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Abstract
1.	 The	estimation	of	abundance	of	wildlife	populations	is	an	essential	part	of	ecologi‐
cal	research	and	monitoring.	Spatially	explicit	capture–recapture	(SCR)	models	are	
widely	used	for	abundance	and	density	estimation,	frequently	through	individual	
identification	of	target	species	using	camera‐trap	sampling.

2.	 Generalized	spatial	mark–resight	(Gen‐SMR)	is	a	recently	developed	SCR	exten‐
sion	that	allows	for	abundance	estimation	when	only	a	subset	of	the	population	is	
recognizable	by	artificial	or	natural	marks.	However,	in	many	cases,	it	is	not	pos‐
sible	to	read	the	marks	 in	camera‐trap	pictures,	even	though	individuals	can	be	
recognized	as	marked.	We	present	a	new	extension	of	Gen‐SMR	that	allows	for	
this	type	of	incomplete	identification.

3.	 We	used	simulation	to	assess	how	the	number	of	marked	individuals	and	the	indi‐
vidual	identification	rate	influenced	bias	and	precision.	We	demonstrate	the	mod‐
el’s	performance	in	estimating	red	fox	(Vulpes vulpes)	density	with	two	empirical	
datasets	 characterized	 by	 contrasting	 densities	 and	 rates	 of	 identification	 of	
marked	 individuals.	 According	 to	 the	 simulations,	 accuracy	 increases	 with	 the	
number	 of	marked	 individuals	 (m),	 but	 is	 less	 sensitive	 to	 changes	 in	 individual	
identification	 rate	 (δ).	 In	our	case	studies	of	 red	 fox	density	estimation,	we	ob‐
tained	a	posterior	mean	of	1.60	(standard	deviation	SD:	0.32)	and	0.28	(SD:	0.06)	
individuals/km2,	 in	high	and	 low	density,	with	an	 identification	rate	of	0.21	and	
0.91,	respectively.

4.	 This	 extension	 of	 Gen‐SMR	 is	 broadly	 applicable	 as	 it	 addresses	 the	 common	
problem	 of	 incomplete	 identification	 of	 marked	 individuals	 during	 resighting	
surveys.
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1  | INTRODUC TION

Capture–recapture	(CR)	methods	are	considered	reference	methods	
in	population	size	estimates	(Silvy,	2012).	They	use	the	capture	his‐
tories	 of	 animals	with	 natural	 traits	 or	 artificial	markings,	 extend‐
ing	inferences	from	the	detected	individuals	to	the	population	size.	
However,	some	of	the	assumptions,	such	as	homogeneity	in	capture	
probability	of	individuals	are	violated	by	the	implicit	heterogeneity	
derived	 from	 the	 location	 of	 the	 activity	 center	 of	 each	 animal	 in	
relation	to	each	trap	or	detection	device.	Another	limitation	of	stan‐
dard	CR	methods	is	that	they	cannot	be	used	for	density	estimation	
because	 the	 effective	 sampling	 area	 is	 unknown	 (Otis,	 Burnham,	
White,	&	Anderson,	1978;	Karanth	&	Nichols,	1998;	Parmenter	et	
al.,	 2003;	Soisalo	&	Cavalcanti,	 2006).	These	disadvantages	of	CR	
are	overcome	with	spatially	explicit	capture–recapture	(SCR)	meth‐
ods,	which	have	been	recently	developed	(Borchers	&	Efford,	2008;	
Efford,	Dawson,	&	Robbins,	2004;	Kéry,	Gardner,	Stoeckle,	Weber,	
&	Royle,	2011;	Royle,	Chandler,	Sollmann,	&	Gardner,	2014;	Royle	&	
Young,	2008).

Spatially	explicit	capture–recapture	models	are	thinned	spatial	
point	 process	models	 used	 to	make	 inferences	 about	 the	 abun‐
dance	 and	 distribution	 of	 animal	 activity	 centers	 (Efford	 et	 al.,	
2004;	 Royle	 et	 al.	 2014).	 SCR	models	 allow	 for	 inference	 about	
individual	 heterogeneity	 by	 modeling	 capture	 probability	 as	 a	
function	of	the	distance	between	activity	centers	and	detectors.	
The	SCR	capture	probability	function	typically	includes	two	main	
parameters:	the	scale	parameter	of	the	half‐normal	distribution	(σ),	
which	is	determined	by	home	range	size;	and	the	baseline	detec‐
tion	rate	(λ0),	that	is	the	probability	of	encountering	an	individual	
at	its	activity	center.	The	probability	of	detection	of	an	individual	
in	a	detector	depends	on	the	Euclidean	distance	between	its	cen‐
ter	of	activity	and	the	detector	location,	σ	and	λ0.	Despite	its	utility	
in	studies	of	marked	animals,	SCR	applicability	is	limited	in	studies	
that	yield	data	on	unmarked	or	partially	populations.	For	example,	
in	camera‐traps	studies,	the	majority	of	detected	species	typically	
do	 not	 have	 individually	 recognizable	 natural	 or	 artificial	marks,	
making	it	impossible	to	develop	the	capture	histories	required	by	
SCR	models.

Spatial	mark–resight	 (SMR)	 is	 an	extension	of	SCR	 that	 can	be	
used	when	only	a	fraction	of	the	animals	can	be	uniquely	identified.	
SMR	methods	use	the	encounter	histories	from	the	marked	portion	
of	 the	population	 (by	artificial	or	natural	marks)	and	the	counts	of	
unmarked	individuals	to	estimate	density	and	detection	parameters	
(Chandler	&	Royle,	 2013;	 Sollmann,	Gardner	 et	 al.,	 2013).	 If	 some	
individuals	require	artificial	marks	for	 identification,	SMR	methods	
require	 a	 live‐trapping	 period	 for	 tagging,	 and	 a	 subsequent	 sam‐
pling	 period	 to	 collect	 capture	 histories	 of	 both	 tagged	 and	 un‐
marked	individuals	(Jiménez,	Higuero,	Charre‐Medellín,	&	Acevedo,	
2017;	Royle	et	al.,	2014;	Sollmann,	Gardner	et	al.,	2013).	Sollmann,	
Gardner	et	al.	(2013)	proposed	the	additional	use	of	telemetry	data	
to	enhance	estimation	of	the	detection	parameters	when	the	num‐
ber	of	 spatial	 recaptures	 (captures	of	 the	same	animal	 in	different	

