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Abstract: Dynamic covalent chemistry combines in a single step the 

screening and synthesis of ligands for biomolecular recognition. To 

that, a chemical entity is used as template within a dynamic 

combinatorial library of interconverting species, so that the stronger 

binders are amplified due to the efficient interaction with the target. 

Here we employed whole A549 living cells as template in a dynamic 

mixture of imines, for which amplification reflects the efficient and 

selective interaction with the corresponding extracellular matrix. The 

amplified polyamine showed strong interaction with the A549 

extracellular matrix by on-cell NMR experiments, while combination of 

NMR, SPR and molecular dynamics simulations in model systems 

revealed insights on the molecular recognition event. Noticeably, our 

work pioneers the use of whole living cells in dynamic combinatorial 

chemistry, which paves the way towards the discovery of new 

bioactive molecules in a more bio-relevant environment. 

Dynamic combinatorial chemistry (DCC) proposes the use of 

dynamic libraries (DCL) for the generation of species able to 

exchange through reversible covalent bonds.[1] These molecular 

systems are responsive to external stimuli by modifying the DCL 

composition,[2] with the stabilized members being amplified at the 

expense of the other components in the mixture.[3] Within the 

chemical biology field, the DCC approach has led to the discovery 

of new protein ligands,[4] nucleic acids binders[5] or even 

replicators.[6] For biological applications, it should be desirable 

that the conditions used for the DCC screening resemble those in 

the place of action.[7] Inspired by Sander’s comparison of DCC 

with the immune system,[8] we envisioned to target the 

extracellular matrix (ECM).[9] The external surface of the cells is 

formed by a complex network of glycoproteins and anionic 

polysaccharides that is fundamental for processes such as cell 

communication,[10] regeneration,[11] metastasis[12] or host-

pathogen infection.[13] The ECM is the first barrier for a molecule 

(i.e. a drug) to enter inside the cell; thus, navigating the ECM is 

fundamental in biomedicine and in chemical biology.[14] However, 

the chemical and structural complexity of the ECM have hindered 

its detailed molecular characterization, and frustrated the rational 

design of synthetic ligands.[15] Paradoxically, the intrinsic 

complexity of the ECM offers an ideal playground for the 

realization of the self-organizing features of DCC (Figure 1A), 

which has demonstrated its power for the discovery of strong 

binders to challenging biomolecules.[1-8] Considering our recent 

results in the identification of a strong heparin binder[16] and the 

chemical similarity between heparin and the glycosaminoglycans 

(GAGs) of the ECM,[14] we designed a library (Figure 1B) 

combining spermine as a cationic polyamine scaffold[17] with a set 

of aromatic aldehydes, which would mediate binding through CH-

aryl interactions with the saccharide units.[18] Thus, the dynamic 

mixture of imines (2XY) obtained by the reaction between 

spermine (1) and an equimolecular mixture of four aromatic 

aldehydes (A, B, K, L) was incubated with living cells and reduced 

in situ with NaBH3CN to the corresponding polyamines (3XY). As 

initial model, we used the A549 human lung adenocarcinoma cell 

line since the ECM of these cells is rich in anionic GAGs.[19] The 

supernatant was analyzed by UPLC-MS allowing the identification 

and quantification of each member of the library (Figure 1C). The 

normalized area of the UPLC-MS peaks for the reactions 

performed in the presence (AT) and in the absence (A0) of cells 

was compared by the calculation of the corresponding 

amplification factors (AF = AT/A0). 

The A549-templated library displayed interesting AF values 

(black bars in Figure 1C) with a molecule (3AL) specially favored 

by the presence of the cells. Interestingly, the experiment 

performed with another cell line (HeLa) produced a different 

amplification pattern (gray bars in Figure 1C) as expected for the 

different GAG-composition of its ECM.[20] Control experiments 

were designed to get clues about the origin of these observations. 

The amplification of 3AL was drastically reduced when the A549-

templated reaction was performed in the presence of protamine 

(blue bars in Figure 1C), an arginine-rich protein with well-known 

GAG-binding properties,[21] supporting the role of GAGs in the 

amplification process. Additionally, we also tested A549 cells 

grown in the presence of sodium chlorate (green bars in Figure 

1C), which inhibits the GAG sulfation in the cell.[22] Here again, the 

AF of 3AL drastically decreased. Both experiments underlined the 

importance of electrostatic interactions with the GAGs present in 

the ECM. Moreover, the behavior of different members of the 

library suggested that additional non-covalent contacts (hydrogen 

bonds, hydrophobic or CH- interactions) might be also playing 

an important role. Thus, the selection of the corresponding 

aromatic moieties in 3AL might reflect an optimal balance 

between H-bonding sites and aromatic surfaces for carbohydrate 

CH- interactions. In all the cases, the cell viability after the 

reaction was checked using the MTT assay rendering >60% of 

cell survival (Figure S1). 
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Figure 1. (A) Cartoon for the cell-templated DCC. (B) Scheme of the DCL. (C) 

Plot of the AF (UPLC peak area in the templated/non-templated reactions) using 

living cells as templates: A549 (black), HeLa (gray), A549 in the presence of 

protamine (blue) and A549 grown with sodium chlorate (green). The values in 

(C) show the average of at least three replicates. 

