchange cross-section.5 In

summary, for the particular choice of k and M5 shown in figure 1, for a scalar DM particle

the target freeze-out value 〈σFOv〉 is achievable either through virtual radion/KK-dilaton

exchange for low mDM or via real KK-graviton production for mDM a few TeV; for a fermion

DM particle 〈σFOv〉 is not achieved for mDM < 10 TeV; and, for a vector DM particle, the

target relic abundance is achieved through virtual KK-graviton exchange for mDM ∼ 1 TeV

(as it was found in the RS scenario [19, 22]).

In figure 2 we show the total cross-section involving KK-gravitons, only (summing

virtual KK-graviton exchange and KK-graviton production) as a function of the DM par-

ticle mass mDM for different choices of k: k = 10 GeV (left panel), k = 100 GeV (middle

panel) and k = 1 TeV (right panel). In all cases, M5 = 7 TeV. In all panels, we plot

5This is the combined effect of the different v-dependence according to the DM particle spin and of

numerical factors.

– 15 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
6

1 10

29

28

27

26
Lo
g 1

0(
v

) [
cm

3 /s
]

1 10
mDM [TeV]

1 10

Figure 2. The thermally-averaged DM annihilation cross-section through virtual KK-graviton

exchange and direct production of two KK-gravitons, σG = σve,G + σGG, as a function of the

DM mass mDM for three choices of k: k = 10 GeV (left panel); k = 100 GeV (middle panel);

k = 1000 GeV (right panel). In all panels, M5 = 7 TeV. The green dashed, orange dot-dashed and

blue solid lines represent 〈σGv〉 for a vector, fermion and scalar DM particle, respectively. The

red-shaded area represents the theoretical unitarity bound σ ≥ 1/s.

〈σGv〉 = 〈(σve,G + σGG) v〉 for scalar (blue, solid lines), fermionic (orange, dot-dashed lines)

and vector (green, dashed lines) DM particles, thus making comparison easier. The red

dotted horizontal line shows 〈σFOv〉. For all choices of k, at very low values of mDM the

scalar DM scenario give a much lower thermally-averaged cross-section with respect to the

fermion and vector case. It rapidly catches up, though, eventually merging with the vector

case. We see that 〈σGv〉 = 〈σFOv〉 at approximately mDM ∼ 10 k for k below the TeV and

mDM = O(k) for k at the TeV in the scalar and vector case. On the other hand, a much

larger value of mDM is needed to achieve the freeze-out target value if the DM particle is a

fermion. The red-shaded area represents the theoretical unitarity bound 〈σv〉 ≥ 1/s, where

we can no longer trust the theory outlined in section 2 and higher-order operators should

be taken into account.

We have seen that it is relatively easy to achieve the freeze-out relic abundance for DM

particles with a mass at the TeV scale or below for M5 = 7 TeV. However, it is important

to understand how this scales with M5 so as to see how much having a DM candidate is

compatible with solving the hierarchy problem. This is shown in figure 3, where we draw

the value of M5 needed to achieve the freeze-out DM annihilation cross-section 〈σFOv〉 for a

given choice of k andmDM. In the top-left panel we show our results for a scalar DM particle

using only virtual KK-graviton exchange and real KK-graviton production; in the top-right

panel we again show our results for a scalar DM particle, albeit adding the contribution

from virtual radion/KK-dilaton exchange and real radion/KK-dilaton production (since we

saw in figure 1 that for this particular case these contributions are quite relevant); in the

bottom-left and bottom-right panels, on the other hand, we show our results for a fermion

and a vector DM particle, respectively, taking into account virtual KK-graviton exchange

and real KK-graviton production only, as it was previously shown that in both cases the

radion/KK-dilaton contribution is sub-dominant. The grey area represents the region of

the (mDM, k) plane for which it is not possible to achieve the freeze-out relic abundance.

The coloured area is the region for which 〈σv〉 can be as large as 〈σFOv〉 for some values of
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Figure 3. Values of M5 for which the correct DM relic abundance is obtained in the plane mDM , k.

Top-left panel: scalar DM particle, virtual KK-graviton exchange and real KK-graviton produc-

tion only; top-right panel: scalar DM particle, virtual KK-graviton exchange and real KK-graviton

production together with virtual radion/KK-dilaton exchange and real radion/KK-dilaton produc-

tion; bottom-left panel: fermion DM particle, virtual KK-graviton exchange and real KK-graviton

production only; bottom-right panel: vector DM particle, virtual KK-graviton exchange and real

KK-graviton production only. The required M5 ranges are shown by the color legend. The grey-

shaded area represents the region of the parameter space for which is impossible to reach the

freeze-out relic abundance.

mDM, k and M5. The colour palette represents the corresponding ranges in M5. The lowest

values of M5 for which we have 〈σv〉 = 〈σFOv〉 are in the hundreds of GeV range, whereas

in the lower-right corner of all panels we find values of M5 are of the order of tens of TeV.

4 Experimental bounds and theoretical constraints

As we have seen in figure 3, the target relic abundance can be achieved in a vast region of

the (mDM, k) parameter space, if we allow M5 to vary from 10−1 TeV to 102 TeV. However,
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Figure 4. Bounds in the (k,M5) plane from non-resonant searches at the LHC with
√
s = 13 TeV

and 36 fb−1, from an analysis of ATLAS data [18] (dashed red line) and from the CMS Collaboration

results [53] (solid blue line). The orange-shaded area is the region of the parameter space for which

mG1 ≥M5.

experimental searches strongly constrain k and M5. We will summarize here the relevant

experimental bounds and see how only a relatively small region of the parameter space is

allowed, indeed.

4.1 LHC bounds

The strongest constraints are given by the non-resonant searches at LHC. Differently from

the results from resonance searches at the LHC [51, 52], data from non-resonant searches

are not easily turned into bounds in k and M5. We will therefore take advantage of the

analysis performed in ref. [18] and of the dedicated analysis from the CMS Collaboration

described in ref. [53]. The two bounds in the (k,M5) plane are shown in figure 4, where the

solid blue and dashed red lines represent results from ref. [18] and ref. [53], respectively.

The orange-shaded area is the region of the parameter space for which the mass of the

first KK-graviton mG1 (where mG1 = k) is larger than the scale of the theory, M5. In this

region of the parameter space the low-energy gravity effective theory is not trustable (see

section 4.3). In the rest of the paper, we have applied the experimental LHC bounds from

ref. [53] as a conservative choice.

4.2 Direct and indirect dark matter detection

In order to understand the bounds from Direct Detection Dark Matter searches (DD) we

need to compute the total cross-section for spin indepedent elastic scattering between Dark

Matter and the nuclei [26]:

σSI
DM−p =

[
mpmDM

Aπ(mDM +mp)

]2 [
AfDMp + (A− Z)fSn

]2
, (4.1)
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where mp is the proton mass, while Z and A are the number of protons and the atomic

number. The nucleon form factors are given by the same formula for Dark Matter of any

spin (at zero momentum transfer):
fDM
p =

mDM mp

4m2
G1

Λ2

 ∑
q=u,c,d,b,s

3 [q(2) + q̄(2)] +
∑

q=u,d,s

1

3
fpTq

 ,

fDM
n =

mDM mp

4m2
G1

Λ2

 ∑
q=u,c,d,b,s

3 [q(2) + q̄(2)] +
∑

q=u,d,s

1

3
fnTq

 ,

(4.2)

with q(2) the second moment of the quark distribution function

q(2) =

∫ 1

0
dx x fq(x) (4.3)

and fN=p,n
Tq the mass fraction of light quarks in a nucleon: fpTu = 0.023, fpTd = 0.032 and

fpTs = 0.020 for a proton and fnTu = 0.017, fnTd = 0.041 and fnTs = 0.020 for a neutron [54].