traps)	is	insufficient.	Using	telemetry	is	common	in	field	studies,	and	
this	 extension	 of	 SMR	 facilitated	 its	 application	 to	 the	 estimates.	
However,	an	unsolved	problem	remained:	the	requirement	that	the	
marked	animals	should	be	a	random	subset	of	the	population	(Royle	
et	al.,	2014).	This	requirement	was	overcome	with	advent	of	gener‐
alized	SMR	(Gen‐SMR)	models	(Efford	&	Hunter,	2018;	Whittington,	
Hebblewhite,	&	Chandler,	2017)	which	include	sub‐models	for	both	
marking	and	resighting	processes.	The	model	 for	the	marking	pro‐
cess	 describes	 the	 distribution	 of	 the	 marked	 individual,	 thereby	
relaxing	 the	 SMR	 assumption	 that	marked	 and	 unmarked	 popula‐
tions	have	the	same	spatial	distributions	and	encounter	probabilities	
(Whittington	et	al.,	2017).

A	very	common	problem	in	mark–resight	studies	is	the	difficulty	
of	 identifying	 marked	 individuals	 with	 certainty	 during	 resighting	
surveys	 (McClintock	 et	 al.,	 2014).	 Incomplete	 marked	 individual	
identification	cannot	typically	be	eliminated	by	study	design	alone	
(e.g.,	using	more	than	one	camera‐trap	in	each	point,	or	using	more	
than	one	tag	in	each	individual).

McClintock	 et	 al.	 (2014)	 used	 a	method	 that	 accounts	 for	 un‐
certainty	in	marked	individual	detection	histories	when	incomplete	
identifications	occur	for	the	two	approaches	commonly	used	in	non‐
spatial	mark–resight	models	of	abundance,	 the	Poisson	 log‐normal	
estimator	 and	 the	 logit‐normal	 estimator.	 MCMC	 approaches	 to	
deal	with	this	issue	could	be	found	in	Whittington	et	al.	(2017)	and	
Augustine,	Royle,	Stewart,	Fisher,	and	Kelly	(2018),	and	using	MLE	in	
Efford	and	Hunter	(2018).

Here,	we	present	a	Gen‐SMR	extension	for	a	known	number	of	
marked	individuals	that	accounts	for	incomplete	individual	identifi‐
cation	and	makes	full	use	of	spatial	information.

2  | MATERIAL S AND METHODS

2.1 | Model

The	 partial	 identification	 extension	 that	 we	 propose	 for	 general‐
ized	 spatial	 mark–resight	 (hereafter	 Gen‐SMR‐ID)	 is	 based	 on	 the	
(Whittington	et	al.,	2017)	model	that	included	marking	and	resight‐
ing	processes	 in	the	model,	as	well	as	the	 integration	of	telemetry	
data.	Gen‐SMR‐ID	is	designed	to	deal	with	incomplete	marked	indi‐
vidual	 identification	during	 resighting	surveys	 in	SMR	approaches.	
Our	extension	can	be	used	when	 the	number	of	marked	 individu‐
als	is	known,	and	when,	in	the	resighting	process,	a	portion	of	or	all	
marked	individuals	cannot	be	identified	(Figure	1).

2.1.1 | Ecological process

We	used	the	same	underlying	ecological	and	marking	process	as	de‐
scribed	by	Whittington	et	al.	(2017).	As	with	standard	SCR	applica‐
tions,	we	model	a	spatial	variation	in	density	using	as	a	spatial	point	
process	model	with	N	 latent	activity	centers	s1,s2,…,sN	 in	 the	state	
space	(S).	If	density	can	be	assumed	to	be	constant	across	S,	the	ac‐
tivity	centers	follow	a	uniform	distribution,	si ~ Unif(S).



     |  4741JIMENEZ Et al.

2.1.2 | Marking process

Let	xj be	the	Cartesian	coordinates	for	trap	j	( j = 1, …, J).	The	encoun‐
ter	function	depends	on	the	Euclidean	distance	between	traps	and	
activity	centers,	dN

ij
=

|

|

|

si−xj
|

|

|

,	 the	 scale	parameter	 sigma	 (σ)	 and	 the	
baseline	detection	(here,	capture)	rate	(λ0.mark).	The	marking	process	
can	be	modeled	using	a	binomial,	Poisson,	or	categorical	distribution,	
depending	on	the	detector	devices	used	in	this	model.

2.1.3 | Resighting process

The	model	 is	based	on	 the	use	of	 the	 following	data	 from	 the	 re‐
sighting	process:	 (a)	 the	data	on	marked	and	 identified	 individuals;	
(b)	the	latent	information	contained	in	the	counts	of	marked	but	uni‐
dentified	animals;	and	(c)	the	latent	information	about	counts	from	
unmarked	individuals	(marking‐resighting	processes	and	information	
used	in	the	model	are	shown	in	Figure	2).

We	have	two	groups	of	data,	m	(known)	marked	and	U	(unknown)	
unmarked	individuals.	Population	estimate	is	N = m + U.

The	model	for	complete	histories	from	all	marked	individuals	is	
yfull	~Poisson(λij)	with:

where λij	 is	 the	 encounter	 rate,	 λ0.resight	 is	 the	 baseline	 detection	
(here,	resighting)	rate,	and	dij	the	Euclidean	distance	between	activity	
centers	and	resighting	devices.	The	core	of	the	Gen‐SMR‐ID	model	
is	that	we	observe	only	a	subset	of	encounter	histories	(ym)	from	the	

total	 encounter	 histories	 on	marked	 individuals	 yfull: ym	 ~Binomial	
(yfull,	δ).	The	parameter	δ	 is	 the	probability	of	correctly	 identifying	
a	marked	 individual	 that	has	been	detected.	The	encounter	histo‐
ries	of	the	detected	but	unidentified	marked	individuals	are	a	latent	
variable:	ymu = yfull−ym.	The	information	on	this	latent	variable	comes	
from	the	counts	nnidjk	at	each	camera	trap	and	each	occasion	of	m 
marked	and	unrecognizable	 individuals.	Under	 the	binomial	obser‐
vation	model,	 an	 individual	 could	 be	 in	 both	 groups—recognizable	
and	not—on	the	same	sampling	occasion,	but	we	can	always	separate	
individuals	as	marked	or	not	marked.	The	observed	data	nnidjk	are	a	
sum	of	latent	variables:

We	 used	 the	dsum	 (or	 the	 newer	 sum)	 distribution	 from	 JAGS	
(Plummer,	2003)	to	deal	with	latent	encounter	histories	from	marked,	
unidentifiable	individuals.