In order to confirm that the observed amplification is due to a 

stabilizing interaction with the ECM, we synthesized 3AL at 

preparative scale and studied its binding ability with a set of on-

cell NMR[23] experiments (Figure 2). The NMR tube was filled with 

A549 cells in order to obtain a homogenous sample (Figure S2). 

The corresponding solution 1H NMR spectrum showed the signals 

for the most fluxional parts of the cell (lipids, GAGs, collagen and 

some excreted metabolites), in agreement with those reported in 

the literature[24] and confirmed by 1D/2D NMR experiments 

(Figures S3-S4). We used two different NMR experiments for 

studying the 3AL-ECM interaction: relaxation-filtered[25] and 

WaterLOGSY[26] sequences. The first experiment takes 

advantage of the fast transverse relaxation of large molecules: the 

implementation of a T2-filter attenuates the NMR signals of 

species showing slow tumbling in solution. When small molecules 

interact with large biopolymers (or cells), their signals will 

decrease with respect to the unbound molecules in the bulk. On 

the other hand, the WaterLOGSY is a NOE-based experiment that 

starts with the excitation of the water protons, which transfer their 

magnetization to the hydrated molecules by NOE and spin 

diffusion mechanisms (Figure 2A,B). As in NOESY, the signals of 

small and large species have opposed phase. Accordingly, the 

binding of a small molecule to a large entity (like a cell) produces 

a change in the sign of its signals in the WaterLOGSY experiment. 

Thus, the T2-filtered 1H NMR spectrum of 3AL in the presence of 

A549 cells showed much less intense signals than the 

corresponding spectrum of the free ligand in solution (compare 

traces (ii) vs. (iii) in Figure 2C). Additionally, the WaterLOGSY 

spectra of 3AL in the absence and in the presence of A549 cells 

displayed opposed signs (traces (v) vs. (vi) in Figure 2C). Both 

results support a strong binding of 3AL to the external surface of 

A549 cells. 

 

Figure 2. Binding of ligands to A549 whole cells: (A) Cartoon representation for 

the interaction of 3AL with the ECM of A549 live cells. (B) Cartoon 

representation of the protamine-mediated displacement of the ECM-bound 3AL. 

(C) NMR binding experiments (T2-filtered (200 ms) and WaterLOGSY spectra) 

supporting the processes depicted in (A,B). From up-down in (C): 1H NMR 

reference spectra of 3AL (i); T2-filtered spectra of 3AL (ii), 3AL : A549 (iii), and 

3AL : A549 : protamine (PROT) (iv) samples; WaterLOGSY of 3AL (v), 3AL : 

A549 (vi), and 3AL : A549 : PROT (vii) samples. (D) Competition experiments 

for the 3AL/3BB binding to A549 by T2-filtered (200 ms) NMR (from up-down): 
1H NMR spectrum of 3BB, T2-filtered of 3BB : A549, 3BB : 3AL : A549 samples, 

and 1H NMR of 3AL. 

We also used protamine to perform competition experiments 

(Figure 2B). Thus the addition of protamine to the 3AL : A549 

sample induced the recovery of the intensity of the 3AL signals in 

the T2-filtered spectrum (trace (iv) in Figure 2C) and a decrease 
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of the corresponding WaterLOGSY effect (trace (vii) in Figure 2C). 

This is a consequence of the 3AL release back to the bulk due to 

the efficient displacement from its complex with the GAGs of the 

ECM. On the other hand, the different AF observed for the 

relatively similar small molecules of the DCL is an intriguing 

observation, which could be related to a selective binding to the 

ECM. To confirm this assumption, we also synthesized a member 

of the library that does not vary its relative concentration in any of 

the DCC experiments (3BB, Figure 1C). The T2-filtered 

experiment with a sample containing 3BB and A549 cells showed 

that this molecule also binds the ECM (second trace in Figure 2D), 

although this interaction is weaker than the 3AL-ECM complex, 

as confirmed by the corresponding 3BB/3AL competition 

experiment (third trace in Figure 2D). 

