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Aqueous pKa prediction for tautomerizable
compounds using equilibrium bond lengths
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The accurate prediction of aqueous pKa values for tautomerizable compounds is a formidable

task, even for the most established in silico tools. Empirical approaches often fall short due to

a lack of pre-existing knowledge of dominant tautomeric forms. In a rigorous first-principles

approach, calculations for low-energy tautomers must be performed in protonated and

deprotonated forms, often both in gas and solvent phases, thus representing a significant

computational task. Here we report an alternative approach, predicting pKa values for her-

bicide/therapeutic derivatives of 1,3-cyclohexanedione and 1,3-cyclopentanedione to within

just 0.24 units. A model, using a single ab initio bond length from one protonation state, is as

accurate as other more complex regression approaches using more input features, and

outperforms the program Marvin. Our approach can be used for other tautomerizable spe-

cies, to predict trends across congeneric series and to correct experimental pKa values.
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Approximately 21% of the compounds that make up
pharmaceutical databases are said to exist in two or more
tautomeric forms1. Tautomerism is a form of structural

isomerism that is characterized by a species having two or more
structural representations, between which interconversion can be
achieved by “proton hopping” from one atom to another. Issues
surrounding pKa prediction for species exhibiting this feature
have been noted a number of times in the literature. Recently2,
Connolly suggested that a lack of experimental information on
both relative tautomer stability and the properties of distinct
tautomeric forms are the likely causes of such issues. Tautomeric
species present a challenge, not just to empirical-based approa-
ches, but also to those that attempt to solve the pKa prediction
problem using first-principles1–5. For tools implementing the
latter approach (e.g. Jaguar, Schrödinger4,6,7), the most rigorous
protocol includes quantum chemical calculations for conforma-
tions of each, or a select few low lying tautomer(s), in both gas- and
solvent phase, and in both protonated and deprotonated forms.
Therefore, without some element of empiricism, first-principles
approaches often incur significant computational expense.

For methods of pKa estimation that generate descriptors
starting from 2D fingerprints, each tautomeric form of a species
will correspond to a unique representation. Therefore, the user
must either (i) possess prior knowledge of tautomeric stability in
order to maximize prediction accuracy, or (ii) tautomer enu-
meration must be performed by the program based on an arbi-
trary user input, followed by selection of the optimal tautomer for
calculation of chemical descriptors8–10. A comparative study11 of
5 empirical pKa prediction tools (ACD/pKa DB (http://www.
acdlabs.com/home), Epik (http://www.schrodinger.com), VCC

(http://vcclab.org), Marvin (http://www.chemaxon.com) and
Pallas (www.compudrug.com)) on 248 compounds of the Gold
Standard Dataset compiled by Avdeef12, demonstrated a ten-
dancy for prediction errors to be higher for compounds with a
larger number of possible tautomeric states. For the tool they
tested, the guanidine group of the drug Amiloride and the enolic
hydroxyl groups of herbicides Sethoxydim and Tralkoxydim were
also identified as common outliers.

Compounds containing a 1,3-diketo group exhibit tautomer-
ism (shown in Fig. 1a(i), (ii)). For cyclic 1,3-diketones, the diketo
state (Fig. 1a(i)) can be transformed into two keto-enol forms
(Fig. 1a(ii)). Tautomeric states of the same molecule may be non-
degenerate, with the ratio being influenced by the solvent envir-
onment and temperature13. The compounds 1,3-cyclohex-
anedione (1,3-CHD) and 1,3-cyclopentanedione (1,3-CPD) are
known to possess significant keto-enol character in solution, a
phenomenon attributed to the formation of hydrogen bonded
solute dimers, and additional stabilization from solute-solvent
interactions14.

1,3-CHD is a fragment prevalent to both agrochemically and
pharmaceutically active compounds in use today. Alloxydim
(Fig. 1b(i)) is currently used as a selective systemic herbicide for
post-emergence control of grass weeds in sugar beet, vegetables
and broad-leaved crops. Adding a derivatized benzoyl group at
the 2-position in place of Alloxydim’s 2-oxime forms what is
known as triketone herbicide (e.g. Mesotrione, Fig. 1b(ii)).
Pharmaceutically relevant compounds containing the 1,3-CHD
group include the antibiotic Tetracycline and its analogues.

Previous work15–22 from our group, as well as the earlier work
of others, has highlighted the utility of bond lengths23–25 and

Fig. 1 Structures of 1,3-diketone derivatives and schematic of our workflow. a (i) The diketo form of a 1,3-dione, (ii) the resonance canonicals for the
keto-enol form of 1,3-diones, and (iii) the resonance canonicals for the anionic state, where n= 0 or 1 if the ring is five- or six-membered, respectively. KT

denotes the equilibrium constant between tautomeric states, Ka(DK) denotes the dissociation equilibrium from the diketo state and Ka(KE) the dissociation
equilibrium from the keto-enol state. b (i) The global minimum geometry of Alloxydim, a 2-oxime herbicide and Mesotrione in the keto-enol anti state, (ii) a
triketone herbicide. c The AIBL-pKa workflow implemented here for cyclic β-diketones.
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other quantum chemically derived descriptors in the context of
Quantitative Structure Property Relationship studies26. Most
recently, our approach to pKa prediction, which uses only inter-
nuclear distances as descriptors, called AIBL-pKa (ab initio bond
lengths), showed remarkably accurate prediction of acidity var-
iation across congeneric series of guanidine-containing species19

and sulfonamides20. The current work brings attention to the
issue of pKa prediction for tautomerizable compounds and deli-
vers an intuitive solution to this problem for 1,3-CHD and 1,3-
CPD derivatives, which remain important scaffolds in pharma-
ceutical and agrochemical research.