For	the	unmarked	portion	of	the	population,	we	use	the	marginal	
model	for	the	count	data,	rather	than	the	conditional	model	based	
on	 the	 latent	 encounter	 histories	 (Royle	 et	 al.,	 2014).	We	 assume	
the	latent	encounter	histories	are	Poisson	random	variables,	and	we	
model	the	observed	counts	of	unmarked	individuals	as	Poisson	ran‐
dom	variables	with	an	expected	value	given	by	the	sum	(over	individ‐
uals)	of	expected	encounters:

where yijk	 is	another	 latent	variable	of	those	unmarked	individuals.	
Count	data	are	modeled	using	a	Poisson	distribution:

where:

�ij=�0.resight ⋅e

(

−

d2ij

2�2

)
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F I G U R E  1  Two	typical	camera‐trap	pictures	of	marked	
individuals.	On	top,	picture	with	an	individual	identified	by	the	mark	
number	on	the	right	ear.	Bottom:	none	of	the	tags	are	visible,	and	
the	individual	is	unidentifiable.	Photo	credit:	authors

F I G U R E  2  Scheme	of	spatial	mark–resight	model	and	
observation	process	addressed	with	Generalized	SMR	with	
Identification	(Gen‐SMR‐ID)

Readable marks ym[i,j,k]

m: Marked 
individuals
(Known)

U: Unmarked 
individuals
(Unknown )

Resighted
Unreadable marks nnid[j,k]

Unmarked nun[ j,k] Never 
resighted

Marking 
process

Observation 
process
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Λj	does	not	depend	on	k;	hence,	we	can	aggregate	the	K	occa‐
sions	of	counts:

This	formulation	requires	information	about	λ0.resight	and	σ,	which	
can	be	obtained	from	marked	individuals.

2.1.4 | Telemetry

This	model	is	based	on	the	use	of	telemetry	data	to	make	σ	always	
(and	indirectly	λ0.resight)	identifiable	even	in	the	absence	of	recogniz‐
able	individuals.	We	considered	that	the	home	range	of	each	animal	
came	from	a	bivariate	normal	movement	around	its	activity	center,	
with	a	variance	σ2	(Sollmann,	Gardner	et	al.,	2013).	According	to	this,	
telemetry	data	from	tagged	individuals	were	included	in	the	model	
to	allow	inferences	about	the	posterior	distribution	of	σ.

2.1.5 | State space

The	 state	 space	was	 defined	 as	 the	 spatial	 region	 S	 including	 the	
population	 of	 interest	 large	 enough	 to	 ensure	 that	 the	 encounter	
rate	 for	 an	 individual	whose	 activity	 center	 is	 located	outside	 the	
boundary	of	the	region	was	negligible.	We	used	a	minimum	of	2.5*σ‐
wide	buffer	around	the	minimum	rectangle	envelope	defined	by	the	
live	traps	and	the	camera‐traps.	The	σ	value	used	to	build	this	buffer	
was	calculated	in	a	first	run	of	the	model.

2.2 | Statistical inference

We	used	Bayesian	inference	and	data	augmentation	(Royle,	Dorazio,	
&	Link,	2007)	to	deal	with	the	fact	that	N	is	unknown	(Royle	et	al.,	
2014).	 The	 size	 (M)	 of	 the	 augmented	 population	 must	 be	 much	
larger	than	N	to	not	affect	the	posterior	distribution	of	N.	For	each	of	
the	M	 individuals,	 the	 latent	variable	z	 indicates	whether	 the	 indi‐
vidual	 was	 part	 of	 the	 population	 (1)	 or	 not	 (0).	 Specifically,	
zi∼Bernoulli(φ)	implies	the	relationship	N∼Binomial(M,	φ),	which	in‐
dicates	whether	the	 individuals	from	augmented	data	M	belong	to	
the	population	N.	Population	abundance	is	estimated	as	the	sum	of	

the	auxiliary	parameter	for	data	augmentation	z: N=

i=M
∑

i=1

zi.	Realized	

population,	density	 is	a	derived	parameter	computed	from	activity	
center	locations	in	the	area	of	the	state	space.

2.3 | Simulations

To	assess	the	relationship	between	the	number	of	marked	individ‐
uals,	 identification	rate	(�)—of	the	probability	that	a	marked	indi‐
viduals	is	identified—and	model	accuracy,	we	ran	simulations	using	
a	modified	 version	 of	 the	 original	 script	 from	Whittington	 et	 al.	
(2017).	We	simulated	a	population	size	of	N = 50	uniformly	distrib‐
uted	 individuals,	with	a	movement	parameter	σ	=	0.05	units,	and	

a	grid	of	25	live	traps	(for	the	marking	process)	with	a	distance	of	
0.15	units.	We	also	simulated	100	camera‐traps	(for	the	resighting	
process)	with	a	distance	of	0.066	units.	This	trap	spacing	for	the	
possibility	of	detecting	individuals	in	more	than	one	camera‐trap.	
It	also	induces	spatial	autocorrelation	in	the	counts	of	unidentified	
individuals.	 In	 the	 simulation,	 every	marked	 individual	was	GPS‐
tagged	 to	 use	 location	 data	 in	 the	model	 to	 allow	 or	 improve	σ 
estimation	(Sollmann,	Gardner,	&	Belant,	2012;	Sollmann,	Gardner	
et	al.,	2013).

