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Abstract

The TRECVID report of 2010 [14] evaluated video shot
boundary detectors as achieving “excellent performance
on [hard] cuts and gradual transitions.” Unfortunately,
while re-evaluating the state of the art of the shot bound-
ary detection, we found that they need to be improved be-
cause the characteristics of consumer-produced videos have
changed significantly since the introduction of mobile gad-
gets, such as smartphones, tablets and outdoor activity-
purposed cameras, and video editing software has been
evolving rapidly. In this paper, we evaluate the best-known
approach on a contemporary, publicly accessible corpus,
and present a method that achieves better performance,
particularly on soft transitions. Our method combines color
histograms with keypoint feature matching to extract com-
prehensive frame information. Two similarity metrics, one
for individual frames and one for sets of frames, are defined
based on graph cuts. These metrics are formed into tempo-
ral feature vectors on which a SVM is trained to perform the
final segmentation. The evaluation on said “modern” cor-
pus of relatively short videos yields a performance of 92%
recall (at 89% precision) overall, compared to 69% (91%)
of the best-known method.

1. Introduction
Movies and edited videos consist of scenes, such as a di-

alog between two people. Scenes consist of one or more

shots, or consecutive frames as captured with a single cam-

era. Locating transitions between shots, also called cuts

or shot boundaries, is fundamental procedure for analyzing

videos such as indexing videos, querying scenes, searching

objects, or summarizing video contents. All shot bound-

aries can be classified into the following two categories:

• A hard cut, as shown in Fig. 1(a), is an instant transi-

tion such that frame n is from shot k and the very next

frame n+1 is from the following shot k+1. Research

for detecting hard cuts has matured as reported in [14].

(a)

(b)

Figure 1. Examples of transitions: (a) a hard cut is an instant

transition from one shot to the next, and (b) a soft cut transitions

gradually. Frames are arranged sequentially from left to right.

• A soft cut (or soft transition), as shown in Fig. 1(b), is

a gradual transition over the course of multiple frames.

The performance for detecting soft cuts is much worse

because there is no abrupt change in the visual frame

content. In particular, there are:

– Fade-out, fade-in dissolves where the two shots

get blended on top of each other. The details vary

on aspects including transition duration, amount

of blending, and possible dimming.

– Geometric transitions involve wiping out or in

(sliding the previous or next shot over the other),

zooming in the next shot, block puzzles etc.

Without an overarching description of such trans-

formations, it will remain incredibly challenging

to automatically detect them.

– Artistic transitions will be nearly impossible to

automatically detect, such as many transitions in

the 1986 “Highlander” movie, including fading
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from an actor to a Mona Lisa painting or panning

from a fish tank to surfacing from below a lake.

Shot boundary detection (SBD) is difficult because of the

great variety of transition types and the possible similarity

of the shot before and after the boundary. The TRECVID

challenges from 2001 and 2007 included shot boundary de-

tection tasks, yet Smeaton et al. [14] discontinued them due

to the methods’ “excellent performance.”

Unfortunately, for a few years after the triumph, the

characteristics of consumer-produced videos have changed

significantly due to the proliferation of smartphones and

video editing software. While re-evaluating the state of

the art of shot boundary detection, our implementation of

TRECVID’s best-performing algorithm (Yuan et al. [17])

performed well on hard cuts but recall was below 50% for

other boundaries: especially, when detecting artistic transi-

tions, recall was only 3.5% (details will be shown in Section

5). From these experiences, we concluded that 1) a video

corpus needs to be updated for reflecting recent change of

characteristics of videos and 2) Yuan et al’s approach [17]

needs to be improved in terms of various similarity metrics

between frames and integration of those metrics.

Based on the empirical conclusion, in this paper, we

proposed a new method for shot boundary detection. Our

method combines color histograms with keypoint fea-

ture matching to extract comprehensive frame information.

Then, based on spectral graph theory [13], the information

is used for defining two similarity metrics, one for individ-

ual frames and one for sets of frames. Finally, these metrics

are formed into temporal feature vectors on which a SVM

is trained to perform the final segmentation. For measuring

similarity, we used spectral graph theory [13] like Yuan et

al [17] that has been known as the best-performing method.