The strongest bounds come from the XENON1T experiment that uses 129Xe, (Z = 54

and A − Z = 75) as a target. In our analysis we compute the second moment of the

PDF’s using ref. [55] and the exclusion curve of XENON1T [56] to set constraints in the

parameter space. In figure 5 we show the scale needed to achieve the freeze-out relic

abundance, MFO
5 , as a function of the DM mass mDM, for k = 250 GeV. The three lines

(solid orange, dot-dashed blue and dotted red) correspond to scalar, fermion and vector

DM, respectively. The green-shaded area is the experimental bound in the (mDM,M5)

plane from XENON1T. We can see that the bounds imposed by DD only constrain very

low values of mDM and they are irrelevant in the range of DM masses considered in the

rest of this paper (mDM ≥ 100 GeV). We have checked that this result is general also for

other values of k.

With respect to Indirect Detection Dark Matter searches (ID), several experiments are

analysing differents signals. For instance, the Fermi-LAT Collaboration studied the γ-ray

flux arriving at Earth from the galactic center [57, 58] and from different Dwarf Spheroidal

galaxies [59]. Other experiments detect charged particles instead of photons, as it is the

case of AMS-02 that presented data about the positron [60] and anti-proton fluxes coming

from the galactic center [61]. These results are relevant in various DM models that can

generate a continuum spectra of SM particles, such as our case. However, current data

from ID only allows to constrain DM masses below 100 GeV, a region which is already

excluded by LHC data.

4.3 Theoretical constraints

Besides the experimental limits, there are mainly two theoretical concerns about the validity

of our calculations which affect part of the (mDM, k,M5) parameter space. The first one is

related to the fact that we are performing just a tree-level computation of the relevant DM

annihilation cross-sections, and we should worry about unitarity issues. In particular, the

annihilation cross-section into a pair of real KK-gravitons, σ(DM DM→ GnGm), diverges

– 19 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
6

0.1 1
mDM [TeV]

0.1

1
M
FO 5

 [T
eV

]

Figure 5. The scale needed to achieve the freeze-out relic abundance, MFO
5 , as a function of the

DM mass mDM, for k = 250 GeV. Solid orange, dot-dashed blue and dotted red lines correspond

to scalar, fermion and vector DM, respectively. The green-shaded area, on the other hand, is the

experimental bound in the (mDM,M5) plane from XENON1T [56].

as m10
DM/(m

4
Gn
m4
Gm

) for scalar and vector DM and as m6
DM/(m

2
Gn
m2
Gm

) for fermion DM

(see eqs. (D.11), (D.17) and (D.25) in appendix D.1). When the DM mass becomes very

large with respect to the KK-graviton masses, it is important to check that the effective

theory is still unitary [62]. Asking for the cross-section to be bounded, σ < 1/s ' 1/m2
DM,

we got the red-shaded areas shown in figure 2. If we combine the unitarity requirement

with the request that the freeze-out thermally-averaged cross-section is achieved to get the

correct DM relic abundance, we have an upper bound on the DM mass: mDM . 1/
√
σFO,

independently on the parameters that determine the geometry of the space-time, (k and

M5). This will be shown by a vertical line in the (mDM, k) plane in figure 6.

The second theoretical issue refers to the consistency of the effective theory frame-

work: in the CW/LD scenario, at energies somewhat larger than M5 the KK-gravitons

are strongly coupled and the five-dimensional field theory from which we start is no longer

valid. We therefore impose that at least mG1 = k < M5 to trust our results. Notice

that this constraint is general for any effective field theory: since we are including the

KK-graviton tower in the low-energy spectrum, for the effective theory to make sense the

cut-off scale M5 should be larger than the masses of such states. For the same reason, we

also ask for the Dark Matter mass mDM to be lighter than M5, mDM < M5, although we

will see that, in the allowed region, this requirement is almost always fulfilled.

5 Results

We show in figure 6 the allowed parameter space in the (mDM, k) plane for which the target

value of 〈σv〉 needed to achieve the correct DM relic abundance in the freeze-out scenario,
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(〈σFOv〉 = 2.2× 10−26 cm3/s), can be obtained, taking into account both the experimental

bounds and the theoretical constraints outlined in section 4.

In the upper left panel we show our results for a scalar DM particle, considering only

decays into SM particles through virtual KK-graviton exchange or into KK-gravitons. This

corresponds to the unstabilized regime, i.e. when the coefficients µIR, µUV of the localized

potential terms in eq. (2.21) vanish. In the upper right panel we show our results for

scalar DM when the extra-dimension is stabilized in the rigid limit, µIR, µUV →∞, and in

the absence of non-minimal coupling with gravity, ξ = 0 (see section 2 for details). In this

case, the annihilation of DM particles occurs through virtual KK-graviton and radion/KK-

dilaton exchange into SM particles and through direct KK-graviton and radion/KK-dilaton

production. In the bottom left and right panels we show our results for a fermion and a

vector DM particle, respectively. In both cases, the radion/KK-dilaton contribution (in

the rigid limit with ξ = 0) is included but it is irrelevant.

As a guidance, dashed lines taken from figure 3 represent the values of M5 needed to

achieve the relic abundance in a particular point of the (mDM, k) plane. The legend for the

four plots is given in the figure caption.

5.1 Scalar dark matter

In the case of scalar DM, depicted in the upper left and right panels, virtual KK-graviton

exchange is not enough to achieve the freeze-out relic abundance. For this reason, when

the extra-dimension is unstabilized (left panel), 〈σFOv〉 can be obtained only when the

KK-graviton production channel opens, as it was the case for the RS scenario [30]. As a

consequence, the DM particle mass has to be in a given relation with the mass of the KK-

graviton tower and, therefore, a grey region for which it is impossible to achieve 〈σFOv〉 can

be seen. The red diagonally-meshed area represents the region of the parameter space for

which the correct relic abundance is achieved with a value of M5 lower than the mass of the

first KK-graviton, mG1 = k. Above this line the low-energy effective theory we are using is

untrustable, as new dynamical particles in the spectrum are heavier than the scale of the

theory. The blue-shaded area represents the excluded region from searches of non-resonant

channels at LHC Run II with 36 pb−1 from ref. [18]. The green vertically-meshed area is

the upper bound on the DM mass that must be fulfilled to comply with unitarity.

When the extra-dimension is stabilized (right panel), the virtual radion/KK-dilaton

exchange channel may reach the target value for the cross-section for some values of the

DM mass for which the KK-graviton exchange channel may not (see figure 1). Therefore, a

grey area is present but it somewhat smaller than in the unstabilized case (differently from

the Randall-Sundrum case, where no grey area was found in this case [30]). Most of this

region is excluded because the value of M5 is lower than k and, thus, the effective theory

we are using is untrustable (red-meshed region). As a consequence, the allowed region

that complies with experimental bounds and theoretical constraints is very similar to the

unstabilized case and, roughly speaking, corresponds to mDM ∈ [1, 15] TeV and k < 6 TeV.

