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ABSTRACT

This paper describes and proves the consistency of a flexible numerical method for producing solutions
to state and control constrained control problems with parameter dependencies. This method allows for
the use of a variety of underlying discretisation schemes, which can be catered to differing numerical chal-
lenges of specific problems, such as rapid convergence or large parameter spaces. The paper first provides
a broad formulation for optimal control problems with parameter dependencies which includes multiple
types of state, control, and end time constraints to enable a wide scope of application. For this formula-
tion, the consistency of these methods for state and control constrained problems is then proved. Finally,
a numerical example of an optimal search problem with constraints is demonstrated.

1. Introduction

Instances of optimal control problems with parameter depen-
dency have arisen in multiple recent control applications. In
these applications, the performance is optimised over a set of
parameters which impact cost and possibly system dynamics
given access to the system only through a parameter indepen-
dent control. For instance, the ensemble control problem deals
with the control of a family or continuum of systems x(t,0)
whose dynamics

0
_’t‘ = f(x(t,0), u(1),0)

0
depend continuously on parameter 6 € R™ and are driven by
parameter independent control u(#). Optimising the behaviour
of the ‘ensemble’ of systems over all parameter values cre-
ates control problems which must track the behaviour over a
range of parameter values and incorporate this range of per-
formances in its cost metric. Ensemble control problems arise
in quantum applications, such as medical imaging or quan-
tum experiments, where an external application of electromag-
netic pulses is applied to a system with environmental inhomo-
geneity (Brockett & Khaneja, 2000; Li & Khaneja, 2007; Ruths
& Li, 2012). Parameter dependency can also present itself in
spatially distributed problems with no spatial feedback control.
For example, the optimal search problem (Foraker, 2011; Phelps,
Gong, Royset, Walton, & Kaminer, 2014), which aims to opti-
mise the search for uncertain targets over a search region. When
uncertain target location is modelled as a deterministic quantity
conditionally dependent on a set of unknown parameter val-
ues, such as initial location, then expected probability of success
becomes dependent on the parameter set. This creates a cost
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function in the form of an integral over parameter space:

T
][x,u]:/ [F(x(T,@),@)-l—/ r(x(t,@),u(t),t,@)dt] o
® 0

where [ represents the possibly multi-dimensional integral
over parameter space. Additional examples include robotics,
where manufacturing error can create parameter uncertainty
in regards to vehicle part sizes and subsequent dynamics
(Becker, 2012) and in chemical engineering, where the model
of parameter dependency has been utilised for the optimisa-
tion of batch processes under uncertainty (Ruppen, Benthack, &
Bonvin, 1995; Terwiesch, Ravemark, Schenker, & Rippin, 1998).

A key issue in addressing optimal control problems with
parameter dependencies, which tend to be analytically
intractable, has been the development of numerical algorithms.
Recently, there has been much progress in this area. For
instance, for nonlinear finite-dimensional optimisation prob-
lems with parameter uncertainty, Robust Optimisation (RO)
frameworks have been developed to address the minimisa-
tion of mean performance given constraints on variance or
other risk metrics, such as in Darlington, Pantelides, Rustem,
and Tanyi (2000). In continuous time optimal control, the
method of polynomial chaos has been applied to a variety of
problems with amenable problem structures, such as quadratic
costs or linear dynamics (Fisher & Bhattacharya, 2011; Hover
& Triantafyllou, 2006).

As an approach to general nonlinear control problems, there
have been many variations on forms of direct discretisation
put forth. This can be summarised informally as first choos-
ing a set of nodes {9M}, from the parameter domain ©
and an associated set of integration weights {oa}¥ . States, if
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Table 1. Overview for direct discretisation.

Multi- Collocation with
dimensional Monte Carlo Riemann- Unscented convergent

Approach pseudospectral sampling Stieltjes transform quadrature
Reference (i) (ii) (iii) (iv) (v) (vi) This paper
Constraints:
Control Yes Yes No No Yes Yes Yes
State-control Yes No No Yes No No Yes
End time state Yes No No Yes No No Yes
Distributional
State-control No No No No No No Yes
Distributional
End time state No No Yes No No No Yes
Uncertain
Dynamics Yes Yes Yes Yes No Yes Yes
Consistency

Proof Yes Yes No No Yes Yes Yes
Reference
(i) Ruths and Li (2012)
(ii) Phelps et al. (2016)
(iii) Rosset al. (2015)
(iv) Ross et al. (2016)
(v) Phelps et al. (2014)
(vi) Walton et al. (2016)

parameter dependent, are then propagated at these nodes:

%a) =f O, u®,6"), i=1,....M

and the cost function is estimated as a weighted sum:

T
/[F(x(T,Q),H)-i—/ r(x(t,@),u(t),t,@)dt] o
® 0
M T
A Za{”[F (x{”(T),@f”)Jr/ rGMt), u(t), t,6M) dt].
X 0

i=1

This creates an approximate problem - a standard control prob-
lem which can be solved using other established methods.
There are many approaches to node selection, with distinct
tradeoffs. Monte Carlo sampling, for instance, provides slow
converge but is a way to circumvent the dimensional growth
problem of a high dimension parameter space (Phelps, Royset,
& Gong, 2016). Conversely, the multi-dimensional pseudospec-
tral approach can provide rapid convergence but node selection
grows exponentially with dimension (Ruths & Li, 2012). Other
options include Riemann-Stieltjes integration (Ross, Proulx,
Karpenko, & Gong, 2015) and using the sigma points from the
unscented transform (Ross, Karpenko, & Proulx, 2016). A more
generic approach is that of Phelps et al. (2014) and Walton,
Phelps, Gong, and Kaminer (2016), which considers all node
and weight schemes which provide convergent quadrature for
continuous functions.