Our main contributions are as follows:

1. We first collected a contemporary video corpus that

reflects current consumer-grade video characteristics

with respect to content, camera type, length, and edit-

ing. Care was taken to avoid copyrighted material to

limit the effect of use restrictions. Table 2 presents de-

tails of this public corpus, including hyperlinks to the

actual videos 1.

2. We used an efficient strategy for selecting frames

with the Fibonacci sequence because using all member

frames increases computation time and reduces detec-

tion performance.

1In our evaluation, in addition to newly collected videos, we used old

TRECVID videos (2001 and 2002) among all TRECVID videos between

2001 and 2007. Though we are still looking for TRECVID videos between

2003 and 2007, NIST (TRECVID organizing institution) and Linguistic

Data Consortium (LDC) do not provide those data any more and videos

only between 2001 and 2002 are still available online.

3. As a new similarity measurement between frames, we

proposed a new metric using the number of matching

keypoints with the exp() function. Applying the exp()
function contributes to increase robustness because it

can reduce the undesirable effect of mis-matching key-

points [15].

4. For integrating two features (color block histogram

and keypoint) effectively, we proposed a logically

combined classifier that we call SVMOR. In our exper-

iment, while generating a feature vector for training a

Support Vector Machine (SVM [12]), the direct com-

bination of two features achieved inferior performance

to the proposed classifier.

The next section discusses related work, followed by de-

tails of the proposed method. Section 4 presents the data set

and the experiments we conducted, followed by the evalua-

tion results and conclusions.

2. Related Work

According to Smeaton et al. [14], Tsinghua University’s

approach [17] achieved the best SBD performance in terms

of speed, recall, and precision. It extracts a color block his-

togram for each frame and computes inter-frame similar-

ity with correlation. Similarity between groups of frames

is measured with spectral graph theory [13] and fed to a

SVM classifier for SBD. The work of W. Hu et al. [6]

re-emphasizes that correlation between color block his-

tograms outperforms edge and motion features for segment-

ing shots. Neither of these methods considered keypoint

feature matching [9] as a similarity metric.

Keypoint feature matching has been employed for

SBD [10, 7, 8]. These methods classified with simple

thresholds, however, and were not able to match the per-

formance of statistics or learning-based methods [14, 6, 3].

In [2], concept of keypoint feature extraction was used

for summarizing a frame in a single vector with quantiz-

ing color information. After clustering them into multiple

scenes, shot boundaries were detected. Smeaton et al. [14]

and Hu et al. [6] provide good summaries of the state of the

art of SBD.

3. Proposed Approach

This section describes the proposed approach: two tran-

sition metrics that can be calculated at every frame, and how

these metrics form feature vectors on which a SVM clas-

sifier is trained. The transition metrics are calculated by

first extracting descriptive features (color and appearance)

for each frame, then measuring the similarity between two

frames, and, finally, calculating a similarity between groups

of frames.

1178



Figure 2. Two groups of frames for computing two transition metrics at frame t: mS(t) in Eq. (3) and mC(t) in Eq. (6).

3.1. Frame representation in feature space

We extract two types of descriptive features from each

frame:

Keypoint features are appearance-based descriptors cal-

culated at image interest points and designed to be robust

to brightness, scale, rotation, and other image transforma-

tions. For the proposed method, the SIFT (scale-invariant

feature transform) algorithm [9] selects the location of fea-

ture points and represents each with descriptors. Each video

frame is represented with a set of 128-dimensional descrip-

tor vectors.

Color Block Histograms (CBH) are computed in RGB

space. To consider spatial information, the frame is par-

titioned into several blocks in which separate color his-

tograms are computed. Each video frame is represented

with a set of 2000-dimensional vectors (using five bins for

each color space with 4×4 blocks). Sec. 3.4, describes how

the similarity measure is defined for CBHs.