Results and discussion
Scheme for model construction. Our proposed method of pre-
dicting pKa values (Fig. 1c and Methods) makes use of equili-
brium bond lengths from density functional theory calculations
(B3LYP/6-311G(d,p) with the conductor-like polarizable con-
tinuum model or CPCM) as input features for regression models.

The full dataset of 71 compounds used in this work represent a
wide variety of substituent types and patterns (generic structures
and examples of dataset compounds are shown in Fig. 2a). After
an initial analysis of the linear fit of each individual bond length,
we investigate whether the use of multiple bond lengths as input
features could provide an advantage in prediction accuracy and
model applicability radius. For this task, we considered all
subset combinations of the bonding distances of the fragment
common to each species. We also compared a number of
machine learning methods for their regression onto pKa values,
namely, random forest regression (RFR), support vector regres-
sion (SVR), Gaussian process regression (GPR) as well as partial
least squares (PLS). PLS27 and SVR28–30 have been implemented
in the context of pKa prediction many times, using many different
types of descriptors. A brief overview of the theory and method
used for these approaches can be found in the Supplementary
Methods section of the Supplementary Information (SI). Further

details and formalism for the validation metrics used in this work
(r2, RMSEE, MAE) can also be found in Supplementary Methods.

Through our analysis, we demonstrate that a powerful model
may be constructed from simple linear regression of a single ab
initio bond length, thereby potentially negating the need for the
more complex approaches.

Current approaches. To exemplify the issues surrounding pre-
diction for cyclic 1,3-diketones using existing empirical approa-
ches, the commercial program by ChemAxon known as Marvin
was used to estimate values for a series of 1,3-CHD and 1,3-CPD
derivatives (o1-o8, tk1-tk15 and dk1-dk12 shown in Supple-
mentary Table 1 of the SI). The Marvin program uses Gasteiger
partial charges30, polarizabilities and structure specific increments
to predict pKa values using ionizable group specific regression
equations11. The results are shown in Fig. 2b, where the orange
diamonds denote experimental values, blue squares represent
Marvin predictions without the option to “consider tautomers/
resonance”, while the magenta triangles are predictions made
with this option. For the compounds in Fig. 2b where the blue
and red points overlap, the program predicts the keto-enol state
to be dominant, and delivers predictions that lie 0.8 units away
from experimental values on average. However, for 60% of the
compounds, the program predicts the diketo state to be domi-
nant. For the series o1-o8, Marvin gives values of ~16 log units
for 5 out of 8 species. For the remaining three compounds, o1, o3
and o7, the program identifies the acidic proton (pKa ~ 17) at the
4 or 6 position on the 1,3-CHD ring.

The above results suggest that if accurate predictions are to be
made (i.e. residual errors <1 pKa unit), then the user must have
prior knowledge of the dominant keto-enol tautomeric form (blue
squares in Fig. 2b). In the following sections we show that our
method, which uses quantum chemically derived geometric
descriptors, avoids such problems intrinsically. Despite the
increased computation time compared with empirical

Fig. 2 Exemplar cyclic diketone compounds studied in this work and the performance of Marvin versus Experiment. a pKa data for compounds of the
dataset used were procured from both Syngenta’s database and literature sources. The pKa values of 17 compounds were also measured for the purpose of
this work. Each compound either contains a 1,3-cyclohexanedione (1,3-CHD) or 1,3-cyclopentanedione group (1,3-CPD), examples of which are shown in
blue and green, respectively. Substituent variation occurs at 2, 4, 5 and/or 6 position on 1,3-CHD, and 2, 4 and/or 5 for 1,3-CPD. The full set of structures
and experimental pKa values can be found in Supplementary Table 1 of the SI. b Experimental (orange) pKa values across the series o1-o8, tk1-tk15 and
dk1-dk12, are compared with Marvin predictions with the “consider tautomers/resonance” option (magenta) and without this option (blue). Values are in
excess of 14 log units for the acidic proton at C2 (labelled for 1,3-cyclohexanedione) for o2, o4, o5, o6 and o8 and values for o1, o3 and o7 correspond
to C4/C6.
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approaches, AIBL avoids the need to compute pKa values for both
protonation states. Moreover, descriptor calculations may be
carried out only in the solvent phase using an implicit approach
(CPCM).