The variety of node generation approaches in the litera-
ture has been applied to diverse formulations of this problem.
Differences include whether state dynamics are influenced by
the uncertain parameter, whether control and/or state con-
straints are incorporated, and whether any convergence results
are proven. Table 1 provides an overview of results for direct
discretisation methods applied to finite horizon problems with
uncertain parameters. The goal of this paper is to provide a
method which addresses the full variety of constraint needs

and to provide the subsequent proof of consistency (that con-
vergent numerical solutions of approximate problems converge
to optimal solutions of the original problem) of the numeri-
cal method. An additional goal is to provide this for a broad
family of numerical methods, by building on the convergent
quadrature approach. This method is inclusive of both multi-
dimensional pseudospectral and Riemann-Stieltjes, as well as
methods that can mitigate the dimensional growth problems of
quadrature, such as sparse grid methods.

We address the variety of parameter dependency forms and
constraint needs through the following class of optimal control
problems:

Problem P. Determine the state and control pair, (x, u), that
minimises the cost function:

T
Tlxu] = / [F (x(T, 6),6) +/ r(x(t,e),u(t),t,e)dt] o
e 0
(1
subject to:

g—’t‘(t,e) = Fx(t,0),u(),0), te[0,T], 6O, (2)
x(0,6) = x0(8), 0 €O, 3)
gu®) <0, tel0,T], (4)
e(x(T,0),0) <0, 60e0, (5)
h(x(t,0),0) <0, te[0,T], 6 €O, 6)
v, (/ er (x(T,6),6) d@) <o, @)

®
v, (/ hr (x(t,0),0) d@) <0, telo0,T). ®)

®

Component functions have dimensions: x : R x R" > R,
U:Ri>R"™, F:R™" xR > R, r:R™ x R"™ x R x R™
— R, xp: R™ > R™, e: R™ x R™ > R", g: R™ » R,
h:R™ xR" > R™, ¢ :R"* x R" > R, ¥, : R+ R, hy:



R™ x R™ > R, ¥}, : R > R. Additional conditions imposed
on the state and control space and component functions for the
numerical method are specified in Section 2.

In Problem P, the set ® is the domain of the parameters
0 € R™ . The format of the cost function J is that of the integral
over ® of a Mayer-Bolza type cost dependent on the uncer-
tain parameters. In regards to state constraints, the nature of
the problem, in which a single control input is applied over
multiple values of parameters 6, creates a variety of possible
boundary conditions and constraints which can arise in applica-
tions. In this formulation, constraints over all parameter values,
in the form of Li and Khaneja (2006, 2007, 2009), Ross, Proulx,
and Karpenko (2014b) are included with conditions (5) and (6),
as are the control constraints found in Phelps et al. (2014)
and Walton et al. (2016) with condition (4). State constraints
bounded over all parameter values, however, are rather strict,
and guaranteed feasibility of a problems with such constraints
has not been established with great generality for control sys-
tems with parameter uncertainty. Due to these limitations and
also the strictness of conditions which constrain all parame-
ter values in cases where low probability parameter values may
not be as critical to restrict, applications may also consider con-
straints on aggregate performance, as suggested in Ross, Proulx,
and Karpenko (2014a). The constraints on the aggregate per-
formance found in Ross et al. (2014a) are generalised here to
conditions (7) and (8). These conditions allow for limits to be
set on quantities such as the expectation or variance of states
over a distribution of parameter values.

As with all control formulations, the feasibility of individ-
ual problems is a difficult issue and not necessarily guaranteed.
However, there are plenty of available examples which demon-
strate the feasibility of parameter uncertainty problems under
diverse constraints. For example, the constraint e(x(T,8),0) <
0 with

x(T,0) —y(@) —€
e(x(T, 0),0) = [y ©) - <o) — 6] : ©)

limits the end time states x(T, 0) to be within [—e¢, €] of an end
time goal curve y (0). In Li and Khaneja (2006, 2007, 2009), fea-
sibility results for a class of linear parameter uncertainty systems
are derived, in the sense that for all € there exists a final time
T such that the systems can be driven to within an e-ball of a
goal curve y (0). (The case of nonlinear systems with parame-
ter uncertainty, however, is an open question, and in fact it is
easy to construct systems which will be unable to satisfy such a
constraint. For instance, Becker (2012) provides a scaled non-
holonomic unicycle system which is provably unable to satisfy
an end constraint on orientation over all parameters.) A path
constraint example can be found in Ross et al. (2016), which uses
such a constraint of type (6) to avoid singular gimbal trajecto-
ries for an agile spacecraft. The spatially distributed application
of optimal search (Pursiheimo, 1976) also provides many intu-
itive instances of feasible constrained problems - attainable
search performance constraints, for instance. We provide such
an example in Section 4.

