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Using discrete element simulations, we demonstrate that critical behavior for yielding in soft disk and sphere
packings is independent of the distance to isostaticity over a wide range of dimensionless pressures. Jammed
states are explored via quasistatic shear at fixed pressure, and the statistics of the dimensionless shear stress μ

of these states obey a scaling description with a diverging length scale ξ ∝ |μ − μc|−ν . The critical scaling
functions and values of the scaling exponents are nearly independent of distance to isostaticity despite the
large range of pressures studied. Our results demonstrate that yielding of jammed systems represents a distinct
nonequilibrium critical transition from the isostatic critical transition which has been demonstrated by previous
studies. Our results may also be useful in deriving nonlocal rheological descriptions of granular materials, foams,
emulsions, and other soft particulate materials.
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Granular materials, dense suspensions, foams, and emul-
sions can form amorphous jammed states [1–5]. Jammed
systems can yield when subjected to a sufficient shear stress
τ (this is sometimes called “unjamming by shear”). When
μ ≡ τ/p, where p is the system pressure, exceeds a critical
value μc, jammed states become inaccessible and flow persists
indefinitely [6–13]. Predicting the mechanical response of
jammed states can be difficult since it can involve plastic
rearrangement events that cooperate over large distances.
For example, rheological models of these materials that in-
clude nonlocal cooperative effects can successfully reproduce
steady-state flows from experiments and particle-based simu-
lations [14–21].

Prior studies on soft sphere packings, which are com-
monly used to model these materials, have framed long-range
cooperative behavior in terms of a nonequilibrium critical
transition that occurs at the isostatic point, also called “point
J” [2,22–28]. Isostaticity refers to the number of contacts per
particle Z being equal to the number required to constrain all
degrees of freedom in the system, Z = Ziso. This occurs at a
given volume fraction φ = φc in the large-system limit. At
isostaticity, p = 0, but further compression leads to increasing
p. A cooperative length scale ξJ ∝ |φ − φJ |−νJ diverges at the
isostatic point, which then controls the mechanical response
and leads to Widom-like scaling relations [29] that relate p,
(φ − φJ ), (Z − Ziso), and other quantities. ξJ is large near
isostaticity (i.e., small p), characterized by an excess of spa-
tially extended, low-energy modes of the system [30,31]. For
increasing p, ξJ decreases, leading to more localized modes as
well as smaller and more localized particle rearrangements.

In contrast, nonlocal rheological descriptions of
jammed materials [16,18–21,32] often include a diverging
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cooperative length scale that depends not on packing fraction
but on distance to a critical shear stress, i.e., ξ ∝ |μ − μc|−ν .
These rheological models, including our previous paper [32],
describe materials that are near φ = φJ , so it is not known
how the cooperative length scale underlying these models
relates to the isostatic critical point. Here, we show using
numerical simulations that yielding in soft sphere packings
is a distinct nonequilibrium critical transition and that it is
independent of the distance to isostaticity. We quasistatically
shear systems of repulsive, bidisperse disks and spheres,
holding dimensionless pressure p̃ fixed and measuring μ,
which increases during an initial shear regime and then
plateaus as stress is released in intermittent slips. The
statistics of μ obey a scaling description with a diverging
length scale ξ ∝ |μ − μc|−ν , where νms ≈ 1.8 during initial
shear buildup (in agreement with Ref. [32]) and νslip ≈ 1.1 in
two dimensions (2D) and νslip ≈ 0.8 in three dimensions (3D)
during the intermittent slip regime. The scaling functions and
the values of ν are highly insensitive to the distance from
isostaticity set by p̃, which we vary over nearly four orders
of magnitude. μc( p̃) is insensitive to p̃ for p̃ � 10−3, but
decreases logarithmically for higher p̃. The critical scaling
functions we show could be used to derive a particle-scale
theory for nonlocal rheological models, including transient
behavior, which is not captured by current models.

Methods. We use molecular dynamics simulations to study
systems of N bidisperse frictionless disks in 2D and spheres in
3D, with a diameter ratio 1.4 and equal numbers of each size.
Systems are prepared at a given pressure p via isotropic com-
pression and then quasistatically sheared. Contacting particles
interact via a purely repulsive force Fi j = K (δi j/|ri j | − 1)ri j ,
where δi j is the average diameter of particles i and j, and ri j is
the vector displacement between the centers of particles i and
j. Stresses are quantified by the Cauchy stress tensor,

σαλ = 1

V

∑
i �= j

ri j
α F i j

λ . (1)
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FIG. 1. (a), (b) Illustrative snapshots during Lees-Edwards shear
at γ = 0.33 with dimensionless pressure (a) p̃ ≡ p/K = 0.2 (far
from isostaticity) and (b) p̃ = 0.001 (near isostaticity). (c) Plot of
dimensionless shear stress μ vs γ for a single simulation with 1236
(orange) and 10 000 (black) particles. The inset shows a closeup of
0 � γ � 0.15. The first arrow indicates the initial shear strain γms

required to find the first state at a particular value of μ (in the case
shown, μ ≈ 0.077). Subsequent arrows denote the shear strains γslip

between states where the shear stress is less than the value of μ being
considered.