Within the allowed region, M5 may vary between 10 TeV’s and a few hundreds of TeV’s.
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Figure 6. Region of the (mDM, k) plane for which 〈σv〉 = 〈σFOv〉. Upper left panel: scalar

DM (unstabilized extra-dimension); upper right panel: scalar DM (stabilized extra-dimension in

the rigid limit, εIR = εUV = 0, without non-minimal coupling with gravity, ξ = 0); lower left

panel: fermion DM (stabilized extra-dimension in the rigid limit without non-minimal coupling

with gravity); lower right panel: vector DM (stabilized extra-dimension in the rigid limit without

non-minimal coupling with gravity). In all panels, the grey-shaded area represents the part of the

parameter space for which it is impossible to achieve the correct relic abundance; the red diagonally-

meshed area is the region for which the low-energy CW/LD effective theory is untrustable, as

M5 < k; the blue-shaded area is excluded by non-resonant searches at the LHC with 36 fb−1 at√
s = 13 TeV [18]; eventually, the green vertically-meshed area on the right is the region where

the theoretical unitarity constraints are not fulfilled, mDM & 1/
√
σFO. In all panels, the white

area represents the region of the parameter space for which the correct relic abundance is achieved

(either through direct KK-graviton and/or radion/KK-dilaton production, as in the case of scalar

DM, or through virtual KK-graviton exchange, as for fermion and vector DM) and not excluded

by experimental bounds and theoretical constraints. The dashed lines depicted in the white region

represent the values of M5 needed to obtain the correct relic abundance (from figure 3).
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5.2 Fermion dark matter

The case of fermion DM is depicted in the lower left panel. The meaning of the coloured

areas is the same as for the upper panels: the grey area is the region of the parameter

space for which is impossible to achieve 〈σFOv〉; the blue-shaded area corresponds to the

LHC Run II exclusion bound [18]; the red diagonally-meshed and green vertically-meshed

areas represent theoretical unitarity bounds; and, the white area is the allowed region

of the parameter space, where dashed lines represent benchmark values of M5 useful to

understand its scaling. The main difference with the scalar (and vector) DM case is that

for fermion DM a rather small region of the parameter space is compatible with all bounds

and constraints. This is a consequence of the slower dependence of the direct KK-graviton

production cross-section with mDM (see figures 1 and 2 and eq. (D.15) in appendix D).

Eventually, the allowed region that complies with experimental bounds and theoretical

constraints corresponds to mDM ∈ [4, 15] TeV and k < 1 TeV. Within the allowed region,

M5 may vary between 10 TeV’s and a few tens of TeV’s.

5.3 Vector dark matter

The case of vector DM is depicted in the lower right panel. The meaning of the coloured

areas is the same as for the upper panels: the grey area is the region of the parameter

space for which is impossible to achieve 〈σFOv〉; the blue-shaded area corresponds to the

LHC Run II exclusion bound [18]; the red diagonally-meshed and green vertically-meshed

areas represent theoretical unitarity bounds; and, the white area is the allowed region of the

parameter space, where dashed lines represent benchmark values of M5 useful to understand

its scaling. The main difference with the scalar and fermion DM case is that for vector DM it

is possible to achieve the correct relic abundance through the virtual KK-graviton exchange

channel, and the requirements on M5 are less stringent. As a consequence, a rather large

region of the parameter space is compatible with all bounds and constraints. The allowed

region that complies with experimental bounds and theoretical constraints corresponds to

mDM ∈ [0.6, 15] TeV and k may be as large as ∼ 20 TeV. Within the allowed region, M5

may vary between a 5 TeV’s and a few hundreds of TeV’s.

6 Conclusions

In this paper we have explored the possibility that the observed Dark Matter component

in the Universe is represented by some new particle with mass in the TeV range which

interacts with the SM particles only gravitationally, in agreement with non-observation

of DM signals at both direct and indirect detection DM experiments. In standard 4-

dimensional gravity, the interaction between such DM particles and SM particles would be

too feeble to reproduce the observed DM relic abundance. However, we have found that this

is not the case once this setup is embedded in a Clockwork/Linear Dilaton scenario, along

the ideas of the CW/LD proposal of refs. [17, 18]. We consider two 4-dimensional branes

in a 5-dimensional space-time with non-factorizable CW/LD metric [36] at a separation rc,

very small compared with present bounds on deviations from Newton’s law. On one of the

branes, the so-called “IR-brane”, both the SM particles and a DM particle (with spin 0, 1/2
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or 1) are confined, with no particle allowed to escape from the branes to explore the bulk. It

can be shown that gravitational interaction between particles on the IR-brane (in our case

between a DM particle and any of the SM particles) occurs with an amplitude proportional

to 1/M2
P when the two particles exchange a graviton zero-mode, but with a suppression

factor 1/Λ2
n when they interact exchanging the n-th KK-graviton mode. As the effective

coupling Λn can be as low as a few TeV (depending on the particular choices of the two

parameters that determine the geometry of the space-time, k and M5), a huge enhancement

of the cross-section is then possible with respect to standard linearized General Relativity.

Once fixed the setup we have computed the relevant contributions to the thermally-

averaged DM annihilation cross-section 〈σ v〉, taking into accont both virtual KK-graviton

and radion/KK-dilaton exchange as well as the direct production of radion/KK-dilatons

and KK-gravitons. We have then scanned the parameter space of the model (represented

by mDM, k and M5), looking for regions in which the observed relic abundance can be

achieved, 〈σ v〉 ∼ 〈σFO v〉. This region has been compared with experimental bounds from

resonant searches at the LHC Run II and from direct and indirect DM detection searches,

finding which portion of the allowed parameter space is excluded by data. Eventually, we

have studied the theoretical unitarity bounds on the mass of the DM particle and on the

validity of the CW/LD model as a consistent low-energy effective theory. We have found

that the correct relic abundance may be achieved in a significant region of the parameter

space, corresponding typically to a DM mass of a few TeV’s.

Depending on the spin and the mass of the DM particle, 〈σFO v〉 is reached either

through virtual exchange or direct production of radion/KK-dilatons and/or KK-gravitons.

For scalar DM particles, we have found that 〈σFO v〉 can be obtained for DM masses in

the range mDM ∈ [1, 15] TeV and k . 6 TeV. In this case the radion/KK-dilaton virtual

exchange increases the cross-section for low DM masses (below 1 TeV), thus making possible

to achieve 〈σFO v〉 in a much larger portion of the parameter space with respect to the KK-

gravitons only case. However, most of this extra region corresponds to values of mG1

larger than M5 and, thus, in a part of the parameter space where the effective theory is

untrustable. As a consequence, we find no difference between the unstabilized case (no

radion/KK-dilatons) and the stabilized case in the rigid limit (with radion/KK-dilatons).

For fermion DM particles the allowed mass range is somewhat smaller, mDM ∈ [4, 15] TeV

and k . 4 TeV. Eventually, for vector DM particles, the allowed mass range is somewhat

larger, mDM ∈ [0.6, 15] TeV and k . 20 TeV. Notice that the upper limit on the DM mass

comes from theoretical unitarity bounds.

Our results for DM in the CW/LD scenario are very similar to those we have found

with AdS 5 metric (the so-called Randall-Sundrum model) in ref. [30], where we studied

only the case of scalar DM. In the Randall-Sundrum scenario it was known that, for scalar

DM and SM particles localized in the IR brane, it is not possible to achieve 〈σFO v〉 through

the virtual KK-graviton or radion exchange channel (see also refs. [19, 22]). However, we

showed that when the DM mass is large enough so that the direct production of KK-

gravitons or radions becomes possible, then the correct relic abundance can be achieved

for DM particle masses of a few TeV’s, much as in the case of the CW/LD model studied

here. Notice that the value of M5 needed to achieve the correct relic abundance in the
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CW/LD model is M5 ∈ [10, 100] TeV, whereas in the Randall-Sundrum scenario the effec-

tive coupling Λ needed to achieve the freeze-out was in Λ ∈ [10, 1000] TeV range. In both

cases, some hierarchy between the fundamental gravitational scale (either M5 or Λ) and

the electro-weak scale ΛEW is needed.