3.2. Frame similarity

The similarity of two frames is based on the number of

matching and non-matching descriptors. Descriptor match

is determined with the ratio test as proposed by Lowe [9]:

two features are considered a match if the ratio of their dis-

tance to the second-closest distance is bigger than a thresh-

old. This attempts to avoid ambiguous matches. (Our ap-

proach does not take frame size into account as it might

complicate parameter handling, despite potential precision

improvements [7].)

The similarity between two frames is defined as follows:

simSIFT
f (fi, fj) = exp

{
−1
σ2

(
n(fi) + n(fj)− 2n(fi, fj)

n(fi, fj) + 1

)2
}

(1)

where fi is i-th frame, n(fi) is the total number of key-

point features in frame i, and n(fi, fj) is the number of

matching features between frames i and j. For i = j,

simf (fi, fj) := 1.

The numerator in Eq. (1) indicates the number of un-

matched features, the denominator indicates the number of

matched features. Thereby, similarity is proportional to the

number of matched features and as well as to the ratio of

matched-to-unmatched features. The last term (+1) avoids

a division by zero when there is no matching feature. Em-

pirically, we set σ = 10.

3.3. Similarity of groups of frames:

Comparing a frame with its immediate neighbor frame

is insufficient for detecting soft transitions because they oc-

cur over multiple frames as discussed in the Introduction

and as can be seen in Fig. 3. Therefore, soft boundaries are

much easier to spot when considering a sequence of frames

rather than individual frames. Soft transitions can be con-

sidered a transition from one group of frames to another

group of frames, and defining a group similarity will help

identify cases where the two groups stem from different

shots. Yuan et al. [17] measure group similarity by adopt-

ing spectral graph theory [13] to their purposes. Next, the

similarity measure is described first, then the selection of

member frames for each group.

3.3.1 Measuring similarity between two groups of
frames:

As in the work of Yuan et al. [17], we will adopt the min-

max cut algorithm [5] for measuring similarity between

two groups because it captures intra-group connectivity and

inter-group disconnectivity simultaneously. Similarity be-

tween two groups of frames is defined as follows:
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simSIFT
g (A,B) =

cut(A,B)

assoc(A)
+

cut(A,B)

assoc(B)

=

∑
i∈A,j∈B simSIFT

f (fi, fj)∑
i∈A,j∈A simSIFT

f (fi, fj)

+

∑
i∈A,j∈B simSIFT

f (fi, fj)∑
i∈B,j∈B simSIFT

f (fi, fj)
(2)

where A,B are sets of frames. The following section de-

scribes how to select member frames for each group.

3.3.2 Selecting member frames for groups:

More frame members in each group does not equate to bet-

ter performance for SBD as Yuan et al. [17] showed. In-

stead, proper selection of member frames is directly related

to detection performance. In this paper, the Fibonacci se-

quence (Fn = Fn−1 + Fn−2 with seed values F1 = 1
and F2 = 1) dictated the distance between frames. Hence,

in Fig. 2, D = {d1, d2, · · · , d6} is set to {1, 1, 2, 3, 5, 8}.
Frame selection with the Fibonacci sequence reduced com-

putation time as well as increased performance compared to

using all successive forty frames. Hence, as shown in Fig.

2, groups At and Bt are chosen as:

At = {ft−20, ft−12, ft−7, ft−4, ft−2, ft−1, ft}
Bt = {ft+1, ft+1+1, ft+1+2, ft+1+4, ft+1+7,

ft+1+12, ft+1+20}
3.4. Calculating transition metrics at each frame

Two transition metrics are defined, one based on key-

point features, and one based on color histograms. The met-

ric based on SIFT keypoint features is the group similarity

between frame groups At and Bt (where the last frame of

At is ft and the first frame of Bt is t+ 1), hence:

mS(t) = simSIFT
g (At, Bt). (3)

The transition metric for color block histogram (CBH)

is again based on an individual frame similarity, particu-

larly, the correlation between CBHs. A new group similar-

ity is then defined as follows, leading to the transition metric

mC(t). The group subscripts t are dropped for legibility.

simCBH
f (fi, fj) =

correlation of color block histograms

of two frames(fi, fj) (4)

simCBH
g (A,B) =

∑
i∈A,j∈B simCBH

f (fi, fj)∑
i∈A,j∈A simCBH

f (fi, fj)

+

∑
i∈A,j∈B simCBH

f (fi, fj)∑
i∈B,j∈B simCBH

f (fi, fj) (5)

mC(t) = simCBH
g (At, Bt) (6)

3.5. Detecting shot boundaries with a SVM

Through above procedure, two metric values can be ob-

tained for each frame that has sufficient neighbor frames.