Here, α and λ are Cartesian coordinates, V is the system vol-
ume, ri j

α is the α component of the center-to-center separation
vector between particles i and j, and F i j

λ is the λ component of
the interparticle contact force. The sum over i and j includes
all pairs of contacting particles.

Each simulation is prepared by placing particles randomly
throughout the domain and then increasing the particle diame-
ter D in small steps until reaching a target p = (σxx + σyy)/2.
Using Lees-Edwards boundary conditions, we impose affine
shear strain in small steps �γ = 10−4. At each shear step,
the shear-periodic boundary is moved by �γ and y�γ is
added to the x position of each particle. We then use molecular
dynamics to relax the potential energy using modified velocity
Verlet integration, as well as shrink or swell D to maintain a
fixed p within 0.5% of the target value. Before shearing or
changing the particle diameter, we damp out kinetic energy
via a viscous damping force −Bv to each particle, where v is
the absolute velocity of a given particle and B is the damping
coefficient. We set B = 5

√
M p in 2D and B = 5

√
M pD in

3D, where M is the mass of a large grain. Our results are
independent of B in this regime.

At each strain step, after the system is quenched at the tar-
get pressure, we measure the stress tensor elements, as defined

(a) (b)

FIG. 2. (a) Excess contacts �Z/Ziso vs the shear strain γ for
individual simulations with N = 50, where �Z ≡ Z − Ziso, Z is the
coordination number once rattlers have been removed, and Ziso is the
coordination number for an isostatic system. (b) Mean �Z/Ziso vs p̃
over 50 simulations for N = 50, 100, and 200, showing that p̃ gives
the fraction of extra contacts, independent of system size.

in Eq. (1), focusing on μ = −σxy/p, as shown in Fig. 1(c). We
measure μ from 0 � γ � 3 in increments of �γ = 10−4 for
a total of 30 001 states per simulation. For each value of N
and p̃, we simulate an ensemble of 400 systems.

We quantify distance above isostaticity by p̃ = p/K , which
gives an estimate of the relative overlap between particles (i.e.,
p̃ = 0.01 corresponds to particle-particle overlaps of roughly
0.01D). Figure 1(a) and 1(b) show p̃ = 0.2 and p̃ = 0.001,
respectively, with N = 24. Overcompression yields excess
contacts such that �Z/Ziso ∼ √

p̃, where �Z ≡ (Z − Ziso), Z
is the number of contacts per particle, Ziso ≡ 2[d (N − Nr ) −
d + 1]/(N − Nr ) is the isostatic number of contacts, d is
the number of spatial dimensions, and Nr is the number of
rattlers [4,33–35]. Figure 2(a) shows �Z/Ziso plotted versus
γ for N = 50 and varying p̃. These curves fluctuate around
a fixed value but show no trend, indicating that the shearing
does not change Z on average. Figure 2(b) shows that the
average value 〈�Z〉/Ziso vs p̃ is similar for N = 50, 100,
and 200. Thus, the fraction of excess contacts, a measure of
distance to isostaticity, is set by p̃ and is nearly independent
of system size [36] or the presence of shear deformation [37].

Scaling near yield. As shown in Fig. 1(c), μ increases with
γ and then plateaus as potential energy is released in intermit-
tent slips [38–44]. This curve represents a series of jammed
states that the system passes through while sheared. The
fluctuations in μ decrease with increasing N for all p̃, and we
exploit the size scaling in these fluctuations (as in Ref. [45]) to
demonstrate and quantify diverging spatial correlations near
μc. Most importantly, we show that this scaling description is
nearly independent of the distance to isostaticity.