For this general Problem P, we provide a discretisation-based
numerical algorithm, and proofs of its feasibility (that it gener-
ates solutions which are feasible for Problem P) and consistency
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(that convergent numerical solutions converge to optimal solu-
tions of Problem P). These results build on the work of Phelps
et al. (2014) and Walton et al. (2016) to extend to the broader
problem formulation presented here. The structure of this paper
is as follows. Section 2 provides the additional regularity con-
ditions imposed on Problem P. Section 3 presents a numerical
method for generating solutions and a proof of the consistency
of this method. Finally, Section 4 provides an example with the
numerical solution.

2. Regularity assumptions

In order to address Problem P numerically and analytically
in the next sections, we impose the following regularity
assumptions:

Assumption 2.1: The functions f, v, F, e, h, e, hj, W, and Wy,
are CL, and xy : ® — R™ is continuous.

Due to their compact domains, the C! functions thus satisfy
Lipschitz conditions.

Assumption 2.2: Control solutions u are C° on [0, T).

From Assumption 2.1, this implies state solutions are C! on
® x [0,T].

Assumption 2.3: The function g is continuous and the set U =
{v e R™|g(v) < 0} is compact.

Assumption 2.4: The set © is compact, and there exists a com-
pact set X C R™ such that for all u(t) € Uand 6 € ©, x(t,0) €
X forallt € [0, T], where x(t,0) = xo + fotf(x(s,é), u(s),0) ds.

This assumption essentially requires for all bounded controls
that thereisno 6 € © for which the state has a finite escape time.
A large class of nonlinear systems satisfy this assumption, for
example, input-to-state stable systems and systems for which f
is globally Lipschitz or satisfies a linear growth condition.

3. Numerical approximation scheme

We introduce an approximation of Problem P, referred to as
Problem PM. Problem PM is created by approximating the
parameter space, ®, with a numerical integration scheme which
is defined in terms of a finite set of M nodes {9;‘4 }f\i , and an asso-
ciated set of M weights {«?}¥ | C R. Throughout the paper, M
is used to denote the number of nodes used in this approxima-
tion of parameter space. The only requirement on the numerical
integration scheme is that it satisfies the following assumptions:

Assumption 3.1: For each M € N, the integration scheme is
defined by a set of nodes {(OM}M  C © and an associated set
of weights {aM}M C R such that for any continuous function
f:0—>R,

M
/@ f©)do = lim_ ; FOMyaM,
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Remark 3.1: For a series of functions {fyr}, note that if fa :
® — R is continuous for all M € N and {fyr} converges uni-
formly to f on ® with respect to the Euclidean norm, then the
following also holds as a result of Assumption 3.1:

M
/@ f6)d6 = lim Z;fM(Of”)af‘”~

This property is used later.

Remark 3.2: For a given function h: ® — R, h ¢ C! and
given integration scheme satisfying Assumption 3.1, there
exists a constant K € R and function €(M) : N — R such
that limp/_, oo € (M) = 0 and the numerical integration error is
bounded by:

M
| f f©O)d0 =Y fO!Da| < Ken).  (10)
© i=1

We note that ® has been defined as a compact domain. Many
numerical integration methods satisfy the convergence require-
ment of Assumption 3.1 on compact domain, for instance Gaus-
sian quadrature, composite-Simpson, and Clenshaw-Curtis.
Remark 3.2 will be used to quantify slack bounds for the integral
constraints of Problem P given by Equations (7) and (8), whose
integrated functions h; and e; have been defined as satisfying
the C! requirement of Remark 3.2. Although numerical integra-
tion errors are often given in terms of higher-order derivatives,
bounds satisfying Remark 3.2 can be provided given the com-
pact domain and subsequently bounded first derivative of the
function. In Trefethen (2008), for instance, such bounds are
given for Gaussian quadrature and Clenshaw-Curtis in terms
of the bounded first derivative of the function. Davis and Rabi-
nowitz (2007) provides such bounds for quadrature schemes
which are exact for polynomials of some degree. Alternate dis-
cretisation methods with lower-dimensional growth rates or the
computation of problems with high parameter space dimension,
in which the full tensor product required by multi-dimensional
collocation may be intractable, may also be chosen, for instance,
Smolyak sparse grid methods satisfy both assumptions (Gerst-
ner & Griebel, 1998).

For a given set of nodes {#M}¥, and quadrature weights
{alM }f\il C R, the approximate problem is defined as follows:

Problem PM. Determine the control function u that

minimises
M
MM =3 [F (M (1), 6M)

i=1

T
+/ r(x%(t),u(t),t,@%)dt]a% (11)
0
subject to:
%(o = feM@t), u®),60M), telo,T], i=1,...,M,
(12)
M) =x@6M), i=1,...,M, (13)
gu(t) <0, telo,T], (14)

e(le(T),@iM)SO, i=1,...,M, (15)

hM@0),6M) <0, tel0,Thi=1,..., M, (16)
M

v, (Z er (1(T),6) a,-M> < Keee(M), (17)
i=1

M
(7 (Zhl(va[(t),éiM)afw> < Kpep(M), te[0,T). (18)

i=1

This approximate problem is a result of the enforcement of the
state dynamics and conditions (3)-(8) at the collocation nodes
{GiM }f‘i , and the enforcement at these nodes of an approxima-
tion of the integral constraints (7) and (8) through quadra-
ture. Due to the discretisation of parameter space, the state
space for Problem PM is of a different dimension than that of
Problem P. The state variables xM, i = 1,..., M specified by
the ODEs in (12) are functions of time rather than time and
parameter space, and the dimension of the entire state space,
XMty = [xllw(t), e ,xJA\//f(t)], has dimension n, x M, where n,
is the dimension of the original state space. The dimension of
the control space, however, remains the same.