Identifying AIBL-pKa relationships for triketones. The rela-
tionship between the structure and herbicidal activity of trike-
tones (Fig. 3a) was first reported31 by Lee and co-workers. One of
the primary conclusions of that early work was that the ortho-
substituent on the phenyl ring is a requirement for the com-
pound’s herbicidal activity. The authors also noted that com-
pounds with more electron-withdrawing para-substituents
required a lower dose to obtain a 50% weed-control rating across
7 variants of broad-leaf plants (the metric known as lethal dose
50, or LD50). It was thereby deduced that a linear relationship
exists between Hammett constants of para-substituents, log
(LD50) and pKa. Therefore, a more electron-deficient benzene is
associated with enhanced acidity and herbicidal activity31. As
there is already evidence of a structure–property/activity rela-
tionship for these species, we took the set of 10 compounds from
the work of Lee et al. as a starting point to assess the prevalence of
AIBL-pKa relationships across available tautomeric states.

The identities, pKa values, equilibrium bond lengths and log
(LD50) values of the compounds studied by Lee et al. are shown in
Supplementary Tables 2–5, labelled as tkn1-tkn4 and tkc1-tkc6.
All tkn species possess one 2-NO2 group whereas each tkc species
has a 2-Cl substituent (Fig. 3b). Across each subset the para-
substituent varies. We find that the order of stability of each
compound in their four lowest energy tautomer/conformations
(Fig. 3a) is c > d > b > a. The triketo form a is ~9 kJ mol−1 less
stable than the (endo) keto-enol anti form b, which in turn is ~29
kJ mol−1 less stable than the (exo) keto-enol syn form d.
Although both d and c possess a stabilising intramolecular
hydrogen bond, the most stable form is c by around 7 kJ mol−1.

Experimental pKa values were regressed onto bond lengths
i–viii (Fig. 3b) of the triketo or keto-enol fragment of tautomers
a–d and the fit was assessed using r2. For all tautomers a–d, there
is a significant improvement in r2 when the set is split into two
subsets (r2 generally 0.9 or above), with one group containing tkn
derivatives and the other containing tkc substituted compounds.
The slope for the tkn series is consistently 22% larger (i.e. steeper)
than that of the tkc derivatives. We can interpret this steeper
gradient as the resonance electron-withdrawing effect of the 2-
NO2 substituent heightening the para-substituent’s electronic
effect on dissociation propensity. The heightened acidity of the
tkn compounds is also likely to be linked to the marked difference

in geometry between the two subsets. For the tkc series, the exo-
carbonyl group is almost co-planar with the phenyl ring, whereas
for the tkn series, the exo carbonyl is co-planar with the keto-enol
moiety. In the latter orientation (of the tkn series), the orbital
overlap allowing hydroxyl oxygen lone pair delocalisation across
the keto-enol and exo-keto group is possible. It may be asserted
that this increased conjugative effect would result in less
delocalization between O and H atoms, a longer, weaker O–H
bond and greater propensity for dissociation.

The bond lengths of the enol anti-conformer b exhibit the
most strongly correlated relationships with pKa values (see
Supplementary Tables 2–5). With the exception of O–H(i) and
the exocyclic C=O(vii) bond lengths, all pairs of subsets tkn and
tkc exhibit r2 values above 0.90 (q2 > 0.9 and RMSEE ~ 0.2). This
is an interesting result, considering that b is not the most stable
tautomer according to the ranking at B3LYP/6-311 G(d,p)/
CPCM. It may be asserted that the emergence of stronger
relationships between geometric features (bond lengths) and pKa

using the anti keto-enol tautomer is indicative of its prevalence in
solution. A thorough analysis using explicit solvation to explore
this hypothesis is beyond the scope of this work. However,
preference for this conformation could be linked to its increased
propensity for dimerization and H-bonding to solvent molecules.

For both subsets, the trend in the bond variation of O–H (i),
C–O (ii) and C=C (iii) with pKo is such that more acidic
compounds have longer O–H and C=C bonds but shorter C–O
distances. These observations therefore fit with the intuition that
a longer, weaker O–H bond should exhibit an increased
propensity for cleavage. Conversely, bonds C–C (iv) and C=O
(v) are found to show opposing trends between each series
(Fig. 3b).

The aim of this work is to derive a generally applicable model
for compounds containing the diketone fragment. Therefore, we
deemed it important to understand this disparity in C–C (iv) and
C=O (v) bond length variation. To this end, we performed an
interacting quantum atoms (IQA) analysis to partition the
interaction energy between pairwise atoms A and B into Vxc(A,
B) (exchange-correlation) and Vcl(A,B) (electrostatics). For
further methodological and theoretical details of this approach
see the Methods section.

