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Abstract
1.	 The estimation of abundance of wildlife populations is an essential part of ecologi‐
cal research and monitoring. Spatially explicit capture–recapture (SCR) models are 
widely used for abundance and density estimation, frequently through individual 
identification of target species using camera‐trap sampling.

2.	 Generalized spatial mark–resight (Gen‐SMR) is a recently developed SCR exten‐
sion that allows for abundance estimation when only a subset of the population is 
recognizable by artificial or natural marks. However, in many cases, it is not pos‐
sible to read the marks in camera‐trap pictures, even though individuals can be 
recognized as marked. We present a new extension of Gen‐SMR that allows for 
this type of incomplete identification.

3.	 We used simulation to assess how the number of marked individuals and the indi‐
vidual identification rate influenced bias and precision. We demonstrate the mod‐
el’s performance in estimating red fox (Vulpes vulpes) density with two empirical 
datasets characterized by contrasting densities and rates of identification of 
marked individuals. According to the simulations, accuracy increases with the 
number of marked individuals (m), but is less sensitive to changes in individual 
identification rate (δ). In our case studies of red fox density estimation, we ob‐
tained a posterior mean of 1.60 (standard deviation SD: 0.32) and 0.28 (SD: 0.06) 
individuals/km2, in high and low density, with an identification rate of 0.21 and 
0.91, respectively.

4.	 This extension of Gen‐SMR is broadly applicable as it addresses the common 
problem of incomplete identification of marked individuals during resighting 
surveys.
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1  | INTRODUC TION

Capture–recapture (CR) methods are considered reference methods 
in population size estimates (Silvy, 2012). They use the capture his‐
tories of animals with natural traits or artificial markings, extend‐
ing inferences from the detected individuals to the population size. 
However, some of the assumptions, such as homogeneity in capture 
probability of individuals are violated by the implicit heterogeneity 
derived from the location of the activity center of each animal in 
relation to each trap or detection device. Another limitation of stan‐
dard CR methods is that they cannot be used for density estimation 
because the effective sampling area is unknown (Otis, Burnham, 
White, & Anderson, 1978; Karanth & Nichols, 1998; Parmenter et 
al., 2003; Soisalo & Cavalcanti, 2006). These disadvantages of CR 
are overcome with spatially explicit capture–recapture (SCR) meth‐
ods, which have been recently developed (Borchers & Efford, 2008; 
Efford, Dawson, & Robbins, 2004; Kéry, Gardner, Stoeckle, Weber, 
& Royle, 2011; Royle, Chandler, Sollmann, & Gardner, 2014; Royle & 
Young, 2008).

Spatially explicit capture–recapture models are thinned spatial 
point process models used to make inferences about the abun‐
dance and distribution of animal activity centers (Efford et al., 
2004; Royle et al. 2014). SCR models allow for inference about 
individual heterogeneity by modeling capture probability as a 
function of the distance between activity centers and detectors. 
The SCR capture probability function typically includes two main 
parameters: the scale parameter of the half‐normal distribution (σ), 
which is determined by home range size; and the baseline detec‐
tion rate (λ0), that is the probability of encountering an individual 
at its activity center. The probability of detection of an individual 
in a detector depends on the Euclidean distance between its cen‐
ter of activity and the detector location, σ and λ0. Despite its utility 
in studies of marked animals, SCR applicability is limited in studies 
that yield data on unmarked or partially populations. For example, 
in camera‐traps studies, the majority of detected species typically 
do not have individually recognizable natural or artificial marks, 
making it impossible to develop the capture histories required by 
SCR models.

Spatial mark–resight (SMR) is an extension of SCR that can be 
used when only a fraction of the animals can be uniquely identified. 
SMR methods use the encounter histories from the marked portion 
of the population (by artificial or natural marks) and the counts of 
unmarked individuals to estimate density and detection parameters 
(Chandler & Royle, 2013; Sollmann, Gardner et al., 2013). If some 
individuals require artificial marks for identification, SMR methods 
require a live‐trapping period for tagging, and a subsequent sam‐
pling period to collect capture histories of both tagged and un‐
marked individuals (Jiménez, Higuero, Charre‐Medellín, & Acevedo, 
2017; Royle et al., 2014; Sollmann, Gardner et al., 2013). Sollmann, 
Gardner et al. (2013) proposed the additional use of telemetry data 
to enhance estimation of the detection parameters when the num‐
ber of spatial recaptures (captures of the same animal in different 