We take a moment to discuss the slack constraints of Equa-
tions (17) and (18) versus the exact constraints which pre-
cede them. In contrast to direct discretisation methods in the
time domain which must introduce slack constraints into all
state constraints, such as the pseudospectral method for stan-
dard control, Problem PM is only approximating the additional
parameter space. Constraints which are defined pointwise with
respect to this parameter space, such as the dynamics, can be
enforced exactly. This does not mean that the original prob-
lem, Problem P, is necessarily feasible without its own slack
constraints. Recall that Equation (9) in Section 1 for instance,
provides an example of an end time constraint which is only
provably feasible within an e-ball. This ‘slack’ constraint of the
original problem is first defined in terms of its own e-slacks,
which are in turn enforced strictly via Equation (15). Equa-
tions (17) and (18) in contrast are made approximate from the
approximation of integration. The constants K, and K} come
from Remark 3.2 combined with the Lipschitz constants of
W, and W, respectively. For Equation (18), the constant from
Remark 3.2 must be determined using the max over the time
interval [0, T].

The resulting Problem PM is a standard optimal control
problem, no longer distinguished by an additional parameter
domain, for which there are many available methods of solution.
The following theorem establishes the property of consistency
for solutions of Problem PM in regards to Problem P. Consis-
tency is not a proof of the feasibility of the original Problem P -
that is a design task. Rather, this proof addresses the reliability of
the numerical solutions for a feasible problem. The proof thus
assumes Problem P is feasible. From that it follows that Prob-
lem PM is feasible, since any discretisation of Problem P at the
nodes will generate a feasible solution to Problem PM. The ques-
tion the proof then addresses, consistency, is the property that
if optimal controls to Problem PM converge as the number of
nodes M — oo, they converge to feasible, optimal controls of
Problem P. Convergence is referred to in the following sense:



Definition 3.2 (Uniform accumulation point): A function f
is called a uniform accumulation point of the sequence of
functions {f,;}7°, if 3 a subsequence of {f,}5° ; that uniformly
converges to f. Similarly, a vector v € RM is called a uniform
accumulation point of the sequence of vectors {v,}52, if 3 a
subsequence of {v,,}5° ; that converges to v.

Note that Definition 3.2 applies to limits of subsequences,
not the limits of the sequence in entirety. To express this, we
adopt the following notation. Let V be an infinite subset of
the index set {0, 1,2,.. . }. If for a sequence {x,}}_ the subse-
quence {x,|n € V} has a limit point x, we will refer to this with
the notation lim,cy x, = x. For uniform accumulation points
of the controls of Problem PM as M — oo, the following holds:

Theorem 3.3 (Control Consistency): Let {uM*}ycy be a
sequence of optimal controls for Problem PM with an accumula-
tion point u™°. Given Assumptions 2.2-2.4, then u™ is an optimal
control for Problem P.

3.1 Theorem 3.3 proof

In the following proof, and all subsequent proofs in this paper,
|| - || refers to the Euclidean norm. Let {t:*} /¢y be a set of opti-
mal controls for the Problem PM such that limpsey {u™*} = u®.
Let x*°(t,0) be the solution to the dynamical system:

axoo o0 o0 o0

T(t’ 0) = f(x>(£,0),u™(1),0), x7(0,0) =x0(0) (19)
and let {x™*(t,8)} be the sequence of solutions to the dynamical
systems:

*

M0,6) = x0(0)
(20)

(t,0) = fM*(t,0), U™ (1),0),

at

for M € V. We note, first of all, that since Problem P and Prob-
lem PM share the same feasible control set U, the solutions to
Equations (19) and (20) exist, due to Assumption 2.4. We note,
second of all, that these solutions are not necessarily feasible
solutions to Problem P, as they may violate the state constraints.
We will revisit this issue after the following lemma.

Lemma 3.4: The sequence {xM* (£, 0)} converges pointwise to
x°°(t,0) and this convergence is uniform in 6.

Proof: From their definitions, we have:

t
1M1, 6) — x5, 0) | S/O If M (z,6), uM*(2),6)

— f(x*°(z,0),u™®(z),0)| dr

Since f is Clona compact domain by Assumptions 2.3, 2.4,
and 2.1, the Lipschitz condition applies, yielding:

t
1M (5,6) — x5, 0)]| 5/ C(IIXM*(T,Q)—xw(T,G)II

0
+ (M (7) — u°°<r)||) de

M

for Lipschitz constant c. Since 4™* and u® are in the compact
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set U, they are bounded. Thus, the Dominated Convergence
Theorem applies and we have:

t
: M _ 00 —
1%412//0 4 () — u>(z)[ dr = 0.