It is worth to emphasize that in both extra-dimensional scenarios, Randall-Sundrum

and CW/LD, it is possible to obtain the correct relic abundance via thermal freeze-out with

DM masses in the TeV scale, so they are already quite constrained by LHC data. Moreover,

most part of the still allowed parameter space may be tested by the LHC Run III and by

the proposed High-Luminosity LHC. While the prospects for the Randall-Sundrum were

already analysed in ref. [30], it would be very interesting to explore in detail the limits that

these next LHC phases could set on the CW/LD model.
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A Feynman rules

We remind in this appendix the different Feynman rules corresponding to the couplings of

DM particles and of SM particles of any spin with KK-gravitons and radion/KK-dilatons.

A.1 Graviton Feynman rules

The vertex that involves one KK-graviton and two scalars S of mass mS is given by:

☎Gn
µν(q)

S(k1)

S(k2)

= − i

Λn

(
m2
Sηµν − Cµνρσk

ρ
1k

σ
2

)
, (A.1)

where

Cµναβ ≡ ηµαηνβ + ηναηµβ − ηµνηαβ . (A.2)

This expression can be used for the coupling of both scalar DM and the SM Higgs boson

to gravitons.
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The vertex that involves one KK-graviton and two fermions ψ of mass mψ is given by:

✟
ψ(k1) ψ(k2)

Gn
µν(q)

= − i

4Λn
[γµ (k2ν + k1ν) + γν (k2µ + k1µ)

−2ηµν ( /k2 + /k1 − 2mψ)] ,

(A.3)

and

✆Gn
µν(q)

ψ̄(k1)

ψ(k2)

= − i

4Λn
[γµ (k2ν − k1ν) + γν (k2µ − k1µ)

−2ηµν ( /k2 − /k1 − 2mψ)] .

(A.4)

The interaction between two vector bosons V of mass mV and one KK-graviton is

given by:

✠Gn
µν(q)

Vα(k1)

Vβ(k2)

= − i

Λn

(
m2
V Cµναβ +Wµναβ

)
, (A.5)

where

Wµναβ ≡ Bµναβ +Bνµαβ (A.6)

and

Bµναβ ≡ ηαβk1µk2ν + ηµν(k1 · k2ηαβ − k1βk2ν)

−ηµβk1νk2α +
1

2
ηµν(k1βk2α − k1 · k2ηαβ) . (A.7)

Eventually, the interaction between two particles (S, ψ or Vµ depending on their spin)

and two KK-gravitons (coming from a second order expansion of the metric gµν around
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the Minkowski metric ηµν) is given by:

✡
S(k1)

S(k2)

Gn
µν(k3)

Gm
αβ(k4)

= − i

ΛnΛm
ηνβ

(
m2
Sηµα − Cµαρσk

ρ
1k

σ
2

)
, (A.8)

✑
ψ(k1)

ψ̄(k2)

Gn
µν(k3)

Gm
αβ(k4)

= − i

ΛnΛm
ηνβ [γµ (k1α − k2α) + γα (k1µ − k2µ)

−2ηµα ( /k1 − /k2 − 2mψ)] ,

(A.9)

✒
Vρ(k1)

Vσ(k2)

Gn
µν(k3)

Gm
αβ(k4)

= − i

ΛnΛm
ηνβ

(
m2
V Cµαρσ +Wµαρσ

)
. (A.10)

The Feynman rules for the n = 0 KK-graviton can be obtained by the previous ones by

replacing Λ with MP. We do not give here the triple KK-graviton vertex, as it is irrelevant

for the phenomenological applications of this paper.

A.2 Radion/KK-dilaton Feynman rules

The radion/KK-dilatons, φn, couple with particles localized in the IR-brane with the trace

of the energy-momentum tensor, T = gµνTµν (in the rigid limit with ξ = 0, see section 2.3).

The only exception are photons and gluons that, being massless, do not contribute to T

at tree-level. However, effective couplings of these fields to the radion/KK-dilatons are

generated through quarks and W loops, and the trace anomaly.
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The interaction between one radion/KK-dilaton and two scalar fields S of mass mS is

given by:

✠φn(q)

S(k1)

S(k2)

= − 2i

Λn

(
2m2

S + k1µk
µ
2

)
. (A.11)

The vertex that involves one radion/KK-dilaton and two Dirac fermions ψ of mass mψ

takes the form:

☞
ψ(k1) ψ(k2)

φn(q)

= − i

2Λn
[8mψ − 3 ( /k2 + /k1)] (A.12)

and:

✡φn(q)
ψ̄(k1)

ψ(k2)

= − i

2Λn
[8mψ − 3 ( /k2 − /k1)] . (A.13)

The interaction between two massive vector bosons V of mass mV and one radion/KK-

dilaton is given by:

✍φn(q)

Vα(k1)

Vβ(k2)

=
2i

Λn
m2
V ηαβ , (A.14)

whereas the vertex corresponding to the interaction between two massless SM gauge bosons
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and one radion/KK-dilaton is:

✍φn(q)

Vα(k1)

Vβ(k2)

=
4iαiCi
8πΛn

[ηµν(k1 · k2)− k1νk2µ] , (A.15)

where αi = αEM , αs for the case of the photons or gluons, respectively, and [48]:
C3 = b

(3)
IR − b

(3)
UV +

1

2

∑
q

F1/2(xq) ,

CEM = b
(EM)
IR − b(EM)

UV + F1(xW )−
∑
q

NcQ
2
qF1/2(xq) ,

(A.16)

with xq = 4mq/mr and xW = 4mw/mr. The values of the one-loop β-function coefficients

b are b
(EM)
IR − b(EM)

UV = 11/3 and b
(3)
IR− b

(3)
UV = −11 + 2n/3, where n is the number of quarks

whose mass is smaller than mr/2. The explicit form of F1/2 and F1 is given by:{
F1/2(x) = 2x[1 + (1− x)f(x)],

F1(x) = 2 + 3x+ 3x(2− x)f(x),
(A.17)

with

f(x) =


[ arcsin(1/

√
x)]2x > 1,

−1

4

[
log

(
1 +
√
x− 1

1−
√
x− 1

)
− iπ

]2

x < 1.
(A.18)

Eventually, the 4-legs diagrams are given by:

✏
S(k1)

S(k2)

φn(k3)

φm(k4)

= − i

3Λ2

(
6m2

S + k1µk
µ
2

)
, (A.19)

✓
ψ(k1)

ψ̄(k2)

φn(k3)

φm(k4)

= − i

2Λ2
n

[8mψ − 3 ( /k2 − /k1)] (A.20)
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and

✔
Vρ(k1)

Vσ(k2)

φn(k3)

φm(k4)

= − 2i

Λ2
n

m2
V ηαβ . (A.21)

B Decay widths

In this appendix we compute the decay widths of KK-gravitons and radion/KK-dilatons,

using the Feynman rules given in appendix A.

B.1 KK-gravitons decay widths

The KK-graviton can decay into scalar particles (including the Higgs boson, a scalar DM

particle and radion/KK-dilatons), fermions (either SM or a fermion DM particle), vector

bosons (either massive or massless SM gauge bosons or a vector DM particle) and lighter

KK-gravitons.

Decay widths of KK-gravitons into SM particles, Γ(Gn → SM SM), are all proportional

to 1/Λ2
n. In particular, the decay width into SM Higgs bosons is given by:

Γ(Gn → HH) =
m3
n

960πΛ2
n

(
1−

4m2
H

m2
n

)5/2

, (B.1)

where mn is the mass of the n-th KK-graviton (in the main text, this was called mGn , but

we prefer here a shorter notation to increase readability of the formulæ).