The ligand 3AL showed low toxicity to A549 cells (>90% cell 

survival up to 250 µM 3AL, Figure S7), but effectively reduced the 

staining of the cells with methylene blue (MB, Figure S8), a known 

dye for the GAGs of the ECM. This observation confirms the 

strong binding of 3AL to the ECM, thus precluding the MB-ECM 

interaction. 

To unravel the process at the molecular level, we envisioned 

chondroitin sulfate (CDS) as a convenient GAG model 

considering its abundance (65% of total GAG) in the ECM of the 

A549 cells.[27] First, selected NMR interaction experiments were 

performed with 3AL and CDS from shark cartilage (Figure 3A). 

Also in this case, the addition of CDS to a 3AL sample produced 

a clear attenuation of the T2-filtered NMR signals and a change in 

the sign of the WaterLOGSY spectrum, supporting the efficient 

3AL-CDS interaction in solution. Remarkably, the corresponding 

NMR experiments with 3BB under the same experimental 

conditions showed an imperceptible attenuation of the T2-filtered 

signals and zero WaterLOGSY effects (Figure 3B). These results 

suggested a stronger interaction of 3AL to CDS, as compared to 

3BB. Moreover, a quantitative estimation of the binding was also 

carried out by SPR on CDS-functionalized chips, revealing a more 

intense response with 3AL than with 3BB (Figure 3C), in line with 

the NMR results in solution. The global fitting of the SPR data 

rendered a dissociation constant (Kd) of 2.1 µM for 3AL, while 

33.6 µM for 3BB (Figure S9,S10). All these results correlate with 

the observed AF in the DCC assays and the NMR binding 

experiments, both performed with the whole A549 cells. 

 

 

Figure 3. Binding of CDS with 3AL or 3BB. (A) NMR binding experiments with 3AL and CDS (from up-down): T2-filtered of 3AL, and 3AL : CDS samples; 

WaterLOGSY of 3AL, and 3AL : CDS samples. (B) Corresponding NMR binding experiments with 3BB. (C) SPR sensograms of 3AL (red) and 3BB (blue) binding 

to CDS-functionalized chips. (D-G) Summary of results obtained from 500 ns MD simulations of a system containing a CDS-A hexadecamer, with 5 molecules of 

3AL and 5 molecules of 3BB in TIP3P water. (D) Representative snapshot of the CDS-A/3AL+3BB simulation (CDS-A: spheres, orange C-atoms; 3AL: sticks, 

green C-atoms; 3BB: sticks, cyan C-atoms), ligands at >5 Å, water molecules and ions are omitted. (E) Detail showing the interactions between 3AL and CDS-A 

(H-bonds: cyan dashed lines; CH-π interactions: magenta dashed lines). (F,G) Graphics representing the number of ligand molecules (M, black squares, left axis) 

and the number of ligand atoms (A, blue lines, right axis) within a distance of 3 Å from the CDS-A molecule vs. simulation time. Average values: (F) (3AL) = 

3.19±0.99, (3AL) = 83±18; (G) (3BB) = 1.84±1.10, (3BB) = 60±16. 
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The molecular recognition process was also visualized with 

the help of molecular dynamics simulations in explicit water 

(Figure 3D-G). We built the corresponding hexadecamer of CDS-

A, since this is the main GAG in the ECM of A549 cells (33% of 

total GAGs)[27] and the one used for the SPR assays. The 

individual binding of 3AL and 3BB to CDS-A was confirmed by 

500 ns simulations of a CDS-A hexadecamer (fully ionized) and 5 

molecules of either 3AL or 3BB in their corresponding 

tetraprotonated forms, adding chloride anions to neutrality. In both 

cases, the results showed the efficient interaction of the ligands 

with CDS-A, with no evident differences between the two 

polyamines (Figures S11,S12,S14A,B). Then, we performed the 

corresponding molecular dynamics simulations including both 

compounds (5 molecules of 3AL and 5 molecules of 3BB). In this 

competition set up, a clear preference for 3AL was observed, 

since the most populated cluster of the simulation showed four 

molecules of 3AL but two molecules of 3BB bound to CDS-A 

(Figure 3D, Figures S13,S16 and Movie). The 3AL : CDS-A 

molecular recognition is sustained by H-bonding with the 

ammonium and phenol groups, as well as carbohydrate CH- 

contacts with the naphthyl ring (Figure 3E). As initially 

hypothesized, the synergy of the two types of interactions is 

optimized for the amplified ligand. The selectivity towards 3AL is 

clearly reflected in the plots of the contacts (molecules and atoms) 

between the ligands and the CDS-A during the simulation time 

(Figure 3F,G, Figures S14-S16). A more detailed analysis shows 

that 3AL establishes a higher number of direct H-bonding, ionic, 

and water mediated interactions than 3BB during most of the 

simulation (Figure S17). Furthermore, an estimation of the 

number of CH- contacts also points to the same direction (Figure 

S18). Thus, the experimental and theoretical results on the 

interaction of the ligands with this GAG can satisfactorily explain 

the observed selectivity in the DCC experiments. 