traps) is insufficient. Using telemetry is common in field studies, and 
this extension of SMR facilitated its application to the estimates. 
However, an unsolved problem remained: the requirement that the 
marked animals should be a random subset of the population (Royle 
et al., 2014). This requirement was overcome with advent of gener‐
alized SMR (Gen‐SMR) models (Efford & Hunter, 2018; Whittington, 
Hebblewhite, & Chandler, 2017) which include sub‐models for both 
marking and resighting processes. The model for the marking pro‐
cess describes the distribution of the marked individual, thereby 
relaxing the SMR assumption that marked and unmarked popula‐
tions have the same spatial distributions and encounter probabilities 
(Whittington et al., 2017).

A very common problem in mark–resight studies is the difficulty 
of identifying marked individuals with certainty during resighting 
surveys (McClintock et al., 2014). Incomplete marked individual 
identification cannot typically be eliminated by study design alone 
(e.g., using more than one camera‐trap in each point, or using more 
than one tag in each individual).

McClintock et al. (2014) used a method that accounts for un‐
certainty in marked individual detection histories when incomplete 
identifications occur for the two approaches commonly used in non‐
spatial mark–resight models of abundance, the Poisson log‐normal 
estimator and the logit‐normal estimator. MCMC approaches to 
deal with this issue could be found in Whittington et al. (2017) and 
Augustine, Royle, Stewart, Fisher, and Kelly (2018), and using MLE in 
Efford and Hunter (2018).

Here, we present a Gen‐SMR extension for a known number of 
marked individuals that accounts for incomplete individual identifi‐
cation and makes full use of spatial information.

2  | MATERIAL S AND METHODS

2.1 | Model

The partial identification extension that we propose for general‐
ized spatial mark–resight (hereafter Gen‐SMR‐ID) is based on the 
(Whittington et al., 2017) model that included marking and resight‐
ing processes in the model, as well as the integration of telemetry 
data. Gen‐SMR‐ID is designed to deal with incomplete marked indi‐
vidual identification during resighting surveys in SMR approaches. 
Our extension can be used when the number of marked individu‐
als is known, and when, in the resighting process, a portion of or all 
marked individuals cannot be identified (Figure 1).

2.1.1 | Ecological process

We used the same underlying ecological and marking process as de‐
scribed by Whittington et al. (2017). As with standard SCR applica‐
tions, we model a spatial variation in density using as a spatial point 
process model with N latent activity centers s1,s2,…,sN in the state 
space (S). If density can be assumed to be constant across S, the ac‐
tivity centers follow a uniform distribution, si ~ Unif(S).
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2.1.2 | Marking process

Let xj be the Cartesian coordinates for trap j ( j = 1, …, J). The encoun‐
ter function depends on the Euclidean distance between traps and 
activity centers, dN

ij
=

|

|

|

si−xj
|

|

|

, the scale parameter sigma (σ) and the 
baseline detection (here, capture) rate (λ0.mark). The marking process 
can be modeled using a binomial, Poisson, or categorical distribution, 
depending on the detector devices used in this model.

2.1.3 | Resighting process

The model is based on the use of the following data from the re‐
sighting process: (a) the data on marked and identified individuals; 
(b) the latent information contained in the counts of marked but uni‐
dentified animals; and (c) the latent information about counts from 
unmarked individuals (marking‐resighting processes and information 
used in the model are shown in Figure 2).

We have two groups of data, m (known) marked and U (unknown) 
unmarked individuals. Population estimate is N = m + U.

The model for complete histories from all marked individuals is 
yfull ~Poisson(λij) with:

where λij is the encounter rate, λ0.resight is the baseline detection 
(here, resighting) rate, and dij the Euclidean distance between activity 
centers and resighting devices. The core of the Gen‐SMR‐ID model 
is that we observe only a subset of encounter histories (ym) from the 

total encounter histories on marked individuals yfull: ym ~Binomial 
(yfull, δ). The parameter δ is the probability of correctly identifying 
a marked individual that has been detected. The encounter histo‐
ries of the detected but unidentified marked individuals are a latent 
variable: ymu = yfull−ym. The information on this latent variable comes 
from the counts nnidjk at each camera trap and each occasion of m 
marked and unrecognizable individuals. Under the binomial obser‐
vation model, an individual could be in both groups—recognizable 
and not—on the same sampling occasion, but we can always separate 
individuals as marked or not marked. The observed data nnidjk are a 
sum of latent variables:

We used the dsum (or the newer sum) distribution from JAGS 
(Plummer, 2003) to deal with latent encounter histories from marked, 
unidentifiable individuals.