We	used	four	scenarios:	with	m ∈	{5,	10,	15,	20}	randomly	marked	
individuals,	using	a	baseline	detection	(capture)	rate	λ0.mark ∈	{0.05,	
0.15,	0.25,	0.35}	with	5	marking	occasions	to	enable	the	simulations	
with	those	occasions.	We	simulated	four	resighting	occasions	with	
λ0.resight	=	0.5	in	all	cases.	In	each	scenario,	we	simulated	10	identifi‐
cation	rate	values,	from	0	to	1,	using	the	same	dataset	to	study	the	
variation	in	parameter	estimates	with	identification	rate	for	each	m 
value.	We	 simulated	50	populations	 for	 each	pair	of	 values	 (m,	δ).	
We	fitted	our	Gen‐SMR‐ID	model	in	a	Bayesian	framework	using	the	
freely	available	software	JAGS	(Plummer,	2003)	and	R	(R	Core	Team,	
2018)	 statistical	programming	environment	using	5,000	 iterations,	
1,000	adaptations,	and	a	1,000	burn‐in,	keeping	the	complete	pos‐
terior	estimate	for	N,	λ0.resight	and	σ.	We	calculated	the	mean,	median,	
and	mode	for	each	parameter	to	compare	their	performance.

Complete	 details	 of	 the	 R	 and	 JAGS	 code	 and	 data	 simulator	
for	 fitting	 the	 Gen‐SMR‐ID	 model	 are	 in	 Supporting	 Information	
Appendix	S1.

3  | APPLIC ATION TO A RED FOX 
EMPIRIC AL DATA SET

3.1 | Methods

We	 demonstrate	 the	 use	 of	 the	 Gen‐SMR‐ID	model	 to	 deal	 with	
incomplete	marked	 individual	 identification,	using	a	red	fox	Vulpes 
vulpes	 (hereafter,	 fox)	empirical	dataset.	The	fox	 is	the	most	wide‐
spread	terrestrial	carnivore	mammal	species	and	is	distributed	across	
the	entire	northern	hemisphere	(Macdonald	&	Reynolds,	2004).	It	is	
a	 generalist	 and	opportunistic	 predator,	 including	 a	wide	 range	of	
foods	 in	 its	diet	 (Díaz‐Ruiz	et	al.,	2013).	 It	 is	an	abundant	general‐
ist	mesopredator	in	the	Mediterranean	area	(Jiménez,	Nuñez‐Arjona	
et	al.,	2017).	Conflicts	with	human	interests	are	common	due	to	its	
predation	on	small	game	species,	livestock,	and	ground‐nesting	birds	
of	 conservation	 concern	 (Bolton,	 Tyler,	 Smith,	 &	 Bamford,	 2007;	
Fernandez‐de‐Simon	et	 al.,	 2015;	Greentree,	 Saunders,	Mcleod,	&	
Hone,	2000;	Reynolds	&	Tapper,	1995).	Red	foxes	act	as	seed	dis‐
persers	for	many	fruit	species	in	the	Mediterranean	region	and	can	
potentially	influence	the	community	composition	of	several	habitats	
(Cancio	et	al.,	2017).	Therefore,	the	estimation	of	red	fox	abundance	
is	of	great	interest	from	ecological,	conservation,	and	management	
points	of	view.	Red	foxes	lack	clear	pelage	patterns	that	would	oth‐
erwise	allow	for	the	identification	of	individuals	(Güthlin,	Storch,	&	
Küchenhoff,	2014)	(but	see	Sarmento,	Cruz,	Eira,	&	Fonseca,	2009).	
As	a	part	of	an	experimental	study	on	fox	predation,	we	deployed	

nun
j.
∼Poisson

(

Λj ⋅K
)
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two	grids	of	live	traps	(Collarum©)	and	camera‐traps	in	two	areas	of	
Ciudad	Real	 (Central	 Spain).	 La	Nava	 (Almagro	municipality)	 study	
area	was	covered	by	a	mixture	of	Mediterranean	scrubland,	sparse	
patches	of	holm	oak	Quercus ilex	subsp.	rotundifolia	and	cereal	fields,	
with	 a	 high	 density	 of	 European	 rabbit	Oryctolagus cuniculus. The 
study	area	was	14.66	km2,	defined	by	the	envelope	around	detector	
devices.	The	other	study	area,	Los	Pilones	(Abenojar	and	Saceruela	
municipalities)	 was	 covered	 with	Mediterranean	 dense	 scrub	 (i.e.,	
gum	rockrose	Cistus ladanifer)	with	a	scanty	rabbit	population.	The	
study	area	around	detector	devices	was	23.26	km2.

Live	 traps	were	 baited	with	 a	 commercial	 Collarum	 attractant	
with	pork	and	chicken	bait	plus	lynx	urine	(collected	from	captive	lynx	
breeding	facilities)	and	were	checked	every	morning.	Captured	foxes	
were	 anesthetized	 with	 medetomidine	 hydrochloride	 (Medetor®,	
Virbac,	Spain)	and	ketamine	hydrochloride	(Imalgene	1000®,	Merial,	
Spain).	Foxes	were	tagged	with	GPS	radio‐collars	(MiniTrack®,	Lotek,	
Ontario,	Canada)	and	two	models	of	numbered	ear	tags,	one	sheep	
commercial	 ear	 tag	 (3.4	×	3.2	cm)	 (Cromasa®,	 Berriozar,	 Navarra,	
Spain)	and	an	ear	tag	specifically	designed	for	red	fox	(6.8	×	3.2	cm)	
(Maquia	Serveis	Ambientals®,	Alcoi,	Alicante	Spain).

In	 La	 Nava,	 we	 used	 22	 live	 traps	 over	 51	days	 (9	 December	
2015	to	28	January	2016).	In	Los	Pilones,	we	used	50	live	traps	over	
35	days	 (28	January	2016	to	2	February	2016).	Live	trap	 locations	
were	selected	to	maximize	capture	of	foxes	(e.g.,	in	the	trails	usually	
used	by	this	species).