By taking Vxc(A,B) as our dependent variable in place of bond
distances, we can look at how the extent of delocalization of
electrons between two topological atoms A and B changes with
pKa. In doing so, we find analogous relationships between
Vxc(A,B) of bonds i–v and pKa values. Longer bonds exhibit less
negative Vxc(A,B) values (i.e. there is less delocalization), and vice

Fig. 3 Tautomeric forms of cyclic triketones and the trends in bond length variation with pKa for compounds labelled tkn and tkc in this work. a
Tautomeric forms a–d considered for the triketone series tkn1-tkn4 and tkc1-tkc6. All energies are listed in Supplementary Table 6 of the SI. b The trend in
bond length variation and exchange-correlation (Vxc) energy of bonding interactions for tkn1-tkn4 is consistent with delocalization of electrons across the
whole endocyclic keto-enol fragment. Conversely, the variation in bond lengths for tkc1-tkc6, as well as the increased co-planarity of the keto-enol group, is
indicative that there is more conjugation with the exo-carbonyl. Supplementary Table 7 of the SI lists bond lengths i–v and pKa values for the b tautomer.
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versa (Fig. 3b). The trend in Vxc(A,B) for bonds i–v across the
keto-enol fragment of the tkn series is consistent with hydroxyl
oxygen lone pair delocalization across the whole keto-enol
fragment, akin to the resonance forms shown in Fig. 1a(ii).
Conversely, for the tkc series this delocalization effect is not
reflected in the distance variation of iv and v. Further discussion
pertaining to the origin of the difference in bond and Vxc

variation with pKa between subsets can be found in Supplemen-
tary Methods. Overall, the discrepancy in AIBL-pKa trends with
substituent type (Supplementary Note 2) suggests that, in the
search for a bond that has a relationship with pKa over a wide
variety of substituent patterns/types, it is logical to look to the
enolic hydroxyl group, i.e. O–H (i), C–O (ii) and C=C (iii).

Due to the prevalence of well-correlated relationships between
bonding distances and pKa for the keto-enol anti-conformation
for tkn1-tkn4 and tkc1-tkc6, this tautomeric form was used for
all subsequent analysis on the remaining dataset. The bonds that
are under investigation are those of the keto-enol fragment (i–v in
Fig. 3b), which are common to all 1,3-CHD and 1,3-CPD
compounds of the dataset. Selection of these specific bond lengths
therefore allows us to construct one generally applicable model,
rather than assembling many models for more specific sub-
regions of chemical space.

Single bond length models. Our dataset of 71 compounds
(Supplementary Table 1) consists of 46 triketones and diketones
from Syngenta, plus an additional 9 diketones and 2 triketones
measured for the purpose of this work (experimental details can
be found in Supplementary Methods in the SI). A further 8 pKa

values for Alloxydim analogues were also obtained from the lit-
erature (Supplementary Table 1). Due to a discrepancy between
predicted and literature values, samples were procured and pKa

values were re-measured for 7 of these 8 compounds. Literature
values for 6 Tetracycline derivatives were also included. The full
set was split into 70% training and 30% test set, i.e. 49:22 training
to test set.

Table 1 lists internal, cross-validation and external validation
statistics of each single bond length regression model (i.e. the
typical AIBL approach). The values listed in Table 1 are found
using a reduced training set, due to the removal of two outliers,
dk29 and tk3. The reason for the removal of these compounds
will be discussed in the next section. The most active bond, i.e. the
model exhibiting the highest r2 and lowest RMSEE is the C–O (ii)

bond (0.72 and 0.57, respectively). We note that these values are
somewhat less impressive than the threshold values used to mark
the presence of an active bond in our other case studies (~0.90 for
r2 and ~0.3 for RMSEE). This decrease in goodness of fit can be
attributed to the higher structural diversity of the set: the model
covers 5- and 6-membered rings, compounds with substitution at
the 2, 4 and 6 position of the 1,3-CHD fragment and compounds
containing more than one ionizable group.

Nonetheless, the error metrics for the C–O model (pKa=
93.381*r(CO) −127.71) used on the external test set indicate a
high level of prediction accuracy and consistency across a diverse
array of analogues; the MAE and standard deviation of absolute
errors for the test set are both 0.24. No C–O model errors exceed
1 pKa unit and only 2 out of 22 exceed 0.5 log units (tk1=+0.92,
dk8=−0.77). The nature of bond length variation across the 47
training compounds matches that of the tkn/tkc series for O–H
(i), C–O (ii) and C=C (iii).

Outliers. Two species were found to have residual errors
exceeding 1.5 log units for 4 out of 5 bonds. One outlier is dk29, a
1,3-CPD derivative with a CH2-2-pyridyl group at the 4-position.
The pKa value of 5.78 listed for this species was identified as the
pKa for dissociation of the 2-pyridyl group, rather than the keto-
enol fragment (pyridine itself has a pKa of 5.23). The other
incongruous data point corresponds to tk3, which has a fourth
keto group at the 5-position of the 1,3-CHD ring, a feature that is
also present in compounds tk1 and tk4. The C–O bond distances
of these three compounds sit below the trend line for the rest of
the set, with an r2 value of 1 for a linear fit, i.e., compounds with
the 5-C=O structural motif in common form their own high-
correlation subset. More accurate predictions for compounds
such as tk1 (error=+0.92) could therefore be made using the
equation of this line as a new model, rather than the original C–O
model. Both compounds were removed from subsequent analysis.

Other regression approaches. Table 2 shows the 7-fold CV and
external validation statistics for optimal models. These were
derived using PLS (4 bonds), RFR (3 bonds), SVR [linear]
(2 bonds), SVR [RBF] (3 bonds) and GPR [RBF] (3 bonds) using
feature selection based on minimization of the 7-fold RMSEE of
the training set. The 7-fold RMSEE for each of the 31 combina-
tions/subsets are compared in Fig. 4a (the Model ID list is shown
in Supplementary Table 8, the full list of statistics for each model
is shown in Supplementary Tables 9–13 and predictions are
shown in Table 3). The optimal model for each method was then
used to predict test set pKa values.