For the unmarked portion of the population, we use the marginal 
model for the count data, rather than the conditional model based 
on the latent encounter histories (Royle et al., 2014). We assume 
the latent encounter histories are Poisson random variables, and we 
model the observed counts of unmarked individuals as Poisson ran‐
dom variables with an expected value given by the sum (over individ‐
uals) of expected encounters:

where yijk is another latent variable of those unmarked individuals. 
Count data are modeled using a Poisson distribution:

where:
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F I G U R E  1  Two typical camera‐trap pictures of marked 
individuals. On top, picture with an individual identified by the mark 
number on the right ear. Bottom: none of the tags are visible, and 
the individual is unidentifiable. Photo credit: authors

F I G U R E  2  Scheme of spatial mark–resight model and 
observation process addressed with Generalized SMR with 
Identification (Gen‐SMR‐ID)

Readable marks ym[i,j,k]

m: Marked 
individuals
(Known)

U: Unmarked 
individuals
(Unknown )

Resighted
Unreadable marks nnid[j,k]

Unmarked nun[ j,k] Never 
resighted

Marking 
process

Observation 
process
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Λj does not depend on k; hence, we can aggregate the K occa‐
sions of counts:

This formulation requires information about λ0.resight and σ, which 
can be obtained from marked individuals.

2.1.4 | Telemetry

This model is based on the use of telemetry data to make σ always 
(and indirectly λ0.resight) identifiable even in the absence of recogniz‐
able individuals. We considered that the home range of each animal 
came from a bivariate normal movement around its activity center, 
with a variance σ2 (Sollmann, Gardner et al., 2013). According to this, 
telemetry data from tagged individuals were included in the model 
to allow inferences about the posterior distribution of σ.

2.1.5 | State space

The state space was defined as the spatial region S including the 
population of interest large enough to ensure that the encounter 
rate for an individual whose activity center is located outside the 
boundary of the region was negligible. We used a minimum of 2.5*σ‐
wide buffer around the minimum rectangle envelope defined by the 
live traps and the camera‐traps. The σ value used to build this buffer 
was calculated in a first run of the model.

2.2 | Statistical inference

We used Bayesian inference and data augmentation (Royle, Dorazio, 
& Link, 2007) to deal with the fact that N is unknown (Royle et al., 
2014). The size (M) of the augmented population must be much 
larger than N to not affect the posterior distribution of N. For each of 
the M individuals, the latent variable z indicates whether the indi‐
vidual was part of the population (1) or not (0). Specifically, 
zi∼Bernoulli(φ) implies the relationship N∼Binomial(M, φ), which in‐
dicates whether the individuals from augmented data M belong to 
the population N. Population abundance is estimated as the sum of 

the auxiliary parameter for data augmentation z: N=

i=M
∑

i=1

zi. Realized 

population, density is a derived parameter computed from activity 
center locations in the area of the state space.

2.3 | Simulations

To assess the relationship between the number of marked individ‐
uals, identification rate (�)—of the probability that a marked indi‐
viduals is identified—and model accuracy, we ran simulations using 
a modified version of the original script from Whittington et al. 
(2017). We simulated a population size of N = 50 uniformly distrib‐
uted individuals, with a movement parameter σ = 0.05 units, and 

a grid of 25 live traps (for the marking process) with a distance of 
0.15 units. We also simulated 100 camera‐traps (for the resighting 
process) with a distance of 0.066 units. This trap spacing for the 
possibility of detecting individuals in more than one camera‐trap. 
It also induces spatial autocorrelation in the counts of unidentified 
individuals. In the simulation, every marked individual was GPS‐
tagged to use location data in the model to allow or improve σ 
estimation (Sollmann, Gardner, & Belant, 2012; Sollmann, Gardner 
et al., 2013).

We used four scenarios: with m ∈ {5, 10, 15, 20} randomly marked 
individuals, using a baseline detection (capture) rate λ0.mark ∈ {0.05, 
0.15, 0.25, 0.35} with 5 marking occasions to enable the simulations 
with those occasions. We simulated four resighting occasions with 
λ0.resight = 0.5 in all cases. In each scenario, we simulated 10 identifi‐
cation rate values, from 0 to 1, using the same dataset to study the 
variation in parameter estimates with identification rate for each m 
value. We simulated 50 populations for each pair of values (m, δ). 
We fitted our Gen‐SMR‐ID model in a Bayesian framework using the 
freely available software JAGS (Plummer, 2003) and R (R Core Team, 
2018) statistical programming environment using 5,000 iterations, 
1,000 adaptations, and a 1,000 burn‐in, keeping the complete pos‐
terior estimate for N, λ0.resight and σ. We calculated the mean, median, 
and mode for each parameter to compare their performance.