The	 camera‐traps	 used	 were	 Spartan	 SR1‐BK®	 HCO	 Outdoor	
Products,	Norcross,	Georgia,	USA	 and	Reconyx	HC500	Hyperfire	
Semi‐Covert	IR®,	Holmen,	Wisconsin,	USA.	In	La	Nava,	we	used	49	
camera‐traps	over	89	days	(27	January	2016	to	24	April	2016).	Mean	
distance	 to	 the	nearest	neighboring	camera‐traps	was	133.8	m.	 In	
Los	Pilones,	we	used	33	camera‐traps	over	63	days	(12	March	2016	
to	13	April	2016)	with	a	mean	distance	to	the	nearest	neighboring	
trap	 of	 387.8	m	 (Supporting	 Information	Appendix	 S2).	 Those	 dis‐
tances	 are	 below	 the	 σ	 value	 reported	 for	 fox	 (Jiménez,	 Nuñez‐
Arjona	et	 al.,	 2017)	 allowing	 spatial	 correlation	between	captures.	
Camera‐traps	were	 placed	 at	 sites	 suitable	 to	 detect	 animals	 and	
were	baited	with	red‐legged	partridge	(Alectoris rufa)	eggs.	Cameras	
were	 visited	 approximately	 every	 7	days	 to	 replace	 the	 bait,	 per‐
form	 camera	 maintenance,	 and	 download	 data.	 We	 programmed	
Spartan	cameras	to	record	10	s	videos	with	a	minimum	time	delay	
(0	s)	between	consecutive	records.	The	Reconyx	cameras,	which	do	
not	allow	video	mode,	were	programmed	in	RapidFireTM	mode	(two	
frames	per	second)	to	maximize	the	number	of	photos	taken	per	cap‐
tured	 individual.	Consecutive	 images	of	 foxes	within	30	min	 inter‐
vals	were	considered	as	the	same	event,	whereas	those	separated	
by	longer	intervals	were	considered	as	independent	events.	If	there	
were	more	than	one	individual	 in	the	same	picture,	we	considered	
one	event	for	each	individual	(Jiménez,	Nuñez‐Arjona	et	al.,	2017).	
Pictures	 for	which	we	could	not	distinguish	whether	 an	 individual	
was	marked	were	discarded.

GPS	radio‐collars	were	scheduled	to	take	one	position	per	hour	
during	 the	 night	 and	 one	 location	 every	 2	hr	 during	 the	 day.	GPS	
collars	 weighed	 163	g	 plus	 42	g	 for	 the	 optional	 drop‐off	 release	

mechanism.	The	drop‐off	system	was	used	only	on	heavier	foxes	so	
that	the	total	device	 (collar	+	drop‐off)	was	always	 lighter	than	5%	
body	weight	 (range:	2.6%–4.2%).	The	drop‐off	 system	was	 sched‐
uled	to	activate	26	weeks	after	tagging.	Foxes	without	drop‐off	sys‐
tems	were	recaptured	after	26	weeks	for	removal	of	the	GPS	collars.	
GPS	data	were	downloaded	regularly	with	a	VHF	remote	receptor	
or	after	recapture.	After	collar	recovery,	foxes	were	released	in	the	
same	location	in	which	they	were	captured.

3.2 | Model specifications

We	 used	 a	 Uniform	 (0,	 1)	 prior	 for	 baseline	 detection	 rate	 in	 the	
marking	process	 (λ0.mark)	 under	a	binomial	observation	model,	 and	
a	Uniform	(0,	2)	prior	for	the	baseline	detection	rate	for	resighting	 
(λ0.resight)	modeled	with	a	Poisson.	The	prior	probability	of	the	param‐
eter	for	data	augmentation	(φ)	is	a	Uniform	(0,	1),	which	is	equivalent	
to	assuming	a	uniform	prior	between	0‐M.

To	define	S	(the	state	space),	in	each	case,	we	used	an	envelope	
from	the	detector	devices	polygon,	plus	an	additional	buffer	of	2.5*σ. 
Buffer	sizes	were	estimated	using	sigma	values	in	a	first	running	of	
both	codes.

The	number	of	marked	 individuals	 (m)	 used	was	 the	 total	 cap‐
tured	in	the	marking	process	for	which	GPS	devices	indicated	that	
they	 were	 alive	 during	 the	 resighting	 process.	 Capture	 histories	
for	marked	 but	 undetected	 individuals	were	 included	 as	 all	 zeros.	
One	animal	died	during	the	resighting	period.	To	deal	with	this	loss,	
avoiding	bias	in	the	detection	process	by	introducing	individuals	that	
could	not	be	detected,	we	used	a	binary	variable	of	life	[i,	k]	(individ‐
ual	×	occasion)	with	one	 for	 live	occasions	 and	 zero	when	we	had	
evidence	that	the	animal	was	dead.

After	the	first	trial,	we	settled	on	M	=	150	for	data	augmentation.	
In	 the	model	 for	La	Nava,	we	 ran	 three	parallel	 chains	 for	85,000	
iterations,	5,000	adaptions	and	discarded	the	first	5,000	as	burn‐in.	
In	the	model	for	Los	Pilones,	we	ran	three	parallel	chains	for	52,500	
iterations,	1,500	adaptions	and	discarded	the	first	2,500	as	burn‐in.	
Gelman–Rubin	diagnostic	statistics	and	visual	inspections	were	used	
to	assess	convergence.	The	models	were	fitted	using	a	script	written	
in	JAGS	and	R	(Supporting	Information	Appendix	S1).

We	compared	 the	outputs	 from	La	Nava	and	Los	Pilones	with	
the	same	dataset	but	simulating	all	marked	individuals	as	unidenti‐
fied,	in	order	to	compare	the	accuracy	of	estimates	under	different	
identification	rates.