For any t and §,, we can therefore pick an N such that for all
M>N,MeV:

t
/ [ (1) — u®(7) | dr < 8,
0

This provides us with the inequality

M (,0) — x°(t,0) || < cT8,

t
+ c/ 1xM* (7, 0) — x¥(z,0) || d.
0

By Gronwall’s Inequality, [xM* (£, 0) — x*°(t,0) || < cT8,e L.
Since for each value of t and 6, this quantity can be made
arbitrarily small, {x™*(t,0)} converges pointwise to x>°(t,0).
Furthermore, since §,, though it may depend on ¢, does not
depend on the value of 6, this convergence is uniformin 6. W

We now revisit feasibility. State feasibility in this context is
defined as a state generated through the state dynamics by an
admissible control which satisfies all boundary conditions and
state constraints.

Lemma 3.5: State x°°(t,0) is a feasible state for Problem P.

Proof: By definition, x*°(t,0) satisfies Problem P’s condi-
tions (2) and (3). It furthermore satisfies control constraints (4),
as since U is compact, the set of feasible controls is trivially
closed in the topology of pointwise convergence. We thus con-
sider the satisfaction of conditions (5), (6), (7), and (8).

Condition (5): When 6 = 6M, then xM*(t,0M) = xM* (1),
where xM* is the optimal state for Problem PM generated by
the optimal control u*(t). Thus from constraint (15) xM*(t, 9)
satisfies constraint (5) at the collocated constraints:

e(MH(T,0M),0M) <0, i=1,...,M.

For an arbitrary 6 € © and an arbitrary node 6, we have
le(x>°(T,6),0) — e(x*(T,0M),0M)|
= [[e(x™®(T,0),0) — e(x*(T,),6)
+e(MH(T,0),0) — eM*(T,0M),0M)|
< [le(x*°(T,0),60) — e(x™*(T,6),0)||
+ lleGM*(T,0),0) — e(M* (T, 61),6M)].

Due to Assumptions 2.1 and 2.4, e satisfies Lipschitz conditions
with respect to each argument. Thus:

le(x>°(T, 0),0)—e(xM*(T,0),0) | <cxl|x®(T,0)—xM* (T, )|

for Lipschitz constant ¢, with respect to the first argument of
e. By the results of Lemma 3.4, for any €, there exists an M’
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such that VM > M’ this quantity is less than €, and this M’ is
independent of 6. Similarly,

leGM* (T, 6),6) — e(xM* (T, 6M),6M))
< cellAM* (T, 0) — XM*(T,0M) || + coll60 — 6M]

where ¢g is the Lipschitz constant with respect to the second
argument of e. Furthermore,

M (T, 0) — £M*(T, 6M) |

T
< / If oM (z,0), uM* (), 6)
0
— FM (2, 6M), uM* (1), 0M) | dT

T
< f ¢ (15 (2, 8) — XM (1, 6M) | 4 16 — 6M]) dr.
0

We choose now GiM for each M > M’ to be a node within €g
of 0. As was done in Lemma 3.4, we can apply the Dominated
Convergence Theorem to the integral of the second quantity,
yielding:

M5 (T, 0) — LM*(T, 6M)|

T
SC/ IIXM*(f,G)—xM*(r,GiM)||dr+cTeg.
0

By Gronwalls Inequality, [|x*(T,0) — xM*(T,0M)| <
cTegeT, which through choosing €y can be made smaller than
any €. Together these inequalities yield that for arbitrary €, and
€p, there exists an M’, independent of 6 such that forall M > M’
there exists a node Ol-M within €y of 0 and:

le(x>® (T, 0),0) — e(M*(T,0M),0M)|| < € + &.

If we assume by contradiction that e(x>°(T, 0),6) > 0 for some
6 then since e(xM* (T, GI-M ), QiM ) < 0, the difference in quantities
is some constant number greater than zero. Choice of €y + €
less than this number creates a contradiction.

Condition (6) follows from similar arguments.

Condition (7): The satisfaction of the integral constraints will
be shown through similar arguments as above with the addi-
tion of the convergence property of Remark 3.1. By the uniform
convergence of {xM*(t,0)} to x> (t,0) with regard to 0 given
by Lemma 3.4, and by the Lipschitz condition on e; provided
by Assumptions 2.1 and 2.4, it can be seen that the sequence
of functions {e;(xM* (T, QI-M), HiM)} converges to er(x*°(T,0),6)
and that this convergence is uniform in 6. By Remark 3.1 then:

M
. * M M M __ o0
1&?‘1/ i:EI er (xM (T, 6;"),6; )ozl- = /@ er (x (T,Q),@) do

and by the continuity of W, from Assumption 2.1 we have

M
, (7 My oMY M
e (z%/}g/z&l er (M(T,61),6) o] )

M
= lim ¥, (Z er (W*(T,@iM), QIM) Olfw>
i=1

MeV

=y, (/ er (x°(T,0),6) d9> :
(C]

Since the collocated constraints are satisfied:

M
v, (Z er (xM(T),0M) a,.M) <Keee(M), i=1,...,.M

i=1
with limps_, o €.(M) = 0, and since Assumptions 2.1 and 2.4
also provide a Lipschitz condition for W,, the arguments of the
proof of Condition (5) follow from this point on. One finds that
this contradicts the possibility that W,( f® er(x*°(T,0),60)do) >
0 thus proving satisfaction of the constraint.
Condition (8) follows from similar arguments. [ |

Using Lemmas 3.4 and 3.5, we now establish Theorem 3.3.
By Lemma 3.5, the pair (x>, u®°) is feasible for Problem P. The
limit of the difference in cost values satisfies:

lim [|7M M, M) — T2, u™] |
MeV

M

> [Fe M)

=

T
+/ rOM* (8, 0M), 1M (1), £, 0M) dt]alM
0

= lim
MeV

T
—f [F(xOO(T,O))+/ rE(1,60), 47 (0, 1,0) dt | d9”
® 0

M
ZF(xM*(T,e,.M))a,M—/ F (x>(T,0)) do
®

i=1

M T
3 / PG (1, 0M), uM* (1), 1,6M) dt
i=1 0

< lim
MeV

+ lim
MeV

T
- f / r(x°°(t,0),u°°(t),t,9)dtd@H.
®J0

We examine the quantity:

lim
MeV

T
/r(xM*(t,e),uM*(t),t,e)dt

0

T
—/ r(x*°(t,0), u™ (1), 1,0) dt
0

T
3 * Mx
Slgg%,/o (M (8,0), u™* (1), 1,0)
— (x> (t,0), u™ (1), t,0)| dt.

From the continuity of r on a compact domain, we apply the
Lipschitz condition to get:

T
/ I7GM (8, 0), u™* (0), 1, 0) — r(x™(t,0), u™(t), 1,6)]| dt
0

T
5/0 (16 (1,0) — X O + 162 (6) — w2 (B)]) dt.



The results of Lemma 3.4, the compactness of X and U, and
the assumption that 4> is an accumulation point of {uM*} ey,
enable us to apply the Dominated Convergence Theorem. Thus:

T
. M _ L0
lim A (Il (t,0) — x*(t,0) |

+ M (1) —ue@)]) dt = 0

and this convergence must be uniform in 6 due to the uniform
convergence of x™*(t,0). We can therefore conclude that:

T
. * Mx
Al/}g‘l/ i r(M* (1, 0), u™* (1), t,0) dt

T
:/ r(x>°(t,0), u™(t),t,0) dt
0

and that the convergence is uniform. This enables the use of
Remark 3.1, which provides:

M T
lim Z / roM* (8, 0M), uM* (1), t,0M) dt
i=1 0

MeV 4

T
—// r(x°°(t,9),u°°(t),t,9)dtd@”=0.
e J0

Similar arguments show:

=0.

M
}}g/;F(W*(T,GiM))aN—/ F(x™(T,6)) do

(C]

Thus limpgey JM[XM*, uM*] = J[x°, u®].

Assume that 4 is not an optimal control for Problem P.
Then there exists some admissible control u such J[x, u] <
J[x>°, u®°], where x is a feasible state for Problem P defined by:

0x
E(t,@) = f(x(t,0),u(t),0), x(0,0) = xp(0).

As can be seen by the definition of Problem PM, the set of
states given by XM = {x(t, OiM)}f\i | is a feasible solution to
Problem PM (note that this assertion requires the slackness in
constraints (17) and (18)). Furthermore, limpzey JM[XM, u] =
J[x, u] through identical arguments as the convergence of the
optimal cost. The optimality of X™* for Problem PM creates the
following inequalities:

Jx®,u®] = lim JMXM*, M) < lim JM[XM, u],
MeV MeV

. MyvM _ 00 00

1&3] (XM, u] = Jlx, u] < J[x™, u™]

which are in contradiction. Thus, 4> must in fact be an optimal
solution to Problem P.

4. Example: optimal search

Here, we present an example application of optimal motion
planning with parameter dependency: the task of path plan-
ning for sonar search over an area. The search problem can be
considered an example of a coverage path planning problem.
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This challenge of covering a region can be generically defined
as the task of producing a path for a vehicle which reaches
all regions of interest while avoiding obstacles. The problem
has been studied in robotics and reviews of approaches can
be found in Choset (2001) and Galceran and Carreras (2013).
Applications of covering algorithms include vacuuming, snow
cleanup, lawn mowing, window cleaning, painting, and topo-
graphical mapping. Commercial products, such as the Roomba,
incorporate a mix of local and global planning in their design
to attain satisfactory confidence in their performance (Hess,
Beinhofer, & Burgard, 2014). However, though global coverage
plans have been developed which provide assurances of eventual
complete or near-complete coverage, the question of optimal-
ity in performance is still largely unaddressed. One reason for
this is that performance is ultimately not a feature solely of the
geometry of the coverage path, the production of which has
been the main focus of research (Choset, 2001; Galceran & Car-
reras, 2013). Rather, performance is additionally dependent on
specific equipment capabilities as well as dynamic features, such
as the duration of coverage and the impact of kinematics on
equipment. Spatial approaches to coverage path planning which
minimise path overlap for example, such as Galceran and Car-
reras (2012), will not necessarily produce maximal performance
if a slow-acting device has not allotted enough time to a region.