Complete details of the R and JAGS code and data simulator 
for fitting the Gen‐SMR‐ID model are in Supporting Information 
Appendix S1.

3  | APPLIC ATION TO A RED FOX 
EMPIRIC AL DATA SET

3.1 | Methods

We demonstrate the use of the Gen‐SMR‐ID model to deal with 
incomplete marked individual identification, using a red fox Vulpes 
vulpes (hereafter, fox) empirical dataset. The fox is the most wide‐
spread terrestrial carnivore mammal species and is distributed across 
the entire northern hemisphere (Macdonald & Reynolds, 2004). It is 
a generalist and opportunistic predator, including a wide range of 
foods in its diet (Díaz‐Ruiz et al., 2013). It is an abundant general‐
ist mesopredator in the Mediterranean area (Jiménez, Nuñez‐Arjona 
et al., 2017). Conflicts with human interests are common due to its 
predation on small game species, livestock, and ground‐nesting birds 
of conservation concern (Bolton, Tyler, Smith, & Bamford, 2007; 
Fernandez‐de‐Simon et al., 2015; Greentree, Saunders, Mcleod, & 
Hone, 2000; Reynolds & Tapper, 1995). Red foxes act as seed dis‐
persers for many fruit species in the Mediterranean region and can 
potentially influence the community composition of several habitats 
(Cancio et al., 2017). Therefore, the estimation of red fox abundance 
is of great interest from ecological, conservation, and management 
points of view. Red foxes lack clear pelage patterns that would oth‐
erwise allow for the identification of individuals (Güthlin, Storch, & 
Küchenhoff, 2014) (but see Sarmento, Cruz, Eira, & Fonseca, 2009). 
As a part of an experimental study on fox predation, we deployed 

nun
j.
∼Poisson

(

Λj ⋅K
)
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two grids of live traps (Collarum©) and camera‐traps in two areas of 
Ciudad Real (Central Spain). La Nava (Almagro municipality) study 
area was covered by a mixture of Mediterranean scrubland, sparse 
patches of holm oak Quercus ilex subsp. rotundifolia and cereal fields, 
with a high density of European rabbit Oryctolagus cuniculus. The 
study area was 14.66 km2, defined by the envelope around detector 
devices. The other study area, Los Pilones (Abenojar and Saceruela 
municipalities) was covered with Mediterranean dense scrub (i.e., 
gum rockrose Cistus ladanifer) with a scanty rabbit population. The 
study area around detector devices was 23.26 km2.

Live traps were baited with a commercial Collarum attractant 
with pork and chicken bait plus lynx urine (collected from captive lynx 
breeding facilities) and were checked every morning. Captured foxes 
were anesthetized with medetomidine hydrochloride (Medetor®, 
Virbac, Spain) and ketamine hydrochloride (Imalgene 1000®, Merial, 
Spain). Foxes were tagged with GPS radio‐collars (MiniTrack®, Lotek, 
Ontario, Canada) and two models of numbered ear tags, one sheep 
commercial ear tag (3.4 × 3.2 cm) (Cromasa®, Berriozar, Navarra, 
Spain) and an ear tag specifically designed for red fox (6.8 × 3.2 cm) 
(Maquia Serveis Ambientals®, Alcoi, Alicante Spain).

In La Nava, we used 22 live traps over 51 days (9 December 
2015 to 28 January 2016). In Los Pilones, we used 50 live traps over 
35 days (28 January 2016 to 2 February 2016). Live trap locations 
were selected to maximize capture of foxes (e.g., in the trails usually 
used by this species).