The decay width of the n-th KK-graviton into SM Dirac fermions is given by:

Γ(Gn → ψ̄ψ) =
m3
n

160πΛ2
n

(
1−

4m2
ψ

m2
n

)3/2(
1 +

8m2
ψ

3m2
n

)
. (B.2)

The decay width of the n-th KK-graviton into two SM massive gauge bosons reads:
Γ(Gn →W+W−) =

13m3
n

480πΛ2
n

(
1−

4m2
W

m2
n

)1/2(
1 +

56m2
W

13m2
n

+
48m4

W

13m4
n

)
,

Γ(Gn → ZZ) =
13m3

n

960πΛ2
n

(
1−

4m2
Z

m2
n

)1/2(
1 +

56m2
Z

13m2
n

+
48m4

Z

13m4
n

)
,

(B.3)

whereas the decay width into SM massless gauge bosons is:
Γ(Gn → γγ) =

m3
n

80πΛ2
n

,

Γ(Gn → gg) =
m3
n

10πΛ2
n

.

(B.4)
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Finally, If mn > 2mDM , the n-th KK-graviton can decay into two DM particles:

Γ(Gn → SS) =
m3
n

960πΛ2
n

(
1−

4m2
DM

m2
n

)5/2

,

Γ(Gn → ψ̄ψ) =
m3
n

160πΛ2
n

(
1−

4m2
DM

m2
n

)3/2(
1 +

8m2
DM

3m2
n

)
,

Γ(Gn → V V ) =
13m3

n

960πΛ2
n

(
1−

4m2
DM

m2
n

)1/2(
1 +

56m2
DM

13m2
n

+
48m4

DM

13m4
n

)
.

(B.5)

For completeness, we computed the decay of KK-gravitons into KK-gravitons and

radion/KK-dilatons, finding that these contributions are totally negligible. For a thorough

description of these decays see ref. [18].

B.2 Radion/KK-dilatons decay widths

The decay width of the radion/KK-dilatons into SM Higgs boson, is given by:

Γ(φn → HH) =
m3
n

32πΛ2
n

(
1−

4m2
H

m2
n

)1/2(
1 +

2m2
H

m2
n

)2

. (B.6)

The radion/KK-dilaton decay width into SM Dirac fermions is given by:

Γ(φn → ψ̄ψ) =
mnm

2
ψ

8πΛ2
n

(
1−

4m2
ψ

m2
n

)3/2

. (B.7)

The radion/KK-dilaton decay width into SM massive gauge bosons is:
Γ(φn →W+W−) =

3m3
n

4πΛ2

(
1−

4m2
W

m2
n

)1/2(
1−

m2
W

3m2
n

+
m4
W

12m4
n

)
,

Γ(φn → ZZ) =
3m3

n

8πΛ2

(
1−

4m2
Z

m2
n

)1/2(
1−

m2
Z

3m2
n

+
m4
Z

12m4
n

)
,

(B.8)

whereas the decay width into SM massless gauge bosons is:
Γ(φn → γγ) =

αEM CEM m3
n

1280πΛ2
,

Γ(φn → gg) =
α3C3m

3
n

160πΛ2
.

(B.9)

If mn > 2mDM , the n-th radion/KK-dilaton can decay into two DM particles:

Γ(φn → SS) =
m3
n

32πΛ2
n

(
1−

4m2
DM

m2
n

)1/2(
1 +

2m2
DM

m2
n

)2

,

Γ(φn → ψ̄ψ) =
mnm

2
DM

8πΛ2
n

(
1−

4m2
DM

m2
n

)3/2

,

Γ(φn → V V ) =
3m3

n

8πΛ2

(
1−

4m2
DM

m2
n

)1/2(
1−

m2
DM

3m2
n

+
m4

DM

12m4
n

)
.

(B.10)

We computed the decay of KK-dilatons into KK-gravitons and radion/KK-dilatons,

finding that these contributions are totally negligible, as in the case of KK-gravitons.
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C Sums over KK-gravitons and radion/KK-dilatons

In this appendix we remind the procedure to derive approximated sums over virtual KK-

modes following ref. [18]. In the main text we have mainly shown plots using this approxi-

mation. However, we show here the degree of accuracy of the approximated sum comparing

it with exact results.

Consider the sum over virtual KK-modes that arise both in virtual KK-graviton or

virtual radion/KK-dilaton exchange cross-sections:

SKK =

∞∑
n=1

1

Λ2
n

1

s−m2
n + imnΓn

, (C.1)

where mn is the mass of the n-th KK-graviton or radion/KK-dilaton and Γn its corre-

sponding decay width. If s > k2, the modulus squared of the sum over KK-modes is very

well approximated by the sum over the KK-modes moduli squared, as the decay widths of

the KK-modes computed in appendix B are very small:

|SKK |2 '
∞∑
n=1

1

Λ4
n

1

(s−m2
n)2 +m2

nΓ2
n

≡
∞∑
n=1

1

Λ(mn)4
F(mn) , (C.2)

with F(mn) a function that depends on the mass and the decay width of the virtual KK-

modes. We also show explicitly that the n-dependence of Λn in eqs. (2.18) and (2.30)

arises, indeed, through mn. The mass difference between two nearby KK-modes, for the

typical choices of k and M5 considered in the paper, is small enough to approximate the

sum by an integral in m starting from the mass of the first KK-mode, m1:

|SKK |2 ≈
∫ ∞
m1

dm
1

Λ(m)4
F(m) rc

(
1− k2

m2

)−1/2

. (C.3)

Using the narrow-width approximation for F(m)

F(m) ≈ π

m̄Γ(m̄)

1

2
√
s
δ(m̄−

√
s) , (C.4)

where m̄ corresponds to the mode for which mn ∼
√
s (as enforced by the δ-function),

eq. (C.2) can be further approximated as:

|SKK |2 ≈
πrc
2

1

Γ(
√
s)Λ(
√
s)4

[
1

s

(
1− k2

s

)−1/2
]
. (C.5)

Eq. (C.5) is valid for both, KK-gravitons and radion/KK-dilatons. In the case of

KK-gravitons, if we replace Λn with the expression in eq. (2.18), we get:

|SgKK |
2 ≈ 1

2M6
5 π rc

1

Γn|mn∼
√
s

[
1

s

(
1− k2

s

)3/2
]
. (C.6)

In the case of radion/KK-dilatons, Λn is given by eq. (2.30). Then:

|SrKK |2 ≈
8

729M6
5π rc

1

Γn|mn∼
√
s

[
1

s

(
k2

s

)2(
1− k2

s

)3/2(
1− 8k2

9s

)−2
]
, (C.7)

Notice that these expressions are equivalent to an average over the KK-modes.
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Figure 7. Left panel: the sum |SKK |2 for KK-gravitons with M5 = 7 TeV and k = 1 TeV. The

green solid and orange dashed lines represent the result using eq. (C.2) and the approximation

described in eq. (C.6), respectively. Right panel: the thermally-averaged annihilation cross-section

through virtual KK-graviton exchange for scalar (blue), fermion (orange) an vector (green) DM,

with M5 = 7 TeV and k = 1 TeV. Solid lines stand for the exact result, whereas dashed lines

represent the approximated one using eq. (C.6).