In this example, we model the SeaFox (MarineLink, 2004)
unmanned surface vehicle (USV), pictured in Figure 1 searching
for a target on a 100 m? surface region.Parameters § € ® C R?
parameterise the two-dimensional surface region where the goal
target could be located beneath, with uniform probability den-
sity function given by ¢ (6). The dynamics of the vehicle are
represented by the horizontal location (xi, x3), heading angle
¥, and velocity v, and given by:

x1(t) vsin ¥ (t) 0
dx = Xo(t) | _ | veosy(t) |l o0
a = v [T wo | TO=] o
v(t) up () 1.57

The functions u; and u, are the control inputs guiding the
vehicle’s motion. They are limited by constraints of the form:

lun ()] < K1, |ua(B)] < Ka.
Velocity is also constrained:
0<v<K,.

Coeflicient values are provided in Table 2.

A range-limited sonar is modelled by an indicator function,
I(x,0) which returns 1 if the point 6 is within range of loca-
tion x € R? and 0 if it does not. To comply with the regularity
assumptions of the numerical algorithm, we further approx-
imate this indicator function by a continuously differentiable
approximation of the indicator function, Iymeoth (%, 6), which we
define as:

1 1 — X
Iimooth (%, 0) = 5 (1 + erf (%)) ,

erf(x) = % /-x et dt.
0

where
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Figure 1. The Naval Postgraduate School’s SeaFox USV.

Table 2. Scenario values for paths 1-3.

Aperture coefficients Q 20

C 15

o 10
Max detection rate o 5
Control constraints i 125

K> 1
Velocity constraint Ky 12.5m/s
Search region )] [0, 100] x [0, 100] m?
Initial probability @ (0) d0) =1
Final time T 360s
Switchback interval 2p 2x 125
Path 1 velocity v 1.57m/s

Coefficient values are given in Table 2. Figures 2 and 3 illus-
trate the smoothed indicator concept and its implementation
with the values in Table 2. For an object within the vehicle’s
range, we assume that the vehicle acts on it with a constant
probabilistic detection rate, ro. The probability that the vehicle
detects the object in time interval [t, t + At] is approximated by

Figure 2. Smoothed sensor range indicator function.

I-smooth

0.2

0 5 10 15 20 25 30
distance from vehicle

Figure 3. [so0th fOr the values in Table 2.

10Ismooth (%, 8) At. The probability of not detecting the target at
location 6 by time ¢, given by Pxp (2, 6), is thus given by:

PND(t + At, 9) = PND(ta 9)[1 - rOIsmooth(x) G)At]

which as At — 0 creates the dynamics:

ot (t,0) = —10Lsmooth (%, O)PnD(£,0),  Pnp(0,0) = ¢(0).
This is the exponential detection model, derived in

Koopman (1956).

In the scenarios that follow, the initial probability at each
location has been set to ¢(9) = 1. Together, x and Pnp cre-
ate the state space of our control problem, referred to with the
augmented state variable z:

x(t)
t,0) = .
0 |:PND(t)9)i|
We consider three path plans and contrast their performance.

Performance is gauged by the expected final probability of miss-
ing the target after searching:

_ Jo Pxn(T,0)d0
B Jo d0

Path 1, a baseline, is a heuristic solution generated by fol-
lowing a lawnmower pattern at constant velocity. The vehicle

21)




Time: t = 360

Probability of Undetected Target at Location

Figure 4. Path 1 atfinal time T.

region is over ® = [0, 100] x [0, 100] m?. The width between
paths has been chosen as 2p where p is an estimate of the effec-
tive radius of the aperture, based on Igyooth and allowing for a
small amount of overlap; its value is set as p = 12.5. The time
interval has been chosen to allow for this lawnmower path to
finish: T = 360. Control constraints on u;(t) enforce a maxi-
mum turning rate, Vmax, for executing the lawnmower path’s
switchbacks, and the velocity of the vehicle is determined by
p and this turning rate using the equation PVmax = v = 1.57.
Figure 4 shows the performance of the lawnmower pattern, Path
1. Path 1’s average probability of failure, J;, is 0.2982. The lowest
fajlure probability Pxp (T, 6) at point 6 it attains is 0.1195 and
the highest is 1 (i.e. there are spots it completely misses, where
if the target is located there, probability of failure to detect is 1.

Path 2 is generated by solving the optimal control prob-
lem to minimise the failure probability in Equation (21). This
solution has been generated by discretising ® with 25 x 25
nodes and time with 150 nodes, both domains using LGL pseu-
dospectral nodes. We note that the choice of solution method
used in the time domain is independent of the method cho-
sen for the parameter domain. In this example, we have chosen
to use matching methods. However, any method appropriate
to the approximate problem established in Section 3, Prob-
lem PM, can be applied to the time domain. Discretised state
and control constraints (14)-(18) may create an approximate
problem which, due to the constraints, may benefit from a
method from a time domain method which caters more specifi-
cally to constrained optimal control problems, such as the local
pseudospectral method (Darby, Garg, & Rao, 2011), or the
symplectic pseudospectral method (Wang, Peng, Zhang, Chen,
& Zhong, 2017). This can be ascertained from the structure of
Problem P. In this example, which has smooth state and control
solutions, we find the global pseudospectral method utilised to
be sufficient.