We	also	used	a	distance	sampling	approach	with	a	fully	indepen‐
dent	dataset	to	validate	the	inferences	from	our	new	Gen‐SMR‐ID	
model.	Distance	sampling	was	successfully	applied	in	La	Nava,	where	
visual	 detectability	 is	 very	 high	 due	 to	 nearly	 no	 scrub	 cover	 and	
high	 fox	density.	However,	 line	 transects	 in	Los	Pilones	prevented	
the	application	of	distance	 sampling	methodology:	No	 foxes	were	
seen	 in	a	 test	of	 two	 replicates	of	 the	 same	 transect	of	22,080	m	
due	to	low	visibility	because	of	vegetation	thickness.	We	used	three	
transects	in	La	Nava	study	area	and	five	temporal	replicates	on	dif‐
ferent	days	(from	October	to	November	2015,	before	live	trapping).	
Each	detected	 animal	was	 recorded,	 and	 its	 distance	 and	 azimuth	
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from	 the	 sampling	 point	was	measured	 using	 a	 laser	 range	 finder	
and	 magnetic	 compass.	 Perpendicular	 distances	 were	 calculated,	
and	distance	break	classes	were	set	to	50	m.	The	maximum	obser‐
vation	distance	was	366	m.	We	used	the	package	unmarked	 (Fiske	
&	Chandler,	2011)	 in	R	(R	Core	Team,	2018).	We	selected	best‐ap‐
proximating	models	of	abundance	and	detection	probability,	using	
a	model	with	no	covariates	for	a	null	estimate	considering	three	de‐
tection	functions	(half‐normal,	hazard	rate,	and	exponential)	and	two	
abundance	 distributions	 (Poisson	 and	 negative	 binomial)	 for	 each	
group.	We	ranked	null	models	using	the	Akaike	information	criterion	
(AIC;	Burnham	&	Anderson,	2002)	considering	the	model	with	the	
lowest	AIC	score	to	be	the	best‐fitting	key	function	and	distribution.	
We	used	the	parametric	bootstrap	approach	in	unmarked	to	obtain	
p‐values	from	sums	of	squares	(SSE),	Chi‐square	test,	and	Freeman‐
Tukey	fit	statistics	to	quantify	the	fit	of	a	model	to	a	dataset.

3.3 | Results

In	our	simulations,	 the	root	mean	square	error	 (RMSE)	for	popula‐
tion	size	estimation	for	m	=	5	ranged	from	8.4	(δ:	0)	to	8.6	(δ:	1),	and	
for	m	=	20,	 from	 4.3	 (δ:	 0)	 to	 4.24(δ:	 1).	 The	 RMSE	 indicates	 that	
the	 best	 estimator	 for	 the	 population	 size	 for	m	=	5	 is	 the	mode.	
The	RMSE	 for	mean	 is	 lower	 for	 a	higher	number	of	marked	 indi‐
viduals	 (Table	1).	 For	other	parameters,	 the	behavior	of	σ	 is	 nota‐
ble	(Supporting	Information	Appendix	S3);	although	the	bias	in	the	
model	is	very	small	for	m	=	5	(see	axes),	it	is	unbiased	if	δ	>	0.2.	For	
m	>	5,	the	σ	estimate	is	unbiased	in	all	cases.

In	our	case	studies,	we	marked	eight	individuals	in	La	Nava	over	
457	trap‐days	(1.75	captures/100	trap‐days).	In	the	resighting	pro‐
cess	(1,325	camera‐days),	we	had	119	capture	events	with	camera‐
traps	 (8.98	 captures/100	 camera‐days)	 with	 32	 events	 of	marked	
individuals,	but	only	 two	 individuals	 resighted	and	 identified	 in	six	
events,	and	87	events	of	unmarked	individuals.	Were	obtained	4,229	
GPS	locations	from	six	individuals.

We	marked	 five	 individuals	 in	 Los	Pilones	over	545	 trap‐days:	
1.1	captures/100	trap‐days.	In	the	resighting	process	(862	camera‐
days),	 we	 had	 124	 capture	 events	 with	 camera‐traps	 (14.39	 cap‐
tures/100	camera‐days)	with	111	events	of	marked	individuals;	102	
events	 corresponded	 to	 identified	 individuals.	We	 had	 83	 events	
with	readable	marks	and	19	events	with	unreadable	marks,	but	with	
foxes	 that	 were	 identifiable	 by	 individual	 traits.	 We	 additionally	
identified	the	individuals	in	those	19	events	using	a	complete	coin‐
cidence	among	3	researchers,	as	we	aimed	to	compare	two	extreme	
cases	of	identification	rate	(La	Nava‐Los	Pilones).	We	also	had	nine	
events	of	two	marked	and	unidentified	individuals,	and	13	events	of	
unmarked	individuals.	We	resighted	all	five	marked	individuals.	We	
gathered	1,547	GPS	locations	from	three	individuals.

Gelman–Rubin	statistics	were	<1.1	for	all	parameters	and	visual	
inspections	of	the	trace	plots	indicated	that	the	Markov	chains	suc‐
cessfully	converged	(Supporting	Information	Appendix	S4).

Results	are	shown	in	Table	2.	Density	estimates	of	mean	=	1.60	
(1.04–2.31)	 and	 0.28	 (0.18–0.27)	 individuals/km2	 were	 obtained	
in	 La	Nava	and	Los	Pilones,	 respectively.	The	 coefficient	of	 varia‐
tion	(CV)	for	both	estimates	was	0.20.	With	no	marked	individuals	
identified	(and	using	GPS	data),	we	would	have	obtained	a	density	
of	mean	=	1.64	(1.02–2.44)	and	0.27	(0.18–0.39)	individuals/km2	in	
La	Nava	and	Los	Pilones,	with	a	CV( ̂N)	=	0.23	and	0.19,	respectively	
(Supporting	Information	Appendix	S5).

3.4 | Test of results using distance sampling

Our	five	temporal	replicates	of	transects,	with	no	evidence	of	tem‐
porary	emigration	between	counts,	were	simply	replicated	counts,	
and	 consequently,	 we	 stacked	 the	 data	 replication	 for	 analysis	
(Flockhart,	 Norris,	 &	 Coe,	 2016)	 to	 reduce	 variation	 in	 estimat‐
ing	the	population	size.	We	estimated	a	density	of	1.3	 (0.57–2.03)	
individuals/km2	 in	 La	 Nava	 using	 distance	 sampling	 methodology	
(Supporting	Information	Appendix	S6).