In figure 7 we show the comparison between the results for |SgKK |2 using eqs. (C.2)

and (C.6) (left panel), as well as the exact thermally-averaged virtual KK-graviton exchange

annihilation cross-section 〈σv〉 versus the approximated one using eq. (C.6) (right panel),

for an illustrative choice of M5 and k, M5 = 7 TeV and k = 1 TeV. In the left panel we

can see how the sum has a very slow onset for
√
s ≤ k summing over the tails of the

Breit-Wigner function representing each KK-mode contribution, followed by a very rapidly

oscillating behaviour crossing the KK-mode resonances. The difference between being at

the dip between two KK-modes or at the peak can be as large as a factor 104. However,

the width of each KK-mode resonance is extremely small and, thus, when summing over

many KK-modes the approximated sum reproduces correctly the collective behaviour of

the system. This is clearly shown in the right panel where we see, that for any spin of the

DM particle, the exact and approximated sum within the virtual KK-graviton exchange

thermally-averaged annihilation cross-section give the same result.

D Annihilation DM cross section

In all the expressions of this appendix we made use of the so-called velocity expansion for

the DM particles:

s ≈ m2
DM(4 + v2) , (D.1)

where v is the relative velocity of the two DM particles. Within this approximation,

the different scalar products for processes in which two DM particles annihilate into two

particles (either SM particles, KK-gravitons or radion/KK-dilatons), with incoming and
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outcoming momenta DM(k1) DM(k2)→ Out(k3) Out(k4), become:
k1 · k4 = k2 · k3 ≈ m2

DM +
1

2
m2

DM

√
1−

m2
Out

m2
DM

cos θ v +
1

4
m2

DM v2 ,

k1 · k3 = k2 · k4 ≈ m2
DM −

1

2
m2

DM

√
1−

m2
Out

m2
DM

cos θ v +
1

4
m2

DM v2 ,

(D.2)

where {
k1 · k1 = k2 · k2 = m2

DM ,

k3 · k3 = k4 · k4 = m2
Out .

(D.3)

D.1 Annihilation through and into KK-gravitons

In the following sections we show the DM annihilation cross-sections through and into

KK-gravitons. In all of this expressions SgKK is the sum over the KK-gravitons given in

appendix C.

D.1.1 Scalar DM

First we start with the scalar Dark Matter. The annihilation cross-section into two SM

Higgs bosons is:

σg(S S → HH) ≈ v3 |SgKK |
2m

6
DM

720π

(
1−

m2
H

m2
DM

)5/2

(D.4)

The annihilation cross-section into two SM massive gauge bosons is:
σg(S S →W+W−) ≈ v3 |SgKK |

2 13m6
DM

360π

(
1−

m2
W

m2
DM

)1/2(
1 +

14m2
W

13m2
DM

+
3m4

W

13m4
DM

)
,

σg(S S → Z Z) ≈ v3 |SgKK |
2m

6
13 DM

720π

(
1−

m2
Z

m2
DM

)1/2(
1 +

14m2
Z

13m2
DM

+
3m4

Z

13m4
DM

)
,

(D.5)

whereas for two massless gauge bosons we have:
σg(S S → γ γ) ≈ v3 |SgKK |

2 2m6
DM

15π
,

σg(S S → g g) ≈ v3 |SgKK |
2m

6
DM

60π
.

(D.6)

Eventually, the annihilation cross-section into two SM fermions is:

σg(S S → ψ̄ ψ) ≈ v3 |SgKK |
2m

6
DM

120π

(
1−

m2
ψ

m2
DM

)3/2(
1 +

2m2
ψ

3m2
DM

)
. (D.7)

As it was shown in ref. [19], for DM particle masses larger than the mass of a given KK-

graviton mode DM particles may annihilate into two KK-gravitons. In the small velocity
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approximation, the related cross-section is:

σg(S S → GnGm) ≈ v−1

(
AgS +Bg

S + CgS/4

18432π

) (
1

Λ2
n Λ2

mm
2
DMm4

nm
4
m

)

×

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

, (D.8)

where the three contributions to the cross-section come from the square of the t- and u-

channels amplitudes, the square of the 4-points amplitude from the vertex A.8 and from

the interference between the two classes of amplitudes, respectively:

AgS =

[
m4

m − 2m2
m

(
4m2

DM +m2
n

)
+
(
m2

n − 4m2
DM

)2]4

2
(
4m2

DM −m2
n −m2

m

)2 ,

Bg
S =

[
16m4

DM − 8m2
DM

(
m2

n +m2
m

)
+
(
m2

n −m2
m

)2]2

4m2
DM −m2

n −m2
m

[
16m4

DM

(
m2

n +m2
m

)
− 8m2

DM

(
−m2

nm
2
m +m4

n +m4
m

)
+
(
m2

n −m2
m

)2 (
m2

n +m2
m

) ]
,

CgS = 256m8
DM

(
13m2

nm
2
m + 2m4

n + 2m4
m

)
− 512m6

DM

(
m6

n +m6
m

)
+ 32m4

DM

(
−17m6

nm
2
m + 98m4

nm
4
m − 17m2

nm
6
m + 6m8

n + 6m8
m

)
− 32m2

DM

(
m2

n −m2
m

)2 (
m6

n +m6
m

)
+
(
m2

n −m2
m

)4 (
13m2

nm
2
m + 2m4

n + 2m4
m

)
.

(D.9)

In the particular case in which the two KK-gravitons have the same KK-number, m =

n, eq. (D.8) becomes:

σg(S S → GnGn) ≈ v−1 4m2
DM

9πΛ2
nΛ2

m

(1− r)1/2

r4(2− r)2
(D.10)

×
(

1− 3 r +
121

32
r2 − 65

32
r3 +

71

128
r4 − 13

64
r5 +

19

256
r6

)
,

where r ≡ (mn/mDM)2.

D.1.2 Fermionic case

If the dark matter is a Dirac fermion (χ) the annihilation into two SM Higgs bosons is:

σg(χ̄ χ→ HH) ≈ v |SgKK |
2m

6
DM

144π

(
1−

m2
H

m2
DM

)5/2

(D.11)

The annihilation cross-section into two SM massive gauge bosons is:
σg(χ̄ χ→W+W−) ≈ v |SgKK |

2 13m6
DM

72π

(
1−

m2
W

m2
DM

)1/2(
1 +

14m2
W

13m2
DM

+
3m4

W

13m4
DM

)
,

σg(χ̄ χ→ Z Z) ≈ v |SgKK |
2 13m6

DM

144π

(
1−

m2
Z

m2
DM

)1/2(
1 +

14m2
Z

13m2
DM

+
3m4

Z

13m4
DM

)
,

(D.12)
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whereas for two massless gauge bosons we have:
σg(χ̄ χ→ γ γ) ≈ v |SgKK |

2m
6
DM

12π
,

σg(χ̄ χ→ g g) ≈ v |SgKK |
2 2m6

DM

3π
.

(D.13)

Eventually, the annihilation cross-section into two SM fermions is:

σg(χ̄ χ→ ψ̄ ψ) ≈ v |SgKK |
2m

6
DM

24π

(
1−

m2
ψ

m2
DM

)3/2(
1 +

2m2
ψ

3m2
DM

)
. (D.14)

As in the case of scalar DM if the mDM > mG1 the ψ̄ ψ → GnGm channel is open:

σg(χ̄ χ→ GnGm) ≈ v−1

(
Agχ

16384π

)(
1

Λ2
nΛ2

mm
2
DMm

2
nm

2
m

)

×

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

. (D.15)

Notice that, differently from the scalar and vector case, the contribution of the 4-points

diagram from the vertex A.9 vanishes (Bg
χ = Cgχ = 0). The t- and u-channel contributions

give, instead:

Agχ =

(
(m2

n − 4m2
DM)2 − 2m2

m(4m2
DM +m2

n) +m4
m

)3
(m2

n +m2
m − 4m2

DM)2
(D.16)

In the particular case when two KK-gravitons have the same KK-number, m = n, eq. (D.15)

becomes:

σg(χ̄ χ→ GnGn) ≈ v−1 m2
DM

16πΛ4
n

(1− r)7/2

r2(2− r)2
, (D.17)

where6 r ≡ (mn/mDM)2.