The camera‐traps used were Spartan SR1‐BK® HCO Outdoor 
Products, Norcross, Georgia, USA and Reconyx HC500 Hyperfire 
Semi‐Covert IR®, Holmen, Wisconsin, USA. In La Nava, we used 49 
camera‐traps over 89 days (27 January 2016 to 24 April 2016). Mean 
distance to the nearest neighboring camera‐traps was 133.8 m. In 
Los Pilones, we used 33 camera‐traps over 63 days (12 March 2016 
to 13 April 2016) with a mean distance to the nearest neighboring 
trap of 387.8 m (Supporting Information Appendix S2). Those dis‐
tances are below the σ value reported for fox (Jiménez, Nuñez‐
Arjona et al., 2017) allowing spatial correlation between captures. 
Camera‐traps were placed at sites suitable to detect animals and 
were baited with red‐legged partridge (Alectoris rufa) eggs. Cameras 
were visited approximately every 7 days to replace the bait, per‐
form camera maintenance, and download data. We programmed 
Spartan cameras to record 10 s videos with a minimum time delay 
(0 s) between consecutive records. The Reconyx cameras, which do 
not allow video mode, were programmed in RapidFireTM mode (two 
frames per second) to maximize the number of photos taken per cap‐
tured individual. Consecutive images of foxes within 30 min inter‐
vals were considered as the same event, whereas those separated 
by longer intervals were considered as independent events. If there 
were more than one individual in the same picture, we considered 
one event for each individual (Jiménez, Nuñez‐Arjona et al., 2017). 
Pictures for which we could not distinguish whether an individual 
was marked were discarded.

GPS radio‐collars were scheduled to take one position per hour 
during the night and one location every 2 hr during the day. GPS 
collars weighed 163 g plus 42 g for the optional drop‐off release 

mechanism. The drop‐off system was used only on heavier foxes so 
that the total device (collar + drop‐off) was always lighter than 5% 
body weight (range: 2.6%–4.2%). The drop‐off system was sched‐
uled to activate 26 weeks after tagging. Foxes without drop‐off sys‐
tems were recaptured after 26 weeks for removal of the GPS collars. 
GPS data were downloaded regularly with a VHF remote receptor 
or after recapture. After collar recovery, foxes were released in the 
same location in which they were captured.

3.2 | Model specifications

We used a Uniform (0, 1) prior for baseline detection rate in the 
marking process (λ0.mark) under a binomial observation model, and 
a Uniform (0, 2) prior for the baseline detection rate for resighting  
(λ0.resight) modeled with a Poisson. The prior probability of the param‐
eter for data augmentation (φ) is a Uniform (0, 1), which is equivalent 
to assuming a uniform prior between 0‐M.

To define S (the state space), in each case, we used an envelope 
from the detector devices polygon, plus an additional buffer of 2.5*σ. 
Buffer sizes were estimated using sigma values in a first running of 
both codes.

The number of marked individuals (m) used was the total cap‐
tured in the marking process for which GPS devices indicated that 
they were alive during the resighting process. Capture histories 
for marked but undetected individuals were included as all zeros. 
One animal died during the resighting period. To deal with this loss, 
avoiding bias in the detection process by introducing individuals that 
could not be detected, we used a binary variable of life [i, k] (individ‐
ual × occasion) with one for live occasions and zero when we had 
evidence that the animal was dead.

After the first trial, we settled on M = 150 for data augmentation. 
In the model for La Nava, we ran three parallel chains for 85,000 
iterations, 5,000 adaptions and discarded the first 5,000 as burn‐in. 
In the model for Los Pilones, we ran three parallel chains for 52,500 
iterations, 1,500 adaptions and discarded the first 2,500 as burn‐in. 
Gelman–Rubin diagnostic statistics and visual inspections were used 
to assess convergence. The models were fitted using a script written 
in JAGS and R (Supporting Information Appendix S1).

We compared the outputs from La Nava and Los Pilones with 
the same dataset but simulating all marked individuals as unidenti‐
fied, in order to compare the accuracy of estimates under different 
identification rates.

We also used a distance sampling approach with a fully indepen‐
dent dataset to validate the inferences from our new Gen‐SMR‐ID 
model. Distance sampling was successfully applied in La Nava, where 
visual detectability is very high due to nearly no scrub cover and 
high fox density. However, line transects in Los Pilones prevented 
the application of distance sampling methodology: No foxes were 
seen in a test of two replicates of the same transect of 22,080 m 
due to low visibility because of vegetation thickness. We used three 
transects in La Nava study area and five temporal replicates on dif‐
ferent days (from October to November 2015, before live trapping). 
Each detected animal was recorded, and its distance and azimuth 
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from the sampling point was measured using a laser range finder 
and magnetic compass. Perpendicular distances were calculated, 
and distance break classes were set to 50 m. The maximum obser‐
vation distance was 366 m. We used the package unmarked (Fiske 
& Chandler, 2011) in R (R Core Team, 2018). We selected best‐ap‐
proximating models of abundance and detection probability, using 
a model with no covariates for a null estimate considering three de‐
tection functions (half‐normal, hazard rate, and exponential) and two 
abundance distributions (Poisson and negative binomial) for each 
group. We ranked null models using the Akaike information criterion 
(AIC; Burnham & Anderson, 2002) considering the model with the 
lowest AIC score to be the best‐fitting key function and distribution. 
We used the parametric bootstrap approach in unmarked to obtain 
p‐values from sums of squares (SSE), Chi‐square test, and Freeman‐
Tukey fit statistics to quantify the fit of a model to a dataset.