In many SBD approaches, other similarity measures have

been merely thresholded to directly determine the location

of SBDs [1, 16]. Here, we combine the metric values from

multiple frames into a feature vector and train a Support

Vector Machine (SVM [12]) on annotated videos to learn a

suitable decision boundary. Two separate SVMs are trained,

SVMSIFT and SVMCBH, one each for feature vectors from

the two transition metrics mS(t) and mC(t):

xS
t =

[
mS(t− t6), · · · ,mS(t− t1),m

S(t),

mS(t+ 1 + t1), · · · ,mS(t+ 1 + t6)
]T

(7)

xC
t =

[
mC(t− t6), · · · ,mC(t− t1),m

C(t),

mC(t+ 1 + t1), · · · ,mC(t+ 1 + t6)
]T

. (8)

The two classifiers were also combined into one classi-

fier (SVMOR) with a logical OR operation (often called “late

fusion”) as shown in Table 1.

Table 1. Logical OR operation of two classifiers

SVMOR Positive Negative

by SVMSIFT by SVMSIFT

Positive
Positive Positive

by SVMCBH

Negative
Positive Negative

by SVMCBH

As shown in the next section, the cooperative classifier

SVMOR achieves superior performance over the separate

classifiers SVMSIFT and SVMCBH. Moreover, even a single

SVM classifier (SVMMERGE) that was trained on the com-
bined feature vectors xt =

[
xS
t , x

C
t

]T
(often called “early

fusion”) achieved inferior performance compared to the co-

operative classifier. In all four SVM classifier models a ra-

dial basis function was used as kernel.

4. Data and Experiments
Performance was tested on a new corpus of three types

of videos (see Table 2):

Videos in the professionally-edited set are obtained

from the TRECVID (Text REtrieval Conference Video Re-

trieval Evaluation2) challenge. This set includes broadcast

news videos, NIST videos, BBC stock shots, etc. as de-

scribed by Smeaton et al. [14]. Only some videos from the

2001 and 2002 TRECVID challenge are still publicly avail-

able, and of those we selected more recent videos and those

free of technical issues such as de-interlacing.

2http://trecvid.nist.gov
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Table 2. The composition of our new video corpus. Note that the titles are hyperlinks to the actual videos.

Type Name # of Hard cuts # of Soft cuts Length (frames)