D.1.3 Vectorial case

If the dark matter is a spin-1 particle (X) the annihilation into two Higgs bosons is:

σg(XX → HH) ≈ v−1 |SgKK |
2 2m6

DM

27π

(
1−

m2
H

m2
DM

)5/2

(D.18)

The annihilation cross-section into two SM massive gauge bosons is:
σg(XX →W+W−) ≈ v−1 |SgKK |

2 52m6
DM

27π

(
1−

m2
W

m2
DM

)1/2(
1 +

14m2
W

13m2
DM

+
3m4

W

13m4
DM

)
,

σg(XX → Z Z) ≈ v−1 |SgKK |
2 26m6

DM

27π

(
1−

m2
Z

m2
DM

)1/2(
1 +

14m2
Z

13m2
DM

+
3m4

Z

13m4
DM

)
,

(D.19)

6We have found a misprint in ref. [19]: the cross-section of fermion DM annihilation into two KK-

gravitons scales with r−2 as in eq. (D.17), and not as r−4, as reported in ref. [19]. This is relevant when

comparing results for scalar and vector DM with respect to those for fermion DM as a function of the DM

mass (see section 3).
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whereas for two massless gauge bosons we have:
σg(XX → γ γ) ≈ v−1 |SgKK |

2 8m6
DM

9π
,

σg(XX → g g) ≈ v−1 |SgKK |
2 64m6

DM

9π
.

(D.20)

The annihilation cross-section into two SM fermions is:

σg(XX → ψ̄ ψ) ≈ v−1 |SgKK |
2 12m6

DM

27π

(
1−

m2
ψ

m2
DM

)3/2(
1 +

2m2
ψ

3m2
DM

)
. (D.21)

Eventually, the annihilation into gravitons will be given by:

σg(XX → GnGm) ≈ v−1

(
AgV +Bg

V + CgV /2

331776π

) (
1

Λ2
n Λ2

mm
2
DMm4

nm
4
m

)

×

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

, (D.22)

where:

AgV =
1(

−4m2
DM +m2

n+m2
m

)
2

[
m16

DM +393216
(
m2
n+m2

m

)
m14

DM

− 16384
(
−353m2

nm
2
m+m4

n+m4
m

)
m12

DM

−
(
m2
n+m2

m

)(
19m2

nm
2
m+m4

n+m4
m

)
m10

DM

+ 512
(
2302m6

nm
2
m+3826m4

nm
4
m+2302m2

nm
6
m+205m8

n+205m8
m

)
m8

DM

−
(
m2
n+m2

m

)(
−430m6

nm
2
m−602m4

nm
4
m−430m2

nm
6
m+7m8

n+7m8
m

)
m6

DM

−
(
1025m10

n m
2
m+647m8

nm
4
m−5562m6

nm
6
m

+ 647m4
nm

8
m+1025m2

nm
10
m +21m12

n +21m12
m

)
m4

DM

−
(
m2
n−m2

m

)
2
(
m2
n+m2

m

)(
−67m6

nm
2
m−48m4

nm
4
m−67m2

nm
6
m+7m8

n+7m8
m

)
m2

DM

+
(
m2
n−m2

m

)
4
(
208m6

nm
2
m+906m4

nm
4
m+208m2

nm
6
m+51m8

n+51m8
m

)]
,

Bg
V = 0 ,

CgV = 32768m12
DM−256

(
−135m2

mm
2
n+74m4

n+74m4
m

)
m8

DM

+512
(
m2
n+m2

m

)(
−43m2

mm
2
n+17m4

n+17m4
m

)
m6

DM

−32
(
−13m6

mm
2
n−1166m4

mm
4
n−13m2

mm
6
n+42m8

n+42m8
m

)
m4

DM

+32
(
m2
n−m2

m

)2 (
m2
n+m2

m

)(
5m2

mm
2
n+m4

n+m4
m

)
m2

DM

+3
(
m2
n−m2

m

)4 (
13m2

mm
2
n+2m4

n+2m4
m

)
.

(D.23)

In the particular case in which the two KK-gravitons have the same KK-number, m =

n, eq. (D.22) becomes:

σg(XX → GnGn) ≈ v−1 44m2
DM

81πΛ2
nΛ2

m

(1− r)1/2

r4(2− r)2
(D.24)

×
(

1 +
12

11
r +

351

44
r2 − 777

44
r3 +

1105

176
r4 +

181

88
r5 +

17

88
r6

)
,

where r ≡ (mn/mDM)2.

– 37 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
6

D.2 Annihilation through and into radion/KK-dilatons

In the following subsections we discuss the different DM annihilation cross sections

through and into radion/KK-dilatons, using the approximation for the sums over the

radion/KK-dilaton modes described in appendix C. The sum over the dilaton states will

be represented as SrKK .

D.2.1 Scalar case

The DM annihilation cross-section into two SM Higgs bosons is:

σr(S S → HH) ≈ v−1 |SrKK |2
9m6

DM

π

(
1−

m2
H

m2
DM

)1/2 (
1 +

m2
h

2m2
DM

)2

, (D.25)

The cross-section for DM annihilation into SM massive gauge bosons is:
σr(S S →W+W−) ≈ v−1 |SrKK |2

18m6
DM

π

(
1−

m2
W

m2
DM

)1/2 (
1−

m2
W

m2
DM

+
3m4

W

4m4
DM

)
,

σr(S S → Z Z) ≈ v−1 |SrKK |2
9m6

DM

π

(
1−

m2
Z

m2
DM

)1/2 (
1−

m2
Z

m2
DM

+
3m4

Z

4m4
DM

)
.

(D.26)

The DM annihilation into photons and gluons is proportional to the vertex in eq. (A.15).

The corresponding expressions for the cross-sections are:
σr(S S → γ γ) ≈ v−1 |SrKK |2

9m6
DM αEM CEM

8π3
,

σr(S S → g g) ≈ v−1 |SrKK |2
9m6

DM α3C3

π3
.

(D.27)

The DM annihilation cross-section into SM fermions is given by:

σr(S S → ψ̄ ψ) ≈ v−1 |SrKK |2
9m4

DMm2
ψ

π

(
1−

m2
ψ

m2
DM

)3/2

. (D.28)

Eventually, the DM annihilation cross-section into two radion/KK-dilatons is given by:

σg(S S → φn φm) ≈ v−1 A
r
S +Br

S + CrS
64πΛ2

nΛ2
mm

2
DM

×

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

(D.29)

where, as in the case of KK-gravitons, the three contributions to the cross-section come

from the square of the t- and u-channels amplitudes (ArS), the square of the 4-points

amplitude from vertex (A.19) (CrS) and from the interference between the two classes of

diagrams (Br
S), respectively:

ArS =

[
64m2

DM + (m2
n −m2

m)2
]2

(−4m2
DM +m2

n +m2
m)2

,

Br
S =

28
[
64mDM + (m2

n −m2
m)2
]

(−4m2
DM +m2

n +m2
m)

,

CrS = 196m4
DM .