3.3 | Results

In our simulations, the root mean square error (RMSE) for popula‐
tion size estimation for m = 5 ranged from 8.4 (δ: 0) to 8.6 (δ: 1), and 
for m = 20, from 4.3 (δ: 0) to 4.24(δ: 1). The RMSE indicates that 
the best estimator for the population size for m = 5 is the mode. 
The RMSE for mean is lower for a higher number of marked indi‐
viduals (Table 1). For other parameters, the behavior of σ is nota‐
ble (Supporting Information Appendix S3); although the bias in the 
model is very small for m = 5 (see axes), it is unbiased if δ > 0.2. For 
m > 5, the σ estimate is unbiased in all cases.

In our case studies, we marked eight individuals in La Nava over 
457 trap‐days (1.75 captures/100 trap‐days). In the resighting pro‐
cess (1,325 camera‐days), we had 119 capture events with camera‐
traps (8.98 captures/100 camera‐days) with 32 events of marked 
individuals, but only two individuals resighted and identified in six 
events, and 87 events of unmarked individuals. Were obtained 4,229 
GPS locations from six individuals.

We marked five individuals in Los Pilones over 545 trap‐days: 
1.1 captures/100 trap‐days. In the resighting process (862 camera‐
days), we had 124 capture events with camera‐traps (14.39 cap‐
tures/100 camera‐days) with 111 events of marked individuals; 102 
events corresponded to identified individuals. We had 83 events 
with readable marks and 19 events with unreadable marks, but with 
foxes that were identifiable by individual traits. We additionally 
identified the individuals in those 19 events using a complete coin‐
cidence among 3 researchers, as we aimed to compare two extreme 
cases of identification rate (La Nava‐Los Pilones). We also had nine 
events of two marked and unidentified individuals, and 13 events of 
unmarked individuals. We resighted all five marked individuals. We 
gathered 1,547 GPS locations from three individuals.

Gelman–Rubin statistics were <1.1 for all parameters and visual 
inspections of the trace plots indicated that the Markov chains suc‐
cessfully converged (Supporting Information Appendix S4).

Results are shown in Table 2. Density estimates of mean = 1.60 
(1.04–2.31) and 0.28 (0.18–0.27) individuals/km2 were obtained 
in La Nava and Los Pilones, respectively. The coefficient of varia‐
tion (CV) for both estimates was 0.20. With no marked individuals 
identified (and using GPS data), we would have obtained a density 
of mean = 1.64 (1.02–2.44) and 0.27 (0.18–0.39) individuals/km2 in 
La Nava and Los Pilones, with a CV( ̂N) = 0.23 and 0.19, respectively 
(Supporting Information Appendix S5).

3.4 | Test of results using distance sampling

Our five temporal replicates of transects, with no evidence of tem‐
porary emigration between counts, were simply replicated counts, 
and consequently, we stacked the data replication for analysis 
(Flockhart, Norris, & Coe, 2016) to reduce variation in estimat‐
ing the population size. We estimated a density of 1.3 (0.57–2.03) 
individuals/km2 in La Nava using distance sampling methodology 
(Supporting Information Appendix S6).

