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Extracellular vesicles (EVs), like exosomes, play a critical role in physiological processes,
including synaptic transmission and nerve regeneration. However, exosomes in
particular can also contribute to the development of neurodegenerative conditions such
as Alzheimer’s disease (AD), Parkinson’s disease, and prion diseases. All of these
disorders are characterized by protein aggregation and deposition in specific regions
of the brain. Several lines of evidence indicate that protein in exosomes is released from
affected neurons and propagated along neuroanatomically connected regions of the
brain, thus spreading the neurodegenerative disease. Also, different cell types contribute
to the progression of tauopathy, such as microglia. Several groups have reported tau
release via exosomes by cultured neurons or cells overexpressing human tau. Although
the exact mechanisms underlying the propagation of protein aggregates are not fully
understood, recent findings have implicated EVs in this process. The AD brain has
two hallmarks, namely the presence of amyloid-β-containing plaques and neurofibrillary
tangles, the latter formed by hyperphosphorylated tau protein. Both amyloid peptide and
tau protein are present in specific exosomes. This review summarizes recent advances
in our understanding of exosomes in the pathology of AD, with a special focus on
tau protein.
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INTRODUCTION

Brain microtubules were first isolated and characterized in the 1970s (Weisenberg, 1972). This
study revealed the presence of a main protein, tubulin, and several others described as microtubule-
associated proteins (MAPs) in these structures. One of these MAPs, tau, was first characterized by
Kirschner’s group (Weingarten et al., 1975). Similar to other MAPs, the function of tau was found to
be related to an increase in microtubule stabilization (Drubin and Kirschner, 1986), which prevents
cell proliferation and facilitates neuronal differentiation. Recent discoveries about partners (End
binding proteins 1 and 3, tRNA), different subcellular localizations (nucleus, nucleolus, plasma
membrane, dendrites and dendritic spines) or association with cellular organelles (ribosomes,
endoplasmic reticulum and the Golgi apparatus) for tau suggest additional roles. According to these
studies, tau should be implicated on mechanisms of synaptic plasticity, structural architecture of
heterochromatin, chromosome stability or regulating the cellular transcriptome (for more detail
see review Sotiropoulos et al., 2017).
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Although tau is mainly an intracellular protein, there are
reports indicating that extracellular tau is present in brain
interstitial fluid (Yamada et al., 2011), its amount decreasing
in this medium during sleep (Lucey et al., 2019). Secreted tau
may be implicated in some features of sleep (Cantero et al.,
2010; Lucey et al., 2019). However, independently of this notion,
secreted tau protein is present in vivo, and its secretion appears
to be regulated.

TAU SECRETION AND ITS REGULATION

The presence of extracellular tau suggests that it is secreted under
physiological conditions. In this regard, it has been proposed
that intracellular tau is released upon an increase in neuronal
activity (Pooler et al., 2013; Yamada et al., 2014). In addition to
neuron activity-dependent tau secretion, the extracellular form
of the protein may arise by other mechanisms, such as neuron
death (Gomez-Ramos et al., 2006), intracellular tau accumulation
(Simon et al., 2012), a tauopathy (Clavaguera et al., 2009), or
modulation by tau mutations (Karch et al., 2012). In the case of
neuron death, intracellular proteins like tau are released into the
extracellular space.

Intracellular tau accumulation can arise due to aging. In
this regard, tau accumulation in older adults is associated with
hippocampal hyperactivity (Huijbers et al., 2019). Also, an
increase in intracellular levels of tau can result from pathological
disorders related to a decrease in the turnover of this protein.
This reduction can be caused by impaired tau degradation
through two main systems, the ubiquitin-proteasome pathway
and the autophagy-lysosomal pathway (Wang et al., 2009;
Chesser et al., 2013; Lee et al., 2013; Guo et al., 2017). Recently,
a third degradative pathway, the endolysosomal system, has
been proposed for neurodegenerative disorders such as AD
or Parkinson’s disease (Vaz-Silva et al., 2018). Rab35 and the
endosomal sorting complex required for transport (ESCRT)
machinery should be involved in the delivery of tau to lysosomes
via early endosomes and multivesicular bodies. Intracellular tau
accumulation may facilitate post-translational modifications, like
phosphorylation or truncation, in the protein (Avila et al., 2004),
and the modified tau isoform can also be secreted.