TA B L E  1  Posterior	mean,	median,	mode,	and	coverage	rates	for	the	95%	highest	posterior	density	(HPD)	interval	for	simulations	from	a	
population	of	N	=	50	individuals	in	which	m ∈	{5,	10,	15,	20}	were	marked.	δ:	identification	rate.	Fifty	simulations	of	each	case	were	
conducted

Ind. Marked δ Mean RMSE Median RMSE Mode RMSE Coverage

m = 5 0.00 50.06 8.41 49.22 8.25 47.54 8.46 0.98

0.50 50.62 8.46 49.80 8.32 48.29 8.02 0.98

1.00 50.95 8.63 50.03 8.37 48.38 8.16 0.98

m = 10 0.00 49.10 7.37 48.60 7.35 47.63 7.62 1.00

0.50 49.42 7.29 48.86 7.32 47.98 7.49 1.00

1.00 49.39 7.28 48.89 7.30 48.08 7.32 1.00

m = 15 0.00 48.14 5.69 47.70 5.83 46.87 6.23 0.98

0.50 48.34 5.60 47.92 5.71 47.22 6.12 0.98

1.00 48.32 5.57 47.86 5.78 47.12 6.14 0.98

m = 20 0.00 49.12 4.30 48.70 4.42 48.70 4.46 1.00

0.50 49.19 4.25 48.82 4.25 48.82 4.67 1.00

1.00 49.19 4.24 48.79 4.33 48.09 4.57 1.00
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The	 bootstrap	 p‐values	 for	 the	 best‐fitting	model	 based	 on	
the	 SSE,	 Freeman‐Tukey,	 and	 Chi‐square	 statistics	 were	 0.42,	
0.34,	 and	 0.52,	 respectively,	 suggesting	 that	 our	 model	 ade‐
quately	fits	the	data.	The	value	of	ĉ	(ratio	of	observed/expected)	
was	1.04.

4  | DISCUSSION

Spatial	mark–resight	models	are	a	useful	approach	to	estimate	popu‐
lation	densities	of	species	lacking	natural	markings	that	are	detected	
using	camera‐traps.	SMR	is	based	on	marking	a	portion	of	the	pop‐
ulation	 and	 later	 collecting	 data	 from	both	marked	 and	 unmarked	
individuals.

We	developed	 an	extension	of	 the	 generalized	 spatial	mark–
resight	model	(Gen‐SMR‐ID)	to	deal	with	a	very	common	problem:	
the	difficulty	of	reading	all	the	marks	and	recognizing	individuals	
using	camera‐traps.	Royle	et	al.	(2014)	described	a	solution	for	this	
problem	in	SMR,	that	was	to	use	a	correction	factor	c	considering	
that	the	number	of	 identified	events	 is	a	binomial	distribution	of	
the	total	events	with	probability	c: 

∑

yc∼Binomial
�
∑

ym,c
�

,	where	
yc	 are	 the	correctly	 identified	 individuals	and	ym	 all	marked	 indi‐
viduals	(identified	or	not).	However,	this	approach	does	not	make	
full	use	of	the	spatial	information	of	the	marked	and	unidentified	
records.

Gen‐SMR‐ID	allows	inferences	about	population	size,	even	with‐
out	individual	identification	of	the	marked	animals.	However,	model	

performance	will	depend	on	the	number	of	marked	individuals	and	
the	 availability	 of	 telemetry	 data.	 Our	 simulation	 study	 indicated	
that	performance	was	satisfactory	when	at	least	10%	of	the	popu‐
lation	was	marked	and	outfitted	with	telemetry	devices,	even	when	
the	individual	 identification	rate	was	 low.	This	result	suggests	that	
the	spatially	autocorrelated	counts	of	marked	but	unidentified	indi‐
viduals	are	informative	about	resighting	parameters,	and	this	infor‐
mation	results	in	improved	estimates	of	abundance	and	density.	We	
need	further	studies	about	the	identifiability	on	this	model	without	
telemetry	data.

Our	 simulation	 study	 demonstrated	 that	 posterior	 precision	
increases,	 as	 expected,	 with	 the	 number	 of	 marked	 individuals.	
Coverage	rates	for	the	95%	highest	posterior	density	(HPD)	intervals	
were	close	to	nominal	for	all	values	of	m	studied	(Table	1).

The	posterior	mean,	median,	and	mode	exhibited	low	bias	when	
used	as	a	point	estimate	of	N.	Surprisingly,	we	found	that	estimates	
of	population	size	were	unbiased	and	precise	even	when	the	identifi‐
cation	rate	(δ)	was	zero	(Table	2,	Figure	3).	The	use	of	telemetry	data	
makes	σ	(and	λ0)	identifiable.

In	our	study	case,	the	model	was	used	to	estimate	fox	popula‐
tion	in	high‐	and	low‐density	scenarios.	An	additional	comparison	of	
the	estimate	was	carried	out	in	the	high‐density	area	using	distance	
sampling.	 Using	 the	 Gen‐SMR‐ID	model,	 the	 population	 size	 esti‐
mates	are	almost	the	same	with	or	without	individual	identification	
(Table	2	and	Supporting	Information	Appendix	S5),	for	both	the	high‐
density	 case,	 with	 a	 posterior	 probability	 of	 identification	 	=	0.21	
(0.07–0.36)	(Table	1),	and	for	the	low‐density	case,	with	a	posterior	

Mean SD 2.50% 50% 97.50%

La	Nava

lam0.mark	(λ0.mark) 0.02 0.01 0.01 0.02 0.04

lam0.resight	(λ0.resight) 0.07 0.01 0.04 0.06 0.09

sigma	(σ) 0.43 0.00 0.42 0.43 0.44

psi	(ψ) 0.39 0.09 0.24 0.38 0.57

̂N 58.08 11.72 38.00 57.00 84.00

̂D 1.60 0.32 1.04 1.57 2.31

δ 0.21 0.07 0.09 0.20 0.36

Deviance 10,304.66 12.36 10,281.82 10,304.20 10,330.17

Los	Pilones

lam0.mark	(λ0.mark) 0.03 0.01 0.01 0.03 0.06

lam0.resight	(λ0.resight) 0.46 0.06 0.36 0.46 0.58

sigma	(σ) 0.53 0.01 0.52 0.53 0.55

psi	(ψ) 0.12 0.03 0.06 0.11 0.19

̂N 16.86 3.39 11.00 16.00 24.00

̂D 0.28 0.06 0.18 0.27 0.40

δ 0.91 0.03 0.85 0.91 0.96

Deviance 5,020.25 10.05 5,001.90 5,019.77 5,041.42

Baseline	detection	rate	for	capture	(λ0.mark),	baseline	detection	rate	for	resighting	(λ0.resight),	param‐
eter	of	movement	(σ),	data	augmentation	parameter	(ψ),	population	size	estimate	in	the	state	space	
( ̂N),	density	estimate	( ̂D),	identification	probability	(δ)	and	deviance.