TA B L E  1  Posterior mean, median, mode, and coverage rates for the 95% highest posterior density (HPD) interval for simulations from a 
population of N = 50 individuals in which m ∈ {5, 10, 15, 20} were marked. δ: identification rate. Fifty simulations of each case were 
conducted

Ind. Marked δ Mean RMSE Median RMSE Mode RMSE Coverage

m = 5 0.00 50.06 8.41 49.22 8.25 47.54 8.46 0.98

0.50 50.62 8.46 49.80 8.32 48.29 8.02 0.98

1.00 50.95 8.63 50.03 8.37 48.38 8.16 0.98

m = 10 0.00 49.10 7.37 48.60 7.35 47.63 7.62 1.00

0.50 49.42 7.29 48.86 7.32 47.98 7.49 1.00

1.00 49.39 7.28 48.89 7.30 48.08 7.32 1.00

m = 15 0.00 48.14 5.69 47.70 5.83 46.87 6.23 0.98

0.50 48.34 5.60 47.92 5.71 47.22 6.12 0.98

1.00 48.32 5.57 47.86 5.78 47.12 6.14 0.98

m = 20 0.00 49.12 4.30 48.70 4.42 48.70 4.46 1.00

0.50 49.19 4.25 48.82 4.25 48.82 4.67 1.00

1.00 49.19 4.24 48.79 4.33 48.09 4.57 1.00
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The bootstrap p‐values for the best‐fitting model based on 
the SSE, Freeman‐Tukey, and Chi‐square statistics were 0.42, 
0.34, and 0.52, respectively, suggesting that our model ade‐
quately fits the data. The value of ĉ (ratio of observed/expected) 
was 1.04.

4  | DISCUSSION

Spatial mark–resight models are a useful approach to estimate popu‐
lation densities of species lacking natural markings that are detected 
using camera‐traps. SMR is based on marking a portion of the pop‐
ulation and later collecting data from both marked and unmarked 
individuals.

We developed an extension of the generalized spatial mark–
resight model (Gen‐SMR‐ID) to deal with a very common problem: 
the difficulty of reading all the marks and recognizing individuals 
using camera‐traps. Royle et al. (2014) described a solution for this 
problem in SMR, that was to use a correction factor c considering 
that the number of identified events is a binomial distribution of 
the total events with probability c: 

∑

yc∼Binomial
�
∑

ym,c
�

, where 
yc are the correctly identified individuals and ym all marked indi‐
viduals (identified or not). However, this approach does not make 
full use of the spatial information of the marked and unidentified 
records.

Gen‐SMR‐ID allows inferences about population size, even with‐
out individual identification of the marked animals. However, model 

performance will depend on the number of marked individuals and 
the availability of telemetry data. Our simulation study indicated 
that performance was satisfactory when at least 10% of the popu‐
lation was marked and outfitted with telemetry devices, even when 
the individual identification rate was low. This result suggests that 
the spatially autocorrelated counts of marked but unidentified indi‐
viduals are informative about resighting parameters, and this infor‐
mation results in improved estimates of abundance and density. We 
need further studies about the identifiability on this model without 
telemetry data.

Our simulation study demonstrated that posterior precision 
increases, as expected, with the number of marked individuals. 
Coverage rates for the 95% highest posterior density (HPD) intervals 
were close to nominal for all values of m studied (Table 1).

The posterior mean, median, and mode exhibited low bias when 
used as a point estimate of N. Surprisingly, we found that estimates 
of population size were unbiased and precise even when the identifi‐
cation rate (δ) was zero (Table 2, Figure 3). The use of telemetry data 
makes σ (and λ0) identifiable.

In our study case, the model was used to estimate fox popula‐
tion in high‐ and low‐density scenarios. An additional comparison of 
the estimate was carried out in the high‐density area using distance 
sampling. Using the Gen‐SMR‐ID model, the population size esti‐
mates are almost the same with or without individual identification 
(Table 2 and Supporting Information Appendix S5), for both the high‐
density case, with a posterior probability of identification   = 0.21 
(0.07–0.36) (Table 1), and for the low‐density case, with a posterior 

Mean SD 2.50% 50% 97.50%

La Nava

lam0.mark (λ0.mark) 0.02 0.01 0.01 0.02 0.04

lam0.resight (λ0.resight) 0.07 0.01 0.04 0.06 0.09

sigma (σ) 0.43 0.00 0.42 0.43 0.44

psi (ψ) 0.39 0.09 0.24 0.38 0.57

̂N 58.08 11.72 38.00 57.00 84.00

̂D 1.60 0.32 1.04 1.57 2.31

δ 0.21 0.07 0.09 0.20 0.36

Deviance 10,304.66 12.36 10,281.82 10,304.20 10,330.17

Los Pilones

lam0.mark (λ0.mark) 0.03 0.01 0.01 0.03 0.06

lam0.resight (λ0.resight) 0.46 0.06 0.36 0.46 0.58

sigma (σ) 0.53 0.01 0.52 0.53 0.55

psi (ψ) 0.12 0.03 0.06 0.11 0.19

̂N 16.86 3.39 11.00 16.00 24.00

̂D 0.28 0.06 0.18 0.27 0.40

δ 0.91 0.03 0.85 0.91 0.96

Deviance 5,020.25 10.05 5,001.90 5,019.77 5,041.42

Baseline detection rate for capture (λ0.mark), baseline detection rate for resighting (λ0.resight), param‐
eter of movement (σ), data augmentation parameter (ψ), population size estimate in the state space 
( ̂N), density estimate ( ̂D), identification probability (δ) and deviance.