Our results demonstrate, for the first time, that dynamic 

covalent chemistry can be successfully applied with living 

templates thus expanding its application in chemical biology, and 

opening new venues for a fast and meaningful approach to 

discover new ligands for challenging biomolecular targets in 

realistic media. Recalling the original inspiration from immune 

system, the efficient molecular recognition of the cell surface 

opens the possibility to use DCC to differentiate, for instance, 

healthy cells from different organs against cancer cells or 

pathogens. Moreover, the modular nature of the dynamic 

combinatorial library allows expanding its molecular diversity to 

virtually cover the wide chemical and compositional variety of the 

extracellular matrix in different cell types. Therefore, this 

approach has the potential to contribute to many different aspects 

at the intersection between chemistry and biology. 
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Materials and Methods 
Materials 

Reagents and solvents were purchased from commercial suppliers (Aldrich, Fluka or 
Merck) and were used without further purification. 

Synthesis of 3AL: polyamine 3AL was synthesized as previously described1. 
Synthesis of 3BB: Spermine (70 mg, 0.35 mmol) was dissolved in 25 mL of anhydrous 

THF at 0°C. Then, o-anisaldehyde (17 mg, 0.7 mmol) was added dissolved in 7 mL of 
anhydrous THF. The solution was stirred overnight. Then, NaBH3CN (87 mg, 1.4 mmol) was 
added and the reaction was stirred 24h. After addition of H2O (2 mL) and 1M HCl (2 mL), the 
reaction was stirred for 1h. THF was evaporated in vacuum. Reaction mixture was purified by 
reverse phase chromatography with a gradient of ACN (1% TFA) and water (1% TFA) to yield 
24 mg (16%) of pure product (>99% by HPLC).  

 
1H RMN (H2O/D2O): δ 7.37 (ddd; 2H; J1=7.5Hz, J2=8.3Hz, J3=1.4Hz; H3), 7.22 (dd; 2H, 

J4=7.5Hz, J3= 1.4Hz; H1), 6.99 (d; 2H; J2=8.3Hz; H4), 6.91 (dd; 2H, J1=7.5Hz; J4=7.5Hz; H2), 
4.10 (s; 4H, H6), 3.74 (s; 6H, H5), 2.98 (m, 12H, H7, H9, H10), 1.97 (m, 4H, H8), 1.6 (m, 4H, 
H11). 
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13C RMN (H2O/D2O): δ 157.7 (C12), 131.7 (C1), 131.5 (C3), 120.9 (C13), 118.2 (C2), 
111.2 (C4), 55.3 (C5), 47.0 (C10), 46.9 (C6), 44.4 (C9), 43.7 (C7), 22.6 (C11), 22.4 (C8). 

 
HPLC: tr => 8.6min Purity >99% at 220 nm. 

 
MS: Calculated MS for (M+H)+ C26H43N4O2 443.3381; found 443.3527 
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HSQC: 

 
HMBC: 
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Methods: 
Cell growth: A549 and HeLa cells were maintained in DMEM (4500 mg/mL glucose) 

culture medium (Sigma) containing 10% fetal calf serum (FCS), 2 mM glutamine, 50 u/mL 
penicillin, and 0.05 g/mL streptomycin, at 37°C under 5% CO2 atmosphere. For experiments 
in cell medium doped with 50 mM NaClO3, cells were grown in chlorate supplemented medium 
during 72h in advance. 

General DCC reaction: Exponentially growing cells were detached from the culture flasks 
using a trypsin-0.25% EDTA solution. The cell suspension was seeded on 25 mm plates 
(Corning) at 21.4 x 103 cells/cm2. The cells were incubated 24h. Then, the cell media was 
replaced with PBS (x3) and the imine mixture was added as described just below. 

A stock solution of imines was prepared by dissolving the proper amount of spermine and 
the corresponding aldehydes in water rendering a final concentration of 7.5 mM in all reagents. 
The solution was shaken overnight. Then, two reaction mixtures were prepared in different 
falcon centrifuge tubes by mixing 50 µL of the stock solution with 450 µL of PBS, they were 
added to the 25 mm plates (Corning) either with cells or without them. Immediately, NaBH3CN 
from a stock solution at 50 mM was added, rendering a final concentration of 1 mM of the 
reducing reagent. Plates were incubated during 1h. After that time, medium was extracted to 
Eppendorfs and reaction was stopped by the addition of 50 µL of 1M HCl. Reaction mixture 
was then centrifuged (5 min at 6 Krpm). Supernatant was kept, two-fold diluted with water and 
analyzed by UPLC-MS. The assignment of the peaks observed in the reactions was done on 
the basis of the m/z values and confirmed by injection of samples obtained from deconvoluted 
sublibraries. The amplification factors were calculated by dividing the normalized areas of the 
corresponding UPLC peaks in the presence of cells (AT) by the areas obtained in the absence 
of cells (Ao). 