Pro1 The Rio Grande 0 137 24,550

Pro2 Desert Venture 104 25 24,983

Pro3 NASA 25th Anniv.(seg. 9) 39 63 12,307

Pro4 Exotic Terrane 87 89 40,095

Pro5 NASA 25th Anniv.(seg. 5) 38 28 11,364

Pro6 Challenge at Glen Canyon 233 11 48,451

Pro7 Hidden Treasures 143 93 50,823

Pro8 Wrestling with Uncertainty 45 148 53,014

Pro9 Senses & Sensitivity (Lec.3) 292 16 86,789

Pro10 The Technical Knockout 605 108 105,661

Pro-Total Profession-edited videos 1,586 718 458,037

Ama1 Best Vines 71 2 6,712

Ama2 Colorado Snowboarding 48 3 5,859

Ama3 Flying to Abu Dhabi 23 0 7,744

Ama4 Freestyle Swimming 7 1 6,797

Ama5 GoPro Montage 39 1 7,552

Ama6 Huge Avalanche 1 13 11,476

Ama7 Like A Flying Boss 72 6 9,571

Ama8 New York Bound 99 3 10,073

Ama9 Surfing Montage 53 0 6,102

Ama-Total Amateur-edited videos 413 29 71,886

Art1 Final Cut Pro 7 124 59 9,249

Art2 Final Cut Pro X 88 88 10,920

Art3 Nor’Easter 0 26 8,365

Art-Total Artistically edited videos 212 173 28,534

Total Total videos 2,211 920 558,457

Videos in the amateur-edited set reflect the trend of cap-

turing with smartphone cameras, outdoor activity-purposed

cameras s.a. the GoPro.3 These cameras have made it pos-

sible to capture very dynamic videos of new activities, from

new points of view, and with different optics compared to

common video from ten years ago. SBD on this set is par-

ticularly difficult due to fast motion and dynamic viewpoint

changes.

The third set of artistically-edited videos contains three

videos that showcase an unusual variety of shot boundary

types. Recent video editing tools provide a plethora of tran-

sition effects and the third category is for evaluating the per-

formance of detecting these artistic shot boundaries.

Recall, precision, and F1 score were used as perfor-

mance metrics, which are defined as follows:

recall =
TP

TP + FN
(9)

precision =
TP

TP + FP
(10)

F1 score = 2
recall · precision

recall + precision
(11)

3http://gopro.com

where TP is the number of correctly detected shot bound-

aries, FN is the number of missed shot boundaries, and FP

is the number of falsely detected shot boundaries.

The experiment compared four new approaches to a

baseline algorithm:

Yuan et al. [17] is our implementation of TRECVID’s

best-performing algorithm, which describes frames

with a color block histogram (CBH) only, collects

CBHs from successive frames into a feature vector,

and classifies with one SVM each for hard and soft

cuts.

SVMCBH With a few modifcations, the above algo-

rithm [17] achieved markedly better precision: with a

4× 4 instead of a 2× 2 block color histogram, a single

SVM instead of one each for hard and soft cuts, and

Fibonacci-based frame selection instead of successive

frames.

SVMSIFT This classifier was trained with keypoint similar-

ity measures only, per xS
t of Eq. (7).

SVMMERGE This SVM was trained on merged feature vec-

tors from both color and keypoint similarity measures

1181



T
ab

le
3
.
P

er
fo

rm
an

ce
R

es
u
lt

s
a

H
ar

d
cu

ts
+

So
ft

cu
ts

H
ar

db
So

ft
b

C
la

ss
ifi

er
T

P
+

F
N

T
P

T
P

+
F

P
R

ec
al

l
(%

)
P

re
ci

si
o

n
(%

)
F
1

sc
o

re
T

P
+

F
N

T
P

R
ec

al
l

(%
)

T
P

+
F

N
T

P
R

ec
al

l
(%

)

Pr
of

es
si

on
-e

di
te

d
vi

de
os

Y
u

an
et

al
.

[1
7

]

2
,3

0
4

1
,6

3
8

1
,8

0
8

7
1

.1
9

0
.6

7
9

.7

1
,5

8
6

1
,3

8
3

8
7

.2

7
1

8

2
5

5
3

5
.5

S
V

M
C

B
H

1
,8

7
0

1
,9

7
4

8
1

.2
9

4
.7

8
7

.4
1

,5
0

7
9

5
.0

3
6

3
5

0
.6

S
V

M
S

IF
T

2
,0

6
6

2
,2

0
5

8
9

.7
9

3
.7

9
1

.6
1

,5
4

7
9

7
.5

5
1

9
7

2
.3

S
V

M
M

E
R

G
E

2
,0

3
3

2
,1

3
4

8
8

.2
9

5
.3

9
1

.6
1

,5
3

1
9

6
.5

5
0

2
6

9
.9

S
V

M
O

R
2

,1
3

4
2

,3
6

3
9

2
.6

9
0

.3
9

1
.5

1
,5

7
2

9
9

.1
5

6
2

7
8

.3

A
m

at
eu

r-
ed

ite
d

vi
de

os
Y

u
an

et
al

.
[1

7
]