To accomplish this, we use finite size scaling on three
quantities for each μ and N : (1) the cumulative distribution
function F of states above a particular value of μ during the
slip avalanche regime, defined as γ > 0.5 (our results are
insensitive to this choice); (2) the shear strain γslip between
mechanically stable (MS) states with an internal shear stress
of at least μ; and (3) the shear strain γms required to find
the first MS state with an internal shear stress of at least
μ. Figure 1(c) depicts γms and γslip for a given μ(γ ) curve.
Figures 3(a)–3(c) show these quantities plotted as functions
of μ or N , where ensemble averages are denoted with angle
brackets. The data shown in Fig. 3 represent only a single
value of p̃ = 0.05 in 2D, but it is typical of all p̃ in both 2D
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(a) (b) (c)
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FIG. 3. Scaling collapses in 2D at high dimensionless pressure p̃ = 0.05. Fraction of states F above μ, unscaled (a) and scaled (d), with
μc = 0.061 and νslip = 1.09. 〈γslip〉 vs N , unscaled (b) and scaled (e), for 24 � N � 3654, with μc = 0.061, νslip = 1.09, and βslip/νslip =
−1.05. (c), (f) Mean strain 〈γms〉, unscaled (c) and scaled (f), to the first mechanically stable (MS) state at dimensionless shear stress μ, for
24 � N � 3654, collapsed onto the proposed scaling form with μc = 0.061, νms = 1.8, and βms/νms = 0.25. In all three cases, the scaled
data include all values of μ and N , and the unscaled plots show only selected curves. The data for F are plotted vs μ with different curves
representing different N , and 〈γslip〉 and 〈γms〉 are plotted vs system size with different curves representing different values of μ.

and 3D, as we demonstrate below in Figs. 4 and 5. As N is
increased, the fluctuations in μ decrease, and F approaches a
step function, as shown in Fig. 3(a). Thus, MS states vanish
sharply at some value μ = μc( p̃) in the large system limit.
Figure 3(b) shows 〈γslip〉, where we require at least one γslip

measurement per simulation. Our results are insensitive to this
choice, unless the number of samples becomes very small.
For μ < μc, 〈γslip〉 monotonically decreases with increasing
N . For μ > μc, 〈γslip〉 first decreases and then increases with
increasing N . Finally, 〈γms〉 is nearly independent of N for
small μ and increases strongly with N for larger μ.

To collapse these curves, we posit a diverging length scale
ξ ∝ |μ − μc|−ν . In this case, finite size effects should enter
through the quantity L/ξ , where L ≡ N1/d with d being the
number of spatial dimensions. An equivalent scaling can also
be written using (μ − μc)L1/ν ; see Refs. [27,32] for further
discussions on similar systems. Figures 3(d)–3(f) show that
the data in Figs. 3(a)–3(c) collapse according to

F = f ((μ − μc)L1/νslip ), (2)

〈γslip〉 = |μ − μc|−βslip fslip,±

(
L

|μ − μc|−νslip

)
, (3)

〈γms〉 = |μ − μc|−βms fms,±

(
L

|μ − μc|−νms

)
. (4)

Here, fms,± and fslip,± are dual-branch functions, with + and
− denoting μ above or below μc, respectively. Interestingly,
we require two distinct values of ν. For the initial strain, we
find νms ≈ 1.8, while in the slip avalanche regime, we find
νslip ≈ 1.1 in 2D and νslip ≈ 0.8 in 3D. The value νslip ≈
1.8 agrees with our previous result [32], which was only

calculated near to isostaticity; in Fig. 3, it is calculated far
from isostaticity. The difference between νslip and νms sug-
gests that there are important differences in how MS states are
accessed between these two regimes. We obtain the critical
parameters μc and νslip by fitting the collapsed curves to
appropriate functional forms using a Levenberg-Marquardt
method [27,32]. We exclude system sizes with N < Nmin, and
vary Nmin until our fits become insensitive to our choice of
Nmin. We also performed the corrections-to-scaling analysis

(a) (b)

(c) (d)

FIG. 4. Scaling collapses in 2D at low dimensionless pressure
p̃ = 0.0005, 32 � N � 512. Fraction of states F above μ, unscaled
(a) and scaled (b), with μc = 0.097 and νslip = 1.10. 〈γslip〉 vs N ,
unscaled (c) and scaled (d), with μc = 0.097, νslip = 1.10, and
βslip/νslip = −1.05. In both cases, the unscaled plots show selected
values of N or μ while the scaled plots show all data.
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(a) (b)

(c) (d)

FIG. 5. Scaling collapses in 3D at high dimensionless pressure
p̃ = 0.05, 64 � N � 1024. Fraction of states F above μ, unscaled
(a) and scaled (b), with μc = 0.074 and νslip = 0.832. 〈γslip〉 vs N ,
unscaled (c) and scaled (d), with μc = 0.074, νslip = 0.832, and
βslip/νslip = −1.37. In both cases, the unscaled plots show selected
values of N or μ while the scaled plots show all data.

in Ref. [46], which yields the same result we find with the
scaling forms in Eqs. (2)–(4).