Hyperphosphorylation is one of the most important post-
translational modifications in AD and related tauopathies
(Medina et al., 2016). An increase in phosphorylation at T181
(Vanmechelen et al., 2000) or T231 (Hampel et al., 2005)
has been described in the cerebrospinal fluid of AD patients,
although a decrease with the progression of AD has also
been reported (Hampel et al., 2001). Thus, a tau mutant
mimicking phosphorylation is more efficiently secreted than one
mimicking dephosphorylation in Hela cells (Plouffe et al., 2012).
However, it is still unclear whether phosphorylation regulates
tau secretion, since both phosphorylated and unphosphorylated
tau species have been detected in the extracellular space. Studies
carried out in primary cortical neurons showed the release of
unphosphorylated tau in control conditions (Pooler et al., 2013),
while other groups have reported that cortical neurons secrete
phosphorylated and unphosphorylated Tau species in response

to various insults (Plouffe et al., 2012). Further research is
needed to elucidate how tau phosphorylation contributes to the
secretion of this protein. However, one point to keep in mind
is the observation that extracellular tau is dephosphorylated
in the AD brain by tissue Non-specific alkaline phosphatases
(Diaz-Hernandez et al., 2010).

TAU SECRETION IN CELL CULTURE
MODELS

The transfer of tau in Non-neuronal cell cultures may take
place upon tau secretion (Frost et al., 2009), and in a direct
way it has been demonstrated that the accumulation of
tau in Non-neuronal cells promotes its secretion to the
extracellular space in nacked (free) form or via membrane
vesicles (Simon et al., 2012). This secretion could occur by
accumulation of the whole tau molecule or by accumulation
of tau fragments (Perez et al., 2016). Post-translational
modifications like phosphorylation or truncation may regulate
tau secretion in Non-neuronal cell models (Diaz-Hernandez
et al., 2010; Plouffe et al., 2012). Also, secretion of truncated
tau forms has been reported in neuronal cells (Kim et al.,
2010; Kanmert et al., 2015). In this regard, a number of
mechanisms explaining the secretion of truncated (and/or
aggregated) tau and tau in free form (Kfoury et al., 2012) have
been put forward.

Regarding the factors involved in the secretion of tau
in cell culture models, End-binding proteins bind to the
N-terminal end of human tau protein (Sayas et al., 2019). This
observation suggests that the interaction of EB proteins with
tau facilitates the localization of tau close to cellular membrane
and its further secretion. However, more analysis is needed to
confirm this notion.

POSSIBLE MECHANISMS OF TAU
SECRETION

The molecular mechanisms responsible for the secretion
of tau in its different forms: unmodified, phosphorylated,
truncated, etc, are unclear. It has been postulated that secretion
takes place through a Non-vesicular (free protein) secretory
pathway, because tau lacks a signal sequence to regulate
its transport to the endoplasmic reticulum, a step needed
in the conventional secretary pathway (Yamada, 2017). On
the other hand, the Golgi dynamics in neurons has been
linked to the regulation of tau secretion (Mohamed et al.,
2017). Also, mitochondria damage in neurons and Non-
neuronal cells may also be involved in the modulation of tau
secretion (Shafiei et al., 2017). Although it is not clear how
tau can be localized at the cell membrane, several reports
demonstrate its presence at the membrane (Brandt et al.,
1995; Arrasate et al., 2000), a localization that could favor its
further secretion. Also, tau is found present at various cell
protrusions like dendritic spines (Ittner et al., 2010), growth
cones (Dotti et al., 1987), axonal grains (Dennissen et al.,

Frontiers in Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 698

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00698 June 29, 2019 Time: 17:5 # 3

Pérez et al. Tau Propagation via Extracellular Vesicles

2016) and presynaptic compartments (Zhou et al., 2017). In
the postsynaptic compartment, tau binds to presynaptic vesicles
through the transmembrane vesicle protein synaptogyrin-3, as
found in the brain of AD patients (McInnes et al., 2018).
A reduction of synaptogyrin-3 prevents the association of
presynaptic tau with vesicles and may facilitate neurotransmitter
release (McInnes et al., 2018).