Overall, all optimal models for each method include C–O as an
input feature. The lowest 7-fold CV MAE and RMSEE
correspond to the GPR model using a radial basis function
kernel, which uses C–O, C–C and C=O as input features (MAE
= 0.30, RMSEE= 0.39). However, this same GPR model also
delivers the least accurate predictions for the 22 compounds of
the external test set with an RMSEP of 0.59 and a MAE of 0.43,
possibly indicative of overfitting to the training set data. Overall,
SVR[RBF] using C–O, C–C and C=O returns the lowest MAE
and RMSEP for the test set (0.29 and 0.36, respectively) and is
consistent in its accuracy (s.d.= 0.22). However, PLS using C–O,
C=C, C–C and C=O also performs similarly well (MAE= 0.31,
RMSEP= 0.36) and exhibits the lowest standard deviation of
absolute errors (s.d.= 0.19). There is one consistently large error
across every model, corresponding to the predicted value for tk1.
This compound shows an average error across all models of
−1.21, with the lowest error exhibited by the PLS model (−0.72)
and the largest for GPR[RBF] (−1.60). This compound was
previously identified as belonging to a new subset of 5-C=O

Table 1 Summary of the results for the typical AIBL ordinary
least squares approach.

Metric O–H
(i)

C–O
(ii)

C=C
(iii)

C–C
(iv)

C=O
(v)

Slope (+/−) − + × × ×
r2 (train) 0.56 0.72 0.38 0.15 0.38
MAE (7-fold CV)
(train)

0.60 0.41 0.65 0.88 0.73

RMSEE (7-fold CV)
(train)

0.75 0.57 0.89 1.10 0.90

MAE (test) 0.31 0.24 0.43 0.67 0.56
RMSEP (test) 0.41 0.34 0.58 0.86 0.69
s.d. (test) 0.28 0.24 0.40 0.55 0.41
r2 obs vs pred (test) 0.90 0.92 0.69 0.66 0.20

(Upper) Statistics for the single bond length models obtained via ordinary least squares
regression. The row labelled “slope” features a “+” sign for a positive slope (i.e. pKa increases
with increasing bond distance), and a “−” sign to denote a negative slope (i.e. pKa decreases with
increasing bond distance). The squared correlation coefficient was not significant enough (“×”)
to assign a slope direction for iiii, iv and v.
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containing compounds, along with tk3 and tk4 for the C–O
model, and may therefore be considered to be on the edge region
of the domain of applicability for the model.

The comparable accuracy of the single bond length C–O model
for the test set, with respect to more complex regression methods
using more input features is a remarkable result, given the
simplicity of the approach. This result also validates our previous
work, in which models using multiple input features were deemed
unnecessary given the strength of the correlation for individual
bond distances.

Marvin. A comparison between error metrics for all models
shows significant improvement compared with Marvin (Figs. 4b,
c), either with or without consideration of tautomer/resonance.
Furthermore, AIBL provides predicted values that correctly sug-
gest the dominant microstate at pH 7 is the enolate, i.e. the
ionized form. After tautomer enumeration and selection, Mar-
vin’s pKa values predict that 15 out of 22 compounds would be
>50% unionized at this pH. However, this result is reduced to
only two incorrectly assigned microstates when the keto-enol
form is used explicitly. All experimental and predicted values can
be found in Table 3.

Correction of experimental value for Profoxydim. Experimental
pKa data were initially procured from literature sources for the series
of “dim” herbicides used in this work (Supplementary Note 1).
Upon performing the fits for the single bond length models, the
residual error for Profoxydim (Fig. 4d) using the literature pKa value
of 5.91 was found to be anomalously high, at +1.30 units. Marvin
predicts the pKa of the enolic hydroxy group to be 5.44, i.e. very
close to this experimental value.

Due to the excellent accuracy observed for species o1-o7
(residuals < 0.50), we decided to re-measure all pKa values. Seven
of the eight compounds (all except Clethodim) were procured
and re-measured using the UV-metric method (see Supplemen-
tary Methods for details). Excellent agreement was found between
old and new values for all compounds but Profoxydim, for which
a value of 4.82 was found. This new value lies only 0.22 units from
our original prediction (4.61), yet it lies ~1.10 log units from the
literature value. Therefore, we demonstrate the power of the AIBL

approach to check internal consistency of pKa values for a given
congeneric series. Structures and predictions for all dim
herbicides can be found in Supplementary Fig. 2 of the SI.