We then perform the same analysis for varying p̃ over the
ranges 5 × 10−5 � p̃ � 2 × 10−1 in 2D and 2 × 10−4 � p̃ �
2 × 10−1 in 3D, spanning from near isostaticity (where ξJ is
large) to far from isostaticity (where ξJ is small). The scaling
description in Eqs. (2)–(4) and shown in Fig. 3 holds for all
values of p̃ in both 2D and 3D. We show data for an additional
pressure in 2D, p̃ = 0.0005, in Fig. 4. We also show data
in 3D with p̃ = 0.05 in Fig. 5. In both cases, the scaling
functions are almost indistinguishable from those shown in
Fig. 3. Figure 6 shows the critical parameters μc and νslip

plotted as a function of p̃. Each data point in Fig. 6 represents
a fit of all data (as in Figs. 3–5) over many system sizes
(typically 32 � N � 1024) with 400 simulations per system
size, so the plateau in Fig. 6 is not a system size effect. We
find that μc is independent of p̃ for p̃ � 10−3 and decreases
logarithmically for p̃ > 10−3, which agrees with Favier de
Coulomb et al. [37]. This occurs as excess contacts are added,
which changes the structure of the force networks.

However, we observe no similar crossover behavior as
the distance to isostaticity is varied in any other aspects of
the scaling behavior. The critical exponents, as shown in
Fig. 6(b), and the scaling functions, as shown in Figs. 3–5,
are highly insensitive to p̃, despite the wide variation in
distance to isostaticity. Specifically, we find νslip ≈ 1.1 ± 0.1
in 2D, νslip ≈ 0.8 ± 0.03 in 3D, βslip/νslip ≈ −1 ± 0.1 in
2D, and βslip/νslip ≈ −1.3 ± 0.1 in 3D. The uncertainty is
estimated from the scatter in the data for different p̃, as seen
in Fig. 6. For the initial shear regime, we find that νms ≈ 1.8
is insensitive to p̃. However, βms/νms appears to vary from
roughly 0.2 at high p̃ to 0.6 at low p̃. This again points to
potentially important differences between how MS states
are explored between the slip avalanche and initial shear
regimes and may have consequences for size-dependent arrest
transitions [32,47,48].

(a)

(c)

(b)

FIG. 6. (a), (b) Values for (a) μc and (b) νslip vs p̃, measured
using the fitting protocol described in the text. Results in 2D and
3D are denoted by circles and triangles, respectively. Solid lines
in (a) represent a linear fit of μc vs log p̃ from p̃ = 10−3 through
2 × 10−1, while the dashed lines represent the large-stiffness limit.
(c) Phase diagram summarizing our results. The solid blue line
represents the estimation of μc( p̃) in 2D from (a).

Discussion. We have shown here that sheared amorphous
soft sphere packings display finite size scaling that is consis-
tent with a diverging length scale ξ ∝ |μ − μc|−ν . The value
of μc varies as p̃ is changed and extra contacts are added, but
the forms of the scaling functions (as shown in Figs. 3–5) and
the values of the critical exponents are nearly independent of
distance to isostaticity over nearly four orders of magnitude
in p̃. Considering the correlation length for isostaticity ξJ ∝
|φ − φc|−νJ , if one assumes that νJ is order unity [27] and
p̃ ∝ (φ − φc) for harmonic interactions [2], then varying p̃
over this range represents ξJ varying over a similar range. This
represents an enormous variation with respect to the isostatic
critical point, implying that the distance to isostaticity does
not control the critical behavior we demonstrate here. Our
results suggest that yielding in, e.g., emulsions, foams, or
granular materials is controlled by an underlying nonequi-
librium critical transition that is distinct from isostaticity.
We note that νslip ≈ 1.1 for 2D and νslip ≈ 0.8 in 3D are
similar to the values ν ≈ 1.1 for 2D and ν ≈ 0.7 for 3D from
Ref. [45], which presented a scaling description for yielding
in amorphous materials [38,40,43].

Figure 6(c) shows the Liu-Nagel jamming phase diagram
from, e.g., Refs. [2,49,50] and many others, but with p̃ on
the horizontal axis and μ = τ/p on the vertical axis. The
solid blue line represents the critical yielding boundary in
2D from Fig. 6(a), and the solid vertical black line repre-
sents the isostatic critical transition. Jammed states exist only
in the lower right region, above isostaticity and below the
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critical yielding boundary. Unjammed or fluidlike states
can be either hypostatic (Z < Ziso and p= 0) or hyperstatic
(Z > Ziso and p > 0). Some previous work on critical scaling
near isostaticity has studied the onset of yield stress behavior
under shear at varied φ [24,25,27,28,49]. Such a system is

situated at the “triple point” indicated by the red dot at the
intersection of the jamming and yielding lines in Fig. 6(c).
A complete theory may be able to unify these two critical
transitions by a better understanding of the behavior at this
point.
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