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Implications of SAR Ambiguities in Estimating the Motion of
Slow Targets

David A. Garren

Naval Postgraduate School, Monterey, California, USA