(D.30)

where (mn,Λn) and (mm,Λm) are the masses and coupling of the n-th and m-th

radion/KK-dilatons modes, respectively.
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D.2.2 Fermionic case

If the Dark Matter is a Dirac fermion (χ) the annihilation into two SM Higgs bosons is:

σr(χ̄ χ→ HH) ≈ v |SrKK |2
m6

DM

8π

(
1−

m2
H

m2
DM

)1/2 (
1 +

m2
H

2m2
DM

)2

, (D.31)

The annihilation cross-section into two SM massive gauge bosons is:
σr(χ̄ χ→W+W−) ≈ v |SrKK |2

m6
DM

4π

(
1−

m2
W

m2
DM

)1/2 (
1−

m2
W

m2
DM

+
3m4

W

4m4
DM

)
,

σr(χ̄ χ→ Z Z) ≈ v |SrKK |2
m6

DM

8π

(
1−

m2
Z

m2
DM

)1/2 (
1−

m2
Z

m2
DM

+
3m4

Z

4m4
DM

)
.

(D.32)

whereas for two massless gauge bosons we have:
σr(χ̄ χ→ γ γ) ≈ v |SrKK |2

m6
DM αEM CEM

16π3
,

σr(χ̄ χ→ g g) ≈ v |SrKK |2
m6

DM α3C3

2π3
.

(D.33)

The DM annihilation cross-section into two SM fermions is:

σr(χ̄ χ→ ψ̄ ψ) ≈ v |SrKK |2
m4

DMm2
ψ

8π

(
1−

m2
ψ

m2
DM

)3/2

. (D.34)

Eventually, the annihilation directly into dilatons is given by:

σg(χ̄ χ→ φn φm) ≈ v
Arχ +Br

χ + Crχ
13824m2

DMπΛ2
nΛ2

m

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

(D.35)

where:

Arχ =
m4
DM(

−4m2
DM +m2

n +m2
m

)
4

[
4m6

m

(
419m2

n − 1804m2
DM

)
+ 2m4

m

(
−10312m2

DMm
2
n + 21648m4

DM + 3273m4
n

)
− 4m2

m

(
1804m2

DM − 419m2
n

) (
m2

n − 4m2
DM

)
2 + 451

(
m2

n − 4m2
DM

)
4 + 451m8

m

]
,

Br
χ = 0 ,

Crχ = 3m4
DM .

(D.36)

and where (mn,Λn) and (mm,Λm) are the masses and coupling of the n-th and m-th

radion/KK-dilatons modes, respectively.

D.2.3 Vectorial case

If the Dark Matter is a spin-1 particle (X) the annihilation into two SM Higgs bosons is:

σr(XX → HH) ≈ v−1 |SrKK |2
m6

DM

3π

(
1−

m2
H

m2
DM

)1/2 (
1 +

m2
H

2m2
DM

)2

, (D.37)
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The annihilation cross-section into two SM massive gauge bosons is:


σr(XX→W+W−)≈ v−1 |SrKK |2

4m2
DMm4

W

3π

(
1−

m2
W

m2
DM

)1/2 (
1−

3m2
W

4m2
DM

+
m4
W

8m4
DM

)
,

σr(XX→ZZ)≈ v−1 |SrKK |2
2m2

DMm4
Z

3π

(
1−

m2
Z

m2
DM

)1/2 (
1−

3m2
Z

4m2
DM

+
m4
Z

8m4
DM

)
.

(D.38)

whereas for two massless gauge bosons we have:


σr(XX → γ γ) ≈ v−1 |SrKK |2

3m6
DM αEM CEM

8π3
,

σr(XX → g g) ≈ v−1 |SrKK |2
3m6

DM α3C3

π3
.

(D.39)

The DM annihilation cross-section into two SM fermions is:

σr(XX → ψ̄ ψ) ≈ v−1 |SrKK |2
m4

DMm2
ψ

3π

(
1−

m2
ψ

m2
DM

)3/2

. (D.40)

Eventually, the annihilation cross-section into two radion/KK-dilatons is given by:

σg(XX → φn φm) ≈ v−1 ArV +Br
V + CrV

20736πΛ2
n Λ2

mm
2
DM

√(
1 +

m2
n −m2

m

4m2
DM

)2

− m2
n

m2
DM

(D.41)

where:



ArV =
1

(−4m2
DM +m2

n+m2
m)2

[
−512

(
m2
n+m2

m

)
m6

DM +128
(
m4
n+m4

m

)
m4

DM

−16
(
m2
n−m2

m

)2 (
m2
n+m2

m

)
m2

DM +
(
m2
n−m2

m

)4
+1536m8

DM

]
,

Br
V = 0 ,

CrV = 12m4
DM .

(D.42)

and where (mn,Λn) and (mm,Λm) are the masses and coupling of the n-th and m-th

radion/KK-dilatons modes, respectively.

D.3 Annihilation into one KK-graviton and one radion/KK-dilaton

It exists another channel that was not previously considered in the literature: DM annihi-

lation into one KK-graviton and one radion/KK-dilaton. The cross-section for this process
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is given by the following expressions:

σgr(SS→Gn rm)≈ v−1

(
AgrS

9216π

)(
1

Λ2
g,nΛ2

r,mm
2
DMm

4
g,n

)
1(

−4m2
DM +m2

g,n+m2
r,m

)2
×

√(
1+

m2
g,n−m2

r,m

4m2
DM

)2

−
m2
g,n

m2
DM

,

σgr(χ̄χ→Gn rm)≈ v−1

(
Agrχ
576π

)(
1

Λ2
g,nΛ2

r,mm
2
g,n

)
1(

−4m2
DM +m2

g,n+m2
r,m

)2
×

√(
1+

m2
g,n−m2

r,m

4m2
DM

)2

−
m2
g,n

m2
DM

,

σgr(V V →Gn rm)≈ v−1

(
AgrV

82944π

)(
1

Λ2
g,nΛ2

r,mm
2
DMm

4
g,n

)
1(

−4m2
DM +m2

g,n+m2
r,m

)2
×

√(
1+

m2
g,n−m2

r,m

4m2
DM

)2

−
m2
g,n

m2
DM

,

where the value of Agr is given by:

AgrS =
(
m2
g,n −m2

r,m

)2 [−2m2
r,m

(
4m2

DM +m2
g,n

)
+
(
m2
g,n − 4m2

DM

)
2 +m4

r,m

]2
,

Agrχ = (2mDM −mg,n −mr,m) (2mDM +mg,n −mr,m)

× (2mDM −mg,n +mr,m) (2mDM +mg,n +mr,m)

×
[
8m2

DM

(
7m2

g,n − 3m2
r,m

)
+ 48m4

DM + 3
(
m2
g,n −m2

r,m

)2]
,

AgrV = 4096m10
DM

(
3m2

g,n − 7m2
r,m

)
+ 256m8

DM

(
−106m2

g,nm
2
r,m + 93m4

g,n + 53m4
r,m

)
+ 256m6

DM

(
−63m4

g,nm
2
r,m + 57m2

g,nm
4
r,m + 67m6

g,n − 13m6
r,m

)
+ 64m4

DM

(
m2
g,n −m2

r,m

)
2
(
−34m2

g,nm
2
r,m + 17m4

g,n + 7m4
r,m

)
+ 32m2

DM

(
m2
g,n −m2

r,m

)
4
(
4m2

g,n −m2
r,m

)
+ 24576m12

DM +
(
m2
g,n −m2

r,m

)
6 .

(D.43)

In all of these expressions we have used (mg,n,Λg,n) and (mr,m,Λr,m) for the mass and

coupling of the n-th KK-graviton and of the m-th radion/KK-dilaton, respectively. Notice

that for this particular channel it does not exists a four-legs vertex.
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