4
4

2

3
0

0
3

5
1

6
7

.9
8

5
.5

7
5

.7

4
1

3

2
9

8
7

2
.2

2
9

2
6

.9

S
V

M
C

B
H

3
8

8
4

6
5

8
7

.8
8

3
.4

8
5

.6
3

7
6

9
1

.0
1

2
4

1
.4

S
V

M
S

IF
T

3
2

0
3

8
3

7
2

.4
8

3
.6

7
7

.6
3

1
2

7
5

.5
8

2
7

.6

S
V

M
M

E
R

G
E

2
9

2
3

6
5

6
6

.1
8

0
.0

7
2

.4
2

8
5

6
9

.0
7

2
4

.1

S
V

M
O

R
4

0
8

5
4

1
9

2
.3

7
5

.4
8

3
.0

3
9

3
9

5
.2

1
5

5
1

.7

A
rt

is
tic

al
ly

ed
ite

d
vi

de
os

Y
u

an
et

al
.

[1
7

]

3
8

5

2
1

8
2

2
3

5
6

.6
9

7
.8

7
1

.7

2
1

2

2
1

2
1

0
0

.0

1
7

3

6
3

.5

S
V

M
C

B
H

2
9

4
2

9
5

7
6

.4
9

9
.7

8
6

.5
2

1
2

1
0

0
.0

8
2

4
7

.4

S
V

M
S

IF
T

2
9

5
2

9
5

7
6

.6
1

0
0

.0
8

6
.8

2
1

2
1

0
0

.0
8

3
4

8
.0

S
V

M
M

E
R

G
E

3
1

3
3

1
8

8
1

.3
9

8
.4

8
9

.0
2

1
2

1
0

0
.0

1
0

1
5

8
.4

S
V

M
O

R
3

2
8

3
2

9
8

5
.2

9
9

.7
9

1
.9

2
1

2
1

0
0

.0
1

1
6

6
7

.1

To
ta

l
Y

u
an

et
al

.
[1

7
]

3
,1

3
1

2
,1

5
6

2
,3

8
2

6
8

.9
9

0
.5

7
8

.2

2
,2

1
1

1
,8

9
3

8
5

.6

9
2

0

2
6

3
2

8
.6

S
V

M
C

B
H

2
,5

5
2

2
7

3
4

8
1

.5
9

3
.3

8
7

.0
2

,0
9

5
9

4
.8

4
5

7
4

9
.7

S
V

M
S

IF
T

2
,6

8
1

2
,8

8
3

8
5

.6
9

3
.0

8
9

.2
2

,0
7

1
9

3
.7

6
1

0
6

6
.3

S
V

M
M

E
R

G
E

2
,6

3
8

2
,8

1
7

8
4

.3
9

3
.6

8
8

.7
2

,0
2

8
9

1
.7

6
1

0
6

6
.3

S
V

M
O

R
2

,8
7

0
3

,2
3

3
9

1
.7

8
8

.8
9

0
.2

2
,1

7
7

9
8

.5
6

9
3

7
5

.3

a
L

ea
v
e-

o
n

e-
o

u
t

cr
o

ss
-v

al
id

at
io

n
(L

O
O

C
V

)
w

as
u

se
d

w
it

h
a

si
n

g
le

v
id

eo
fo

r
ev

al
u

at
io

n
an

d
th

e
re

m
ai

n
in

g
v

id
eo

s
fo

r
tr

ai
n

in
g

.
b

S
V

M
C

B
H

,
S

V
M

S
IF

T
,

S
V

M
M

E
R

G
E

an
d

S
V

M
O

R
ap

p
ro

ac
h

es
se

g
m

en
t

w
it

h
a

si
n

g
le

S
V

M
fo

r
b

o
th

h
ar

d
an

d
so

ft
cu

ts
,

h
en

ce
th

ey
d

o
n

o
t

in
d

ic
at

e
th

e
k

in
d

o
f

d
et

ec
te

d
cu

t.
T

h
er

ef
o

re
,

re
ca

ll
p

er
tr

an
si

ti
o

n
k

in
d

ca
n

b
e

co
m

p
u

te
d

b
u

t
p

re
ci

si
o

n
ca

n
n

o
t.