DCC in the presence of protamine: The DCC procedure was performed as previously 
described, but 500 µM of protamine (from a stock solution at 25 mM) was added before the 
addition of imines. 

DCC with cells grown in the presence of NaClO3: The DCC procedure was performed as 
previously described, but all cell media was supplemented with 50 mM NaClO3 72h in advance 
of seeding the cells into the 25 mm plates. 

MTT Assays: The viability of A549 cells was tested using the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In it, exponentially growing cells were 
detached from the culture flasks using a trypsin-0.25% EDTA solution, and the cell suspension 
was seeded onto 96-well (Nunclon) at a concentration of 7k cells/well. Toxicity of aldehydes, 
spermine, 3AL and NaBH3CN was tested as follows: 24h after seeding, culture medium was 
discarded and replaced by compound solution in PBS that were diluted with cell culture 
medium to their final concentration ([aldehydes, Spermine] = 0.75 mM, [NaBH3CN] = 1 mM, 
[3AL] = 50 to 500 µM). After 1h of incubation at 37°C under 5% CO2 atmosphere, solvent 
was discarded and replaced with MTT (0.5 mg/mL). After 2 hours of incubation with MTT, 
the medium was discarded by aspiration and DMSO was added to dissolve formazan, a dark 
blue colored crystal observed in the wells. Absorbance was measured at 570 nm in a 
spectrophotometric Biotek Sinergy 2 Microplate Readed (Agilent), 30 minutes after the 
addition of DMSO. Cell viability is expressed as an absorbance percent ratio of cells treated 
with compound to untreated cells, which were used as a control. Results are the average from 
three independent experiments. Toxicity of imines and reaction conditions was tested as 
follows: 24h after seeding, culture medium was discarded and replaced with a solution of either 
the reaction cocktail or just the imine mixture ([imines]=0.75 mM each) in PBS. After 1h of 
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incubation, solvent is discarded and cells are treated with MTT (0.5mg/mL) as previously 
described. 

A549 cells preparation for NMR experiments: Cells were normally grown until they reach 
80-85x106 cells, enough to completely fill the Shigemi NMR tube (Fig. S2). Then, culture 
flasks were washed with PBS and cells were detached using Versene (1:5000, Thermofisher), 
the cells were centrifuged and resuspended in 0.5xPBS (x3). The final pellet was resuspended 
in 500-600 µl 0.5XPBS and passed to a Shigemi tube for solution NMR. The cells were 
centrifuged to the bottom of the NMR tube using a hand-driven centrifuge, the excess of PBS 
was eliminated and 10% of D2O (in volume) was added for deuterium locking purpose. Once 
the round of NMR experiments had finished, the stability of the cells was tested by Trypan 
Blue. 

A549 cells solution state NMR experiments: Experiments were carried out on a Bruker 
AvanceTM III HD spectrometer operating at 500 MHz (1H resonance frequency) and equipped 
with a 5mm TCI (1H/13C/15N) cryoprobe. NMR spectra were acquired and processed using 
Bruker TopSpin 3.5 and MNova software, respectively. All NMR spectra were acquired at 
37ºC and the cells were inside the NMR tube/magnet not more than 5 hours. The setup included 
locking (90% H2O and 10% D2O), tuning and matching, shimming, and calibration of the (1H) 
pulse for every cell suspension sample. The pulse programs used for spectra acquisition were 
zggpw5 (1D 1H with water suppression using watergate W5 pulse sequence), cmpgpr1D (1D 
1H T2-filtered, 200-ms filter, and hsqcetgpprsisp2.2 (2D 1H-13C HSQC with presaturation 
during relaxation delay) from Bruker pulse sequence library. 

Trypan Blue assay: Cell viability of cell suspension in PBS was determined by Trypan 
Blue assay. 10 µL of the cell suspensions was pipetted to an Eppendorf and 10 µL of the Trypan 
Blue solution (0.4%, Sigma) were added. The Eppendorf was gently shaken 1 minute. Then, 
non-viable (stained) and viable (non-stained) cells were counted. Stability is expressed as 
percent ratio of viable cells to total number of cells. 