Figure 5 shows the performance of Path 2. Path 2’s average
failure probability, J», is 0.1795, the lowest failure probability at
point 6 itattains is 0.0710 and the highest is 0.9694.As one would
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Time: t = 360

Probability of Undetected Target at Location

Figure 5. Path 2 at final time T.

Time: t = 360

Probability of Undetected Target at Location

Figure 6. Path 3 at final time T.

Table 3. Performance values.

Avg final Computation
PnD Low Pnp High Pnp time
Path 1 (heuristic) 0.2982 0.1195 1 n/a
Path 2 (optimal avg) 0.1795 0.0710 09694  12.61 min
Path 3 (constrained worst case)  0.2305 0.0638 0.6917 26.67 min

expect, the optimal solution performs much better than Path 1,
providing around a 40% reduction in expected failure. However,
depending on one€’s standards, Path 2 may still not be ideal. It is
notable that the highest failure probability, 0.9694, reveals spots
which have been mostly skipped in order to create the best aver-
age. An alternate goal for a vehicle’s searching path could be to a
thoroughly search the region to within a certain risk threshold.
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1
0.9
0.8

0.7

Maximum value of Pyp(T,0)

0.5

0.4 -
0 10 20 30 40 50 60 70 80

Parameter discretisation level per dimension

Figure 7. Convergence of maximum constraint violation as discretisation
increases.

Path 3 has been generated by minimising the expected failure
given by Equation (21) subject to the risk constraint:

Pnp(T,0) <y, VOe® (22)
with y = 0.5. This problem sets a floor for the vehicle’s perfor-
mance. As with Path 2, Path 3 is generated by discretising ®
with 25 x 25 nodes and time with 150 nodes, both domains
using LGL pseudospectral nodes. Figure 6 shows the perfor-
mance of Path 3. Path 3’s average final performance, J3, is worse
than Path 2’s, at 0.2305. However, its maximum non-detection
probabilities, y, is much improved at 0.6917.

Table 3 provides a summary of the performance of all three
paths. Each path’s control solution is assessed in performance by
propagation through a refined 300 x 300 LGL pseudospectral
quadrature grid of © to estimate its performance in the non-
approximated problem. We note that Path 3, calculated from
a 25 x 25 discretisation of ®, does not yet strictly satisfy the

10x10 Discretisation

B

Figure 8. Convergence of constraint satisfaction as discretisation increases.

constraint inequality PNp(T,0) < 0.5 at all 6 € ® when the
control solution is propagated through the refined 300 x 300
grid. The strict satisfaction of the constraint at the discretised
nodes yields an asymptotic pointwise convergence. Figures 7
and 8 show the convergence of the constraint as discretisation
increases.

5. Conclusions

The tools presented in this paper enable the computation of
numerical solutions to a wide variety of optimal control prob-
lems with parameter dependency in the cost and/or dynamics.
These problems include those with state constraints over the
parameter domain, constraints over the distribution (such as
constrained mean and other statistics), and also minimum time
problems. The computational framework presented allows for
the flexible choice of many numerical schemes such as pseu-
dospectral methods or sparse grid methods, as well as the ability
to use separate methods in the parameter domain versus the
time domain, allowing for the application in the time domain
of the plentiful available computational methods developed for
standard optimal control problems.

These tools enable multiple new avenues for application.
As Section 4 mentions, the optimal control framework pre-
sented in this paper is applicable to many types of area cov-
erage problems. These problems are increasingly relevant for
autonomous vehicles as these vehicles gain in durability and
long-term deployability. Problems such as aerial and marine
mapping, search, networked communication coverage, and effi-
cient routing can all be approached as control problems with
(spatial) parameter dependencies. The use of optimal control
for these problems provides the opportunity to generate path
plans optimised over specific vehicle and sensor dynamics. This
has the potential to provide substantial performance improve-
ments, especially when planning for multi-vehicle teams with
heterogenous dynamics.

The framework also provides a tool for many motion plan-
ning problems with uncertainty. The parameter domain can

20x20 Discretisation

» Discretisation node

= Constraint violated

50x50 Discretisation
!ﬂ!llllll!llllllIIIIIIII!!HHII!I!I@



be used to consider uncertain locations, as in the optimal
search problem in Section 4. It can also be used to incorporate
model uncertainty through estimated parameter ranges or as
the coeflicients of series expansion for function approximation.
These provide approaches for optimising plans against dynamic
targets with unknown dynamics models. Another interesting
future direction of application may be in the estimation of the
unknown parameters themselves. With sensor-based observa-
tions driving updated parameter estimates (for instance through
Bayesian updates), path planning for the mobile sensor plat-
forms to optimise observation trajectories for estimating the
unknown parameters becomes an optimal control problem
dependent on those parameters.

The wealth of potential applications provide many future
directions for this problem, as well as many technical challenges.
A challenge in the application will be the available methods for
solving the resulting standard control problem, which may have
to deal with a high number of states and state constraints. Due to
the high number of state variables generated through parameter
discretisation, efficiency is also key. However, as the example in
this paper demonstrates, the implementation of this approach is
already feasible. Future work includes building problem mod-
els for the applications described above and investigating efhi-
cient numerical methods for both parameter and time domain
implementations.
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