1182



(Eqs. (7) and (8)).

SVMOR This classifier constitutes a late fusion of the

above two classifiers (SVMCBH and SVMSIFT) with a

logical OR operator.

5. Results

5.1. Quantitative Results:

For the videos in the professionally-edited set, the base-

line method [17] performed well on both hard cuts and soft

cuts as reported. While it also performed well on hard cuts

in amateur-edited and artistically edited videos, there, it

achieved less than 10% recall on soft cuts.

Of the evaluated methods, SVMOR achieves the best

performance on all three video types in our corpus (see

Table 3). Despite lower precision than the baseline ap-

proach [17], SVMOR is an overall better SBD method ac-

cording to its higher F1 score (the harmonic mean of pre-

cision and recall rates), and owing to much improved re-

call: It detects 13%
(
2177−1893

2211

)
more hard cuts and 47%(

693−263
920

)
more soft cuts.

Note that SVMMERGE was anticipated to show the best

performance because the SVM was expected to benefit from

having access to the entire color and keypoint feature vec-

tors. As Table 3 shows, however, early feature fusion

(SVMMERGE) was inferior to late fusion (SVMOR) of inde-

pendently classified features–in fact, its performance was

similar or worse than that of each independent classifier. As

discussed by Chen and Lin [4], an appropriate feature selec-

tion strategy is necessary for achieving better performance

with a combined classifier than with the independent classi-

fiers.

Figure 3. An examples of a missed shot boundary: there are only

subtle changes in a very similar environment.

Figure 4. An example of a falsely detected shot boundary: These

frames (left to right) are detected as a transition because the back-

ground is zoomed-out rapidly.

(a) (b)

(c) (d)

Figure 5. Examples of ambiguous shot boundaries: (a) - (b) are

falsely detected shot boundaries because text change has not been

considered a shot boundary. (c) - (d) are falsely detected ones

because partial frame changes (s.a. less than one quarter) have not

been considered shot boundaries.

5.2. Qualitative Results:

The video showing the worst performance was Ama6

(Huge Avalanche). Of 13 soft cuts, nine were missed by

SVMOR. Fig. 3 shows one missed SBD, a difficult case

even for human observers because of only subtle changes

of shadows and rocks in an otherwise very similar environ-

ment. SVMOR also failed to detect boundaries when the
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camera moves very fast or the video is significantly blurred.

Fig. 4 shows falsely detected shot boundaries. Even

though keypoint features (extracted predominantly from the

static characters) indicate that this is not a shot boundary,

the rapid zooming-out changes the background and there-

fore the color histograms. Fig. 5 shows two examples of

ambiguous cases. They were detected as shot boundaries,

but had not been annotated as such. A more precise, mea-

surable definition would be necessary for avoiding such am-

biguous cases.

6. Conclusions
We proposed a method for shot boundary detection

(SBD) that combines two SVM classifiers; one based on

color histograms, and one based on appearance features. A

similarity measure between two frames was defined based

on keypoint feature matching, and the similarity between

two groups relied on graph theory and on selecting member

frames according to the Fibonacci sequence. Finally, the

two independent classifiers were combined into one classi-

fier, SVMOR, through a logical OR operation.

The proposed method SVMOR was compared with the

best-known SBD (Yuan et al. [17]) on a novel video corpus.

This corpus was assembled in consideration of characteris-

tics of recent consumer-produced video and video-editing

technology. Our experiments showed that SVMOR achieved

a 12% point improvement overall and over 46% point im-

provement for soft cut detection.

Beyond the contribution of a contemporary corpus for

evaluation and a novel method for performing SBD, we

hope to revive interest in this topic as it is a core building

block for video indexing, search and retrieval–increasingly

important capabilities for dealing with the influx of videos

from the current generation of video-capturing gadgets.

For future research, we will experiment with different

keypoint features that reportedly are faster and more accu-

rate (Rublee et al. [11]) than the SIFT algorithm.
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