Methylene Blue staining: A549 cells were normally grown in NuncTM Glass Botton Dishes 
until they reached roughly 70% confluence. Then, they were treated with 0.05% methylene 
blue in PBS w/o presence of 100 µM 3AL during 5min. After thorough cleaning with PBS, 
pictures of live cells in PBS were taken using a Nikon Eclipse TS100 microscope equipped 
with a Nikon DS-2Mv Digital Sight camera, using Nikon Imaging Software (NIS) Elements F 
v4.3 within the next 30 minutes after staining. Pictures were taken with 1600x1600 resolution, 
using a 1.4xgain filter with 25 ms exposure and the Default contrast provided by the imaging 
software. These conditions were kept constants to allow the comparison between different 
experiments. Although difference in staining could easily be spotted, comparison between cell 
color was determined by following an adapted method from reference3. Image processing with 
ImageJ software was used to extract the RGB intensity of the cells within each condition 
(n>80). As brighter cells would just have higher intensity values, comparison of the different 
conditions has been performed by looking at the proportion of each RGB color in each case. 
Stained cells are more bluish/greenish than non-stained ones while presence of 3AL reduces 
this color apparition. Same process was done with background to avoid artifacts produced by 
non-specific staining of the whole plate. 

Surface Plasmon Resonance (SPR): Affinity experiments between 3AL/3BB and 
chondroitin sulfate were performed on an Open SPRTM (Nicoya). All measurements were 
performed at 25°C using a working buffer of 25 mM Tris at pH 7.5. Biotin-loaded sensor chips 
(NICOYA) were further functionalized with streptavidine (50 µg/mL) and later with biotin-
chondroitin sulfate (50 µg/mL). Binding experiments to chondroitin were performed by 
injecting 3AL/3BB at desired concentrations and at a rate of 40 µL/min. Between binding 
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assays, the surface was regenerated by exposure to an injection of 10 mM HCl. Fitting has been 
performed by Trace Drawer software using a ‘one-to-one two-state algorithm’, which considers 
a possible interaction into two different independent reacting places. Results obtained from 
three independent experiments at three different concentrations of the ligands were fit globally 
to render the corresponding on/off rate constants and the dissociation constants (Kd). The 
somehow large errors in the determined Kd can be a consequence of the rough approximations 
assumed with the applied binding mode and also due to the polydispersity of the chondroitin 
sulfate sample. Anyway, since the difference in the corresponding dissociation constants 
largely exceeds the estimated errors, we are confident that they can be used for comparison 
purposes. SPR experiments have been performed with the support of the ICTS “NANBIOSIS”, 
more specifically by the Unit U2, Custom Antibody Service (CAbS, CIBER-BBN, IQAC-
CSIC). 

Biotin-Chondroitin Sulfate: Chondroitin sulfate was purchased from SIGMA 
(Chondroitin sulfate A sodium salt from bovine trachea, purchased as a mixture of polyanion 
chains, with most chains in the order of 10kDa), sulfosuccinimidyl 6-(biotinamido)hexanoate 
was obtained from Merck. GAG biotin-functionalization was performed as previously 
reported2. 

Molecular Dynamics Simulation Methods: All molecular simulations were carried out 
with the package Schrödinger Suite 20194, through its graphical interface Maestro5. The 
program Macromodel6, with its default force field OPLS37 and GB/SA water solvation 
conditions8, was used for energy minimization. Molecular dynamics simulations were 
performed with the program Desmond9,10, using the OPLS3 force field. A chondroitin-A 
hexadecamer model (dp16 CDS-A) was built from the reported crystal structure of a 
chondroitin sulphate A hexamer (PDB 1C4S)11. Ligands 3AL and 3BB were built within 
Maestro. The dp16 CDS-A molecule was modelled with all its sulfate and carboxylate groups 
in their ionized state (total charge -16), while the 3AL and 3BB ligands were modelled with 
their four amino groups protonated. All structures were energy minimized before building the 
simulation systems. Since each CDS-A oligomer can potentially bind several molecules of the 
ligands, systems composed of a dp16 CDS-A molecule plus five unbound and randomly placed 
3AL or 3BB molecules were set up in a 100x100x100 Å cubic box, with added Cl- ions to 
reach neutrality and the whole system solvated with TIP3P water (~32600 TIP3P molecules), 
using the System Builder of the Maestro-Desmond interface12. Similarly, a system to analyze 
the competence between 3AL and 3BB for binding to CDS-A was built starting from a snapshot 
of the CDS-A/3BB simulation where the five 3BB molecules were bound to CDS-A. After 
removing the waters and ions from this system, 5 additional unbound molecules of 3AL were 
randomly placed around it and then it was resolvated as before. 