TA B L E  2  Posterior mean, standard 
deviation, and 95% HPD interval coverage 
of model parameters from the generalized 
spatial mark–resight with incomplete 
identification model (Gen‐SMR‐ID) from 
red fox (Vulpes vulpes) case studies in La 
Nava and Los Pilones (Ciudad Real, 
Central Spain)
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probability of identification  = 0.91 (0.85–0.96) (Table 2). The coef‐
ficient of variation obtained (ca 0.2) is consistent with the results of 
the simulations, considering the rate of animals that are marked (0.14 
and 0.29, respectively).

Agreement with the results of the distance sampling was strong 
(Table 2 and Supporting Information Appendix S6) although the 
Gen‐SMR‐ID model showed lower standard deviation. Attention 
should be paid to the fact that the estimation of fox abundance with 
distance sampling is seldom feasible in Mediterranean habitats due 
to low visibility. The very open habitat of La Nava, and its high fox 
density, allowed a sufficient number of detections for the applica‐
tion of distance sampling. Los Pilones presented the opposite, and 
more common, scenario. Overall, generating precise and accurate 
abundance estimates of fox populations continues to be challenging, 
and thus SMR presents a useful approach.

The negative relationship between the population sizes es‐
timated in the two study areas (1.60 and 0.28 foxes/km2 in La 
Nava and Los Pilones, respectively), and the capture index (8.98 
and 14.39 events/100 camera‐days), is notable. The higher cap‐
ture index in Los Pilones may be related to the smaller amount of 
available food, which would exacerbate search behavior, and thus 
the number of camera‐trapping events. These results support pre‐
vious studies calling attention to the risk of using raw capture in‐
dices from camera‐trap data as a measure of relative abundance 
(Sollmann, Mohamed, Samejima, & Wilting, 2013). They highlight the 
need for reliable methods for density estimation of cryptic species, 

such as the Gen‐SMR‐ID model proposed here. Our study case is 
a clear example of this risk; considering only raw capture indices, 
we would have concluded that a higher density population occurs 
in Los Pilones than in La Nava, when the opposite is true according 
to our Gen‐SMR‐ID models. Even so, studies continue using relative 
abundance indices, mostly because sound statistical methods for 
population estimation are not available or cannot be applied for the 
species of concern. Our proposed Gen‐SMR‐ID approach provides a 
valuable tool for researchers to address this gap and will hopefully 
help reduce the inappropriate use of raw abundance indices in cam‐
era‐trapping studies with individually unrecognizable species.

The results for fox density are consistent with those of other 
authors in Mediterranean areas. Sarmento et al. (2009) estimated 
densities of 0.61 (0.54–0.69) individuals/km2 in Serra de Malcata 
(Portugal) using nonspatial capture–recapture methods and iden‐
tifying all individuals by natural marks. Jiménez, Nuñez‐Arjona et 
al. (2017) estimated 0.41 (0.21–0.72) individuals/km2 using SMR in 
southern Spain.

This model can be extended to other formulations of SMR, such as 
temporal or behavioral variation in baseline detection rate, and spa‐
tial variation in density, or using categorical covariates (Augustine et 
al., 2018). We can recognize in camera‐trap pictures some categorical 
identities like “male, subadult” or “female, adult” allowing increased 
precision when data are sparse and/or there are few marked indi‐
viduals. It also can be used with naturally marked populations, using 
as a marked population the recognizable individuals in a previous 

F I G U R E  3  Posterior means violin plot 
of abundance (N = 50) estimates using 
generalized spatial mark–resight with 
incomplete identification model (Gen‐
SMR‐ID) in JAGS from different number 
of marked individuals, m ∈ {5, 10, 15, 20}, 
plotted against the identification rate (δ)
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(“marking”) period but we will need spatial recaptures or additional 
telemetry data to improve the estimates of abundance and density.
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