Tetracyclines. Aside from tautomerism, one of the more complex
issues in the field of pKa prediction is the estimation of values for
multiprotic compounds. Two of the species of our dataset contain
a secondary ionizable group (dk26 and dk29, 2-pyridyl, pKa=
~5). In recent work we have demonstrated that prediction for a
specific ionizable group may be performed by using the relevant
microstate to the dissociation of interest. Therefore, in the case of
dk26 and dk29, we performed all calculations on the cationic
form of the 2-pyridyl group. To showcase the applicability of the
AIBL model derived here in the context of larger multiprotic
compounds, 6 tetracycline derivatives were included. For the
correct microstate (the neutral state) of each species the most
stable form is analogous to the keto-enol syn c conformation. The
anti-conformation was constructed by manual rotation of the
C2–C1–O9–H10 (Fig. 3b) torsional angle from this form. For tet1,
tet3, tet5 and tet6 of the training set, residual errors from the
C–O model are below 0.1 log unit in all cases. For the test set
compounds, predictions for tet2 and tet4 also lie within 0.1 log
units. Use of Marvin with consideration of tautomers on this
occasion identifies the keto-enol state as the relevant tautomeric
form, delivering predictions of 2.83, 2.63, 2.55, 2.92, 2.84 and
2.51, for tet1–tet6, respectively, whereas experimental values are
3.35, 3.48, 3.25, 3.50, 3.53 and 3.30, respectively. Therefore,
despite making the prediction using the correct tautomer, there is
a distinct prediction bias towards higher acidity for the enolic
hydroxy group for these compounds. Structures and predictions
for tetracyclines can be found in Supplementary Fig. 3 of the SI.

Future application of AIBL. The poorer performance of Marvin,
as illustrated by Figs. 4b, c, can most likely be partly attributed to
a lack of coverage of this type of compound (cyclic 1,3-diketones)
in their training dataset. The predicted preference of the diketo
state of many test compounds can also likely be attributed to the
lack of knowledge on relative tautomeric stability, as previously
pointed out by Connolly. The results in Fig. 4 illustrate the
excellent performance of the C–O AIBL-pKa model in predicting

Table 2 Summary of the results for optimal feature choice using PLS, RFR, SVR with linear and RBF kernels, and GPR with the
RBF kernel.

Property/Metric Marvin PLS RFR SVR [linear] SVR [RBF] GPR [RBF]

Features used – C–O, C=C,
C–C, C=O

C–O, C–C, C=O C–O, C=O C–O, C–C, C=O C–O, C–C C=O

Max depth= 6 C= 1000 C= 1000 ℓ=−8.21,
−6.150,
−12.851

Hyperparameters – LV= 3
ε= 0.1

nest= 25 ε= 0.01
γ= 5

MAE (7-fold CV) (train) – 0.41 0.46 0.43 0.40 0.30
RMSEE (7-fold CV) (train) – 0.53 0.57 0.57 0.53 0.39
MAE (test) 1.21 (4.70) 0.31 0.39 0.29 0.29 0.43
RMSEP (test) 1.63 (6.32) 0.36 0.49 0.40 0.36 0.59
s.d. (test) 1.12 (4.32) 0.19 0.31 0.28 0.22 0.36
r2 obs vs pred (test) 0.61 (0.55) 0.86 0.74 0.90 0.86 0.67

The “Marvin” column corresponds to statistics for predictions made without considering tautomers/resonance (without parentheses), and the values in parentheses correspond to the predictions made
with consideration of tautomers/resonance. The “features used” row lists the combination of features that minimized the RMSEE of the training set for each method. These features were subsequently
used in the model used to predict for test set compounds. The row labelled “hyperparameters” lists the values obtained through minimization of RMSEE of the training set during 7-fold cross-validation
(RFR and SVR). For PLS the number of latent variables (LV) was varied up to the number of features and the final number chosen on the basis of minimizing the RMSEE of the training set, which is also
shown. For the GPR model, feature selection as carried out using 7-fold validation of each combination/subset of features using the training set and 100 restarts were used to locate the global maximum
log likelihood of the y-values. The MAE, RMSEP, standard deviation of absolute errors (s.d.) and r2 of observed vs predicted values are shown for the test set.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-020-0264-7

6 COMMUNICATIONS CHEMISTRY |            (2020) 3:21 | https://doi.org/10.1038/s42004-020-0264-7 | www.nature.com/commschem

www.nature.com/commschem


the pKa variation across the series. Furthermore, we show that the
accuracy is such that we can correct experimental values. We
assert that a powerful future application of the AIBL approach is a
method of fleshing out areas of chemical space that are sparse in
the experimental pKa databases of empirical predictors, such as
Marvin. Once a model has been set up with existing experimental
data, hypothetical compounds with a variety of substituents can
be assembled and their pKa values predicted and added to the
training set. Therefore, the empirical approach is calibrated using
the highly accurate AIBL approach, whilst still maintaining user-
friendly computational speed.