TA B L E  2  Posterior	mean,	standard	
deviation,	and	95%	HPD	interval	coverage	
of	model	parameters	from	the	generalized	
spatial	mark–resight	with	incomplete	
identification	model	(Gen‐SMR‐ID)	from	
red	fox	(Vulpes vulpes)	case	studies	in	La	
Nava	and	Los	Pilones	(Ciudad	Real,	
Central	Spain)
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probability	of	identification		=	0.91	(0.85–0.96)	(Table	2).	The	coef‐
ficient	of	variation	obtained	(ca	0.2)	is	consistent	with	the	results	of	
the	simulations,	considering	the	rate	of	animals	that	are	marked	(0.14	
and	0.29,	respectively).

Agreement	with	the	results	of	the	distance	sampling	was	strong	
(Table	 2	 and	 Supporting	 Information	 Appendix	 S6)	 although	 the	
Gen‐SMR‐ID	 model	 showed	 lower	 standard	 deviation.	 Attention	
should	be	paid	to	the	fact	that	the	estimation	of	fox	abundance	with	
distance	sampling	is	seldom	feasible	in	Mediterranean	habitats	due	
to	low	visibility.	The	very	open	habitat	of	La	Nava,	and	its	high	fox	
density,	allowed	a	sufficient	number	of	detections	for	the	applica‐
tion	of	distance	sampling.	Los	Pilones	presented	the	opposite,	and	
more	 common,	 scenario.	Overall,	 generating	 precise	 and	 accurate	
abundance	estimates	of	fox	populations	continues	to	be	challenging,	
and	thus	SMR	presents	a	useful	approach.

The	 negative	 relationship	 between	 the	 population	 sizes	 es‐
timated	 in	 the	 two	 study	 areas	 (1.60	 and	 0.28	foxes/km2	 in	 La	
Nava	 and	 Los	 Pilones,	 respectively),	 and	 the	 capture	 index	 (8.98	
and	 14.39	events/100	camera‐days),	 is	 notable.	 The	 higher	 cap‐
ture	 index	 in	Los	Pilones	may	be	 related	 to	 the	smaller	amount	of	
available	 food,	which	would	 exacerbate	 search	behavior,	 and	 thus	
the	number	of	camera‐trapping	events.	These	results	support	pre‐
vious	 studies	 calling	 attention	 to	 the	 risk	of	using	 raw	capture	 in‐
dices	 from	 camera‐trap	 data	 as	 a	 measure	 of	 relative	 abundance	
(Sollmann,	Mohamed,	Samejima,	&	Wilting,	2013).	They	highlight	the	
need	for	reliable	methods	for	density	estimation	of	cryptic	species,	

such	 as	 the	Gen‐SMR‐ID	model	 proposed	here.	Our	 study	 case	 is	
a	 clear	 example	 of	 this	 risk;	 considering	 only	 raw	 capture	 indices,	
we	would	have	concluded	 that	a	higher	density	population	occurs	
in	Los	Pilones	than	in	La	Nava,	when	the	opposite	is	true	according	
to	our	Gen‐SMR‐ID	models.	Even	so,	studies	continue	using	relative	
abundance	 indices,	 mostly	 because	 sound	 statistical	 methods	 for	
population	estimation	are	not	available	or	cannot	be	applied	for	the	
species	of	concern.	Our	proposed	Gen‐SMR‐ID	approach	provides	a	
valuable	tool	for	researchers	to	address	this	gap	and	will	hopefully	
help	reduce	the	inappropriate	use	of	raw	abundance	indices	in	cam‐
era‐trapping	studies	with	individually	unrecognizable	species.

The	 results	 for	 fox	 density	 are	 consistent	with	 those	 of	 other	
authors	 in	Mediterranean	 areas.	 Sarmento	 et	 al.	 (2009)	 estimated	
densities	 of	 0.61	 (0.54–0.69)	 individuals/km2	 in	 Serra	 de	Malcata	
(Portugal)	 using	 nonspatial	 capture–recapture	 methods	 and	 iden‐
tifying	 all	 individuals	 by	 natural	 marks.	 Jiménez,	 Nuñez‐Arjona	 et	
al.	 (2017)	estimated	0.41	(0.21–0.72)	individuals/km2	using	SMR	in	
southern	Spain.

This	model	can	be	extended	to	other	formulations	of	SMR,	such	as	
temporal	or	behavioral	variation	in	baseline	detection	rate,	and	spa‐
tial	variation	in	density,	or	using	categorical	covariates	(Augustine	et	
al.,	2018).	We	can	recognize	in	camera‐trap	pictures	some	categorical	
identities	 like	“male,	subadult”	or	“female,	adult”	allowing	increased	
precision	when	 data	 are	 sparse	 and/or	 there	 are	 few	marked	 indi‐
viduals.	It	also	can	be	used	with	naturally	marked	populations,	using	
as	 a	 marked	 population	 the	 recognizable	 individuals	 in	 a	 previous	

F I G U R E  3  Posterior	means	violin	plot	
of	abundance	(N	=	50)	estimates	using	
generalized	spatial	mark–resight	with	
incomplete	identification	model	(Gen‐
SMR‐ID)	in	JAGS	from	different	number	
of	marked	individuals,	m ∈	{5,	10,	15,	20},	
plotted	against	the	identification	rate	(δ)
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(“marking”)	period	but	we	will	need	spatial	 recaptures	or	additional	
telemetry	data	to	improve	the	estimates	of	abundance	and	density.
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