In contrast, an unconventional secretory pathway is the
one involving protein secretion through extracellular vesicles
such as exosomes and microvesicles. This mechanism has
been proposed to decrease the levels of some intracellular
proteins (Simons and Raposo, 2009). Wang et al. (2017)
have demonstrated that tau may be released via exosomes
by neurons or cultured cells and the release of exosomes is
enhanced by neuronal activity. Furthermore, Asai et al. (2015)
have suggested that microglia may phagocytize tau-containing
neurons and would secrete tau in exosomes, in order to facilitate
its propagation to neurons. Recently, Katsinelos et al. (2018)
have characterized a mechanism in which hyperphosphorylated
tau is secreted through direct translocation across the plasma
membrane. PI(4,5)P2 and proteoglycans are involved in this
secretion process.

Additionally, the involvement of larger extracellular vesicles,
ectosomes, has been proposed (Dujardin et al., 2014).

Multivesicular bodies (MVBs; late endocytic compartments)
can fuse with the plasma membrane to release intraluminal
vesicles into the extracellular medium, and once secreted,
these vesicles are called the exosomes (Fuster-Matanzo et al.,
2015) (Figure 1). In contrast, microvesicles arise by outward
budding of the plasma membrane (Simons and Raposo, 2009;
Gangalum et al., 2011).

EXOSOMES AND INTERACTIONS WITH
THE CELL SURFACE OF TARGET CELLS

Exosomes are defined as signaling organelles involved in health or
in disease signaling pathways (Corrado et al., 2013). Measuring
between 30 and 150 nm, these extracellular vesicles were first
described almost 40 years ago (Trams et al., 1981). They
are composed by a membrane that contains proteins like
tetraspanins, flotillin and cell-specific receptors, and lipid rafts
containing cholesterol, sphingomyelin and ceramide (DeLeo and
Ikezu, 2018). The vesicle itself holds different types of proteins,

FIGURE 1 | Schematic Representation of Cell-to-Cell Transmission of Tau Pathology. Tau seeds are released from neurons by different exocytosic mechanisms
(exosome, secretion and neuronal death). The released tau is taken up by neurons or glial cells by a variety of mechanisms (mediated by receptors, micropinocytosis,
phagocytosis and/or membrane fusion of exosomes. RAGE: receptor for advanced glycation endproducts. M1/M3: muscarinic receptors.
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nucleic acids (like miRNAs) or protein nucleic acid complexes
depending of the cell types from which they are released (Corrado
et al., 2013). Also, exosomes can also be found in several body
fluids like plasma, saliva, urine, cerebrospinal fluid, amniotic
fluid, colostrum, breast milk, synovial fluid, semen and pleural
ascites (Corrado et al., 2013; McKelvey et al., 2015). For this
reason, exosomes have been used as biomarkers of different
diseases. Recently, a precipitation/immunoaffinity system has
been developed to isolate neuron-derived as well as astrocyte-
derived exosomes in the blood of Alzheimer’s disease patients.
Results from these studies suggest that neuronal exosomes
from blood plasma and that measurement of certain forms
of tau in neuronal exosomes can be used as a diagnostic
and prognostic biomarker to the disease (Goetzl et al., 2018;
Guix et al., 2018).