Simulations were performed as previously described1. Thus, the full systems (~99000 
atoms) were initially subjected to steepest descent minimization, first with the solute restrained 
and then without restraints until a gradient threshold of 0.1 kcal/mol/Å was reached. Then they 
were heated stepwise to 300 K with short MD runs under periodic boundary conditions (PBC, 
NPT, Berendsen thermostat-barostat) (12 ps at 0.1, 10, 100 and 300 K), and equilibrated for 2 
ns at the last temperature and 1.0 bar in the NPT ensemble. Production MD simulations (500 
ns, 2 fs time step) were performed under the same conditions (PBC, NPT ensemble, 300 K and 
1.0 bar) using the Nose-Hoover thermostat method13-14 with a relaxation time of 1.0 ps and the 
Martyna-Tobias-Klein barostat method15 with isotropic coupling and a relaxation time of 2 ps. 
Integration was carried out with the RESPA integrator16 using time steps of 2.0, 2.0, and 6.0 fs 
for the bonded van der Waals and short range and long range electrostatic interactions, 
respectively. A cut-off of 9 Å was applied to van der Waals and short-range electrostatic 
interactions, while long-range electrostatic interactions were computed using the smooth 
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particle mesh Ewald method with an Ewald tolerance of 10-9 17,18. Bond lengths to hydrogen 
atoms were constrained using the Shake algorithm19. Coordinates were saved every 200 ps, 
hence 2500 snapshots (frames) were obtained for each simulation. The Simulation Event 
Analysis application included in the Desmond-Maestro interface and different ad-hoc scripts 
were used to analyze the simulations results. The 2500 snapshots were clustered based on the 
atomic RMSD of the heavy atoms using the hierarchical clustering with average linkage 
method implemented in the Schrodinger Suite and fixing the number of clusters to 10. 
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Supplementary Figures 
 

 
Figure S1. Cell viability (%, MTT assay) under different reaction conditions and molecules: 
aldehydes A (black), B (gray), L (brown) and K (green), spermine (blue), imines reaction 
(magenta), NaBH3CN (dark gray), full DCC reaction conditions (red) and full DCC reaction 
conditions on cells grown in the presence of sodium chlorate (light green). 
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Figure S2. Picture of a sample of A549 cells suspension inside a Shigemi NMR tube. 
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Figure S3. 1D 1H proton and T2-filtered experiments on an A549 cell suspension sample with 
glycosaminoglycan spiking: the amount of CDS-A or CDS (from stock concentrated solutions 
prepared in 0.5XPBS) added into the NMR tube A549 cells suspension is indicated.  
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Figure S4. 2D 1H-13C HSQC experiment with glycosaminoglycan spiking: the amount of CDS-
A or CDS added (from stock concentrated solutions prepared in 0.5XPBS) to the NMR tube 
containing the A549 cells suspension is indicated.  
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Figure S5. 1D 1H T2-filtered spectra of 3AL titration in A549 cells suspension (0.0, 0.8, 2.3, 
3.7, 5.1 and 6.4 mM; from a 63 mM stock in DMSO-d6).  
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Figure S6. Cell survival (%, Trypan Blue assay) at different experimental conditions similar 
to those used in the NMR experiments, as determined with Trypan Blue assay (the experiments 
performed with 3AL were carried out in 0.5xPBS). 
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Figuree S7. Cell viability (%, MTT assay) in the presence of different concentrations of 3AL. 
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Figure S8. MB staining experiments: (A) Selected pictures of the A549 cells upon different 
conditions: blank (left column), stained with methylene blue dye (middle), and stained with 
methylene blue in the presence of 100 µM 3AL (right). (B) Scatter plot of the color intensities 
of the cells upon the different staining conditions. The normalized red, green and blue 
intensities are shown in their respective colors with the solid lines as the mean values. 
 