We have shown bonding distances to be an intuitive and
powerful descriptor of ionization propensity for much of 1,3-
CHD and 1,3-CPD space. Due to the use of quantum chemically
derived descriptors, the dominant tautomeric state is easily
identified as the keto-enol form, from which chemically
meaningful relationships are derived; a longer O–H and a
shorter C–O bond are generally indicative of a species with
heightened acidity compared with the parent compound. A
simple but accurate AIBL-pKa method is proposed and
validated; good results are derived using only simple linear

regression of pKa onto C–O bond distances, which is shown to
be applicable to a diverse array of analogues. For the test set, this
simple model is found to outperform regression using various
approaches and multiple bond lengths relevant to the dissocia-
tion at the keto-enol ionizable group. Furthermore, the method
is applicable to multiprotic compounds, which along with
tautomerizable species, represent one of the most challenging
areas of pKa prediction. All of the models developed showed
superior accuracy compared with the industry standard,
represented by the program Marvin, for which the user must
have prior knowledge of the dominant tautomeric form. At
present, there is still a time/cost barrier to feasible use of
quantum chemical QSPR methods in large scale screening
studies. However, this work suggests that the inclusion of some
description of electrons and their distribution (via a highly
populated geometric representation of molecules), provides a
significant advantage in terms of prediction accuracy over an
approach (Marvin) that does not describe a compound quantum
mechanically. Thanks to AIBL predictions, we also amend the
literature experimental value for Profoxydim, which is corrected
from a previous value 5.91 to a new value of 4.82. Based on the

Fig. 4 Performance of each regression method tested in this work using bond lengths as input features compared with results obtained using Marvin.
a The 7-fold RMSEE for each model tested, for each method, where “Model ID” corresponds to one of 31 combinations of features out of the 5 bonds i–v
chosen for consideration (see Supplementary Table 8 for the full list). The C–O, ii bond is used as a feature for the Model ID numbers shaded in blue. b
Experimental pKa variation across the test set (dark blue), along with Marvin predictions using the diketo state with tautomer consideration turned on
(blue), and using the keto-enol state with tautomer consideration turned off (magenta), as well as the AIBL-pKa C–O bond model (green). c Root-mean
squared error of prediction for the test set (RMSEP, blue) and mean absolute error for the test set (MAE, green) for each method of prediction. Marvin
predictions are removed for the plot shown in the inlay, so that AIBL models can be compared. d The structure of Profoxydim, for which the literature
experimental pKa value (5.91) and Marvin’s prediction (5.44, tautomer/resonance not considered, keto-enol form used) deviated significantly from our
prediction. The new experimental value of 4.82, measured in this work matches our initial prediction more closely.
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work shown here, and on previous results, we propose that
AIBL-pKa is applicable to any tautomerizable congener series,
given that pKa data exist for model calibration.

Methods
Data. Structures and pKa values with references are given in Supplementary
Table 1 for all compounds studied in this work. Equilibrium bond lengths for the
most stable geometries identified are listed in Supplementary Table 7.

The pKa data for the compounds investigated in this work have been procured
from various sources. Sixteen triketones, labelled tk-1 to tk-15, tk18 and tk19 were
procured from the Syngenta and are analogues of the herbicide Mesotrione. A
further 20 diketone compounds were procured from Syngenta, which are labelled
as dk-1 to dk-12 and dk22 to dk29. These values were obtained using the UV-vis
metric approach with a Sirius T3 instrument at standard conditions
(see Supplementary Methods in the SI for more details). A set of 10 compounds of
triketone (tk) type labelled in as tkn1-tkn4 and tkc1-tkc6 were taken from the
work32 of Lee et al. Samples of 11 diketones (dk), labelled dk-13 to dk-21, tk16 and
tk17 have been procured and measured for the purpose of this work, using the
potentiometric method with a Sirius T3 instrument at standard conditions. Finally,
literature values were procured for 8 “dim” herbicides Alloxydim, Cycloxydim,
Butroxydim, Clethodim, Sethoxydim, Tepraloxydim, Tralkoxydim and Profoxydim
were procured, samples were purchased for all except Clethodim (due to
unavailability) and pKa measurements were taken using the same apparatus and
experimental procedure as described above and in Supplementary Methods.
Literature values for 6 tetracycline derivatives (tet1–tet6) were obtained from
literature sources.

Quantum chemical calculations. An ensemble of 15 conformers were generated
for each tautomeric form of each compound tkn1-tkn4 and tkc1-tkc6 using the
conformer generator plug-in within the Marvin program. Geometry optimization
and frequency calculations were then performed using B3LYP/6-311G(d,p) with
CPCM implicit solvation for each conformer of every ensemble using GAUS-
SIAN0933. Conformers were ranked according to internal energy and the most
stable species was taken as the global minimum. For the anti and syn conformers of
the keto-enol state, an input geometry for the higher energy anti-conformation was
manually generated by rotating the orientation of the O–H bond of the syn con-
former by 180°. This process of generating the keto-enol anti state15,16,18–22 was
repeated for the remaining 61 species.

IQA calculations. The extent of electronic delocalization between two atoms can
be calculated within the context of a topological energy decomposition framework
called interacting quantum atoms (IQA). Originating from the quantum theory of
atoms in molecules33 (QTAIM), IQA has been used to analyze a variety of chemical
phenomena34–38. By decomposing the total energy of a system into intra- and
interatomic terms, we derive the exchange-correlation potential energy Vxc, which
is the sum of the exchange energy Vx, and the correlation energy Vc. The former

term usually dominates and denotes the Fock-Dirac exchange, which describes the
ever-reducing probability of finding two electrons of the same spin close to one
another (i.e. the Fermi hole). The latter term is associated with the Coulomb hole
and the electrostatic repulsion between electrons. The absolute value of Vxc eval-
uated between two atoms can be taken as the extent delocalization of electrons
between them and so can be interpreted as a measure of covalency. These values
were obtained by the AIMAll program39 (version 14), using DFT-compatible IQA
partitioning, and using default parameters on wavefunctions obtained at the
B3LYP/6-311G(d,p) level using CPCM.

Models. For more details of regression methods implemented in this work see
Supplementary Methods in the SI. Model training and error evaluation were
performed using scikit-learn40. Initially, ordinary least squares (OLS) regression of
single bond distances and pKa, and validation was performed using r2 and 7-fold
CV RMSEE and MAE to assess the linear relationships between bond lengths and
pKa. A random 70:30 split of training set to external test set was then performed
(i.e. training set= 49, test set= 22). We compared the results of using more than
one bond length of the keto-enol fragment using support vector regression (SVR)
with a linear and radial basis function (RBF) kernel, random forest regression
(RFR), partial least squares (PLS) and Gaussian process regression (GPR) with an
RBF kernel. We also compared our test set prediction errors results with those
obtained using the program Marvin. Each model was evaluated using error-based
metrics, mean absolute error (MAE), standard deviation of absolute errors (s.d.),
root-mean-squared error (RMSEP) and the r2 of observed vs predicted values. An
overview of the AIBL workflow used in the context of cyclic β-diketones is shown
in Fig. 1c.

The optimal hyperparameters for the SVR models, C, ε (and γ for the RBF
kernel) and RFR (number of estimators nest, maximum depth) were found in each
case by applying a grid search (GridSearchCV in scikit-learn). The final
hyperparameter values were chosen to minimize a 7-fold cross-validation RMSEE.

The GPR model was implemented in python using the GPR package called
George. The squared exponential (SE) kernel, or RBF, was used to set up the GPR
models with a unique length scale (hyperparameter) for each dimension, also
known as the automatic relevance determination kernel of the SE-ARD,

SE� ARD x; x0ð Þ ¼ exp � 1
2

XN

d¼1

jx � x0j2
‘2

 !
ð1Þ

The hyperparameters for this kernel were found by maximizing the log-
likelihood function using the training set. The implementation for this used the
gradient descent BFGS algorithm (implemented by scipy) on the negative gradient
of the log-likelihood function (therefore finding the maximum of the function). As
there can be many local maxima, the optimizer was restarted with random weights
100 times in an attempt to find the global maximum.

Table 3 Experimental pKa values and predictions for each method tested in this work, for the test set compounds.

ID Exp C–O PLS RFR SVR[LIN] SVR[RBF] GPR[RBF] Marvin (taut) Marvin (no taut)

tk1 1.56 2.48 2.28 2.71 2.66 2.34 3.16 2.44 2.44
tk8 2.84 3.33 3.45 2.78 3.40 3.39 2.88 4.35 4.35
tkc6 3.20 3.34 3.45 2.79 3.41 3.39 2.87 3.73 3.73
tet2 3.48 3.52 3.63 2.83 3.58 3.54 3.01 2.63 2.99
tet4 3.50 3.42 3.45 2.91 3.48 3.40 2.99 2.19 2.95
tkc2 3.83 4.08 4.17 4.41 4.05 4.09 4.07 4.29 4.29
dk25 3.85 3.69 3.29 2.86 3.72 3.26 3.21 8.17 7.87
dk26 3.92 3.85 3.59 3.35 3.85 3.55 4.27 9.18 8.70
o6 4.30 4.64 4.75 4.82 4.52 4.69 5.11 16.34 5.30
o3 4.34 4.64 4.74 4.73 4.52 4.69 5.09 17.00 5.47
o7 4.35 4.70 4.83 4.92 4.56 4.76 5.14 17.15 5.73
o4 4.47 4.53 4.66 4.58 4.43 4.58 5.05 16.09 5.79
o2 4.51 4.63 4.73 4.79 4.52 4.67 5.08 16.06 5.70
dk6 4.62 4.62 4.75 4.56 4.50 4.63 4.57 6.44 5.31
dk10 4.71 4.79 4.83 4.36 4.62 4.76 4.35 8.14 5.17
dk19 4.76 4.77 4.63 4.75 4.66 4.66 4.76 8.76 5.66
dk5 5.06 5.17 5.26 5.17 4.94 5.21 5.09 8.90 6.50
dk15 5.08 4.87 4.81 4.98 4.74 4.82 4.98 7.83 6.54
dk7 5.10 4.69 4.82 4.89 4.55 4.71 4.73 8.46 5.19
dk12 5.16 5.02 5.11 5.19 4.80 5.05 4.84 7.88 5.85
dk21 5.19 4.89 4.87 4.98 4.77 4.84 5.02 8.11 6.61
dk8 5.69 4.92 5.18 5.16 4.76 5.01 5.24 8.35 5.93
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Data availability
All data analysed during this study are included in this published article (and
its Supplementary Information).

Code availability
The exact code is not provided given that it was written using methods from sci-kit learn
(v.0.20.1) and George (v.0.3.1) libraries, which are freely available. Optimal
hyperparameters for each method have been provided in the Supplementary Information
and are otherwise set to default.
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