The membranes of some types of exosomes contain
proteins with the capacity to interact with the plasma
membrane proteins of their target cells. For instance,
B-lymphocytes exosomes bear integrin that are capable to
interact with fibroblasts (Clayton et al., 2004). However,
less specific links, mainly through the extracellular matrix
(Corrado et al., 2013), may contribute to the interaction with
target cells. In general, several mechanisms have been put
forward to explain the interaction of exosomes with target
cells that results in cell membrane fusion, phagocytosis,
macropinocytosis, and receptor-mediated endocytosis
(McKelvey et al., 2015) (Figure 1).

NEURON-DERIVED EXOSOMES AND
NEURODEGENERATION

Neuron-derived exosomes containing specific proteins related
to neurological disorders can be released from the neurons
affected. In the case of AD, the presence of exosomes containing
tau or amyloid-β peptide has been reported. Exosomes can
transport the amyloid-β peptide or fragments of its precursor
protein (APP; Rajendran et al., 2006; Sharples et al., 2008; Perez-
Gonzalez et al., 2012; Sardar Sinha et al., 2018). Furthermore,
aggregated tau has been reported in brain exosomes of mouse
models of tauopathy (Baker et al., 2016; Polanco et al.,
2016). In these animal models, neuronal exosomes containing
human mutated tau are toxic to the recipient neurons in vivo
(Winston et al., 2018). Also, tau exosomes could be used as
biomarkers not only for AD but also Down syndrome and
Parkinson’s disease (Shi et al., 2016; Hamlett et al., 2018).
With respect to phosphorylation, tau secreted by exosomes is
phosphorylated at some AD epitopes (Hampel et al., 2004;
Saman et al., 2012).

Indeed, it has been suggested that the tau efflux from
the Central Nervous System via exosomes is increased
in Parkinson’s disease but not in AD (Shi et al., 2016).
However, exosomes containing tau protein have been
found in human biofluids in AD patients (Fiandaca et al.,
2015; Guix et al., 2018) and the release and trans-synaptic
transmission of tau via exosomes has been also described
(Wang et al., 2017).

TAU TRANSMISSION FROM CELL TO
CELL

The exact mechanism of tau release is unclear, and some
studies have demonstrated that both vesicle-bound and soluble
free extracellular populations of tau exist (Saman et al., 2012;
Kanmert et al., 2015; Wang et al., 2017). Furthermore, neuron
death results in the release of tau into the extracellular space.
Soluble-free tau protein can interact with M1/M3 muscarinic
receptors which may be present, not only in neurons but
also in some glia (Santello et al., 2019). The reception of tau
by these receptors may lead to an increase in intracellular
calcium (Gomez-Ramos et al., 2008; Diaz-Hernandez et al.,
2010). On the other hand, extracellular tau reacts with
fractalkine receptors in microglia (Bolos et al., 2017; Perea et al.,
2018) and this interaction may contribute to tau propagation
(Asai et al., 2015).

Tau propagation implicates its cellular uptake by surroundings
cells. Clathrin-mediated endocytosis, micropinocytosis, or direct
membrane fusion have been proposed as possible mechanisms of
tau uptake (Christianson and Belting, 2014; Calafate et al., 2016;
McInnes et al., 2018).

The discovery of tau spreading has prompted several
researchers to focus on the development of tau antibodies
as immunotherapies to block the cell-to-cell transmission of
pathological tau (Boutajangout et al., 2011; Chai et al., 2011;
Yanamandra et al., 2013; Dai et al., 2018).

FUTURE

Further research should address exosomes containing tau.
These vesicles contain proteins and nucleic acids and
sometimes complexes of both. Tau is a nucleic acid-binding
protein (Villasante et al., 1981; Sultan et al., 2011) and,
inside the exosome, it can be bound to a specific nucleic
acid. This binding could result in conformational changes
in the tau molecule, which would lead to diverse tau-
prion strains (Holmes et al., 2013; Sharma et al., 2018). In
summary, a better characterization of tau isoforms present
in exosomes would help us to understand the mechanism of
tau propagation.
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