Blank MB staining MB staining +3ALA

B
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Figure S9. SPR sensograms for the binding of 3AL to chondroitin sulfate functionalized chips. 
The concentrations of 3AL in the flowing solutions were: 30 µM (black), 80 µM (blue) and 
150 µM (red). Solid symbols represent experimental values while the dashed line is the best 
fitting to the ‘one-to-one two-state’ model. Despite only one experiment per concentration is 
represented here for clarity, three independent replicates for each concentration were 
performed with very similar results, and all the curves were globally fitted to converge to a Kd 
= 2.1±1.0 µM. 
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Figure S10. SPR sensograms for the binding of 3BB to chondroitin sulfate functionalized 
chips. The concentrations of 3BB in the flowing solutions were: 30 µM (black), 80 µM (blue) 
and 150 µM (red). Solid symbols represent experimental values while the dashed line is the 
best fitting to the ‘one-to-one two-state’ model. Despite only one experiment per concentration 
is represented here for clarity, three independent replicates for each concentration were 
performed with very similar results, and all the curves were globally fitted to converge to a Kd 
= 33.6±11.2 µM. 
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Figure S11. Snapshots from the 500 ns MD simulation of a system containing one dp16 CDS-
A model (spheres) and five 3AL (green sticks) molecules. Water molecules, ions and 3AL 
molecules that are too far from CDS-A are omitted for clarity. 
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Figure S12. Snapshots from the 500 ns MD simulation of a system containing one dp16 CDS-
A model (spheres) and five 3BB (cyan sticks) molecules. Water molecules, ions and 3BB 
molecules that are too far from CDS-A are omitted for clarity. 
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Figure S13. Snapshots from the 500 ns MD simulation of a system containing one dp16 CDS-
A model (spheres), five 3AL (green sticks) and five 3BB (cyan sticks) molecules. Water 
molecules, ions and 3AL or 3BB molecules that are too far from CDS-A are omitted for clarity. 
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Figure S14. Summary of results obtained from 500 ns MD simulations of three different 
systems containing a CDS-A hexadecamer with all its sulfate and carboxylate groups ionized 
(total charge -16), and the following ligands: (A) 5 molecules of 3AL with their four amino 
groups protonated (total charge +20); (B) 5 molecules of 3BB with their four amino groups 
protonated (total charge +20); or (C-D) 5 molecules of 3AL and 5 molecules of 3BB, all with 
their four amino groups protonated (total charge +40). The three systems included enough Cl- 
ions to achieve neutrality and they were immersed in a 100 x 100 x 100 Å cubic box of explicit 
TIP3P water. The graphs represent the number of ligand molecules (black squares, left axis) 
and the number of ligand atoms (blue lines, right axis) within a distance of 3 Å from the CDS-
A molecule vs. simulation time. Average values of ligand molecules () and ligand atoms (): 
(A) (3AL) = 4.12±0.64 , (3AL) = 58±14 ; (B) (3BB) = 4.12±0.74 , (3BB) = 50±14 ; (C) 
(3AL)= 3.19±0.99 , (3AL) = 83±18 ; (D) (3BB)= 1.84±1.10 , (3BB) = 60±16 . 
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Figure S15. Results from clustering the 2500 snapshots of each MD simulation, by applying a 
hierarchical clustering method with 10 clusters. Simulations: (A) CDS-A/3AL, (B) CDS-
A/3BB, and (C) CDS-A/3AL+3BB. The graphs show the population distribution among the 
clusters (red bars, left axis) and the accumulated % of population (blue line, right axis). 
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Figure S16. Representative snapshots of the most populated clusters for each simulation. 
Simulations: (A) CDS-A/3AL, (B) CDS-A/3BB, and (C) CDS-A/3AL+3BB. The CDS-A 
model molecule is shown as spheres, and the five 3AL and 3BB molecules are shown as green 
and cyan sticks, respectively. Water molecules and ions are omitted for clarity. 
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Figure S17. Total number of direct H-bonds stablished between the CDS-A molecule and the 
(A) 3AL or (B) 3BB ligands during the competition simulation of CDS-A/3AL/3BB. The red 
lines represent the average over the whole simulation (3AL: 5.5 ± 2.7; 3BB: 2.4 ± 2.2).  Polar 
contacts between CDS-A and each 3AL (C) or 3BB (D) molecule, averaged over the 500 ns 
simulation. Contacts are classified by type: H-bonds (blue bars), ionic (red bars) or water 
bridges (green bars). 
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Figure S18. Number of ligand molecules (black squares, left axes) and ligand atoms (blue 
lines, right axes) involved in CH-π contacts between CDS-A and (A) 3AL or (B) 3BB during 
the competition simulation of CDS-A/3AL/3BB. The CH-π contacts were determined as those 
involving a sp3 C-atom of CDS-A and a sp2 C-atom of the ligands separated by a distance < 4 
Å. In CDS-A, the sp3 C-atoms include the CH-groups of the glucuronic and galactosamine 
rings, the methyl of the 2-acetamido substituent and the 6-CH2 of the galactosamine moieties. 
In 3AL and 3BB the sp2 C-atoms correspond to those of the aromatic substituents at the 
extremes of both ligand molecules. Average values of ligand molecules () and ligand atoms 
(): (A)  (3AL) = 2.2 ± 1.1,  (3AL) = 9.0 ± 5.6; (B)  (3BB) = 0.9 ± 0.8,  (3BB) = 2.4 ± 
2.7. 
 
 
 
 
 
Supporting Movie. Movie showing selected snapshots from the 500 ns molecular dynamics 
simulation for the CDS-A hexadecamer (orange spheres) + 5 molecules of 3AL (green sticks) 
+ 5 molecules of 3BB (cyan sticks). Only the ligands at a distance shorter than 8 Å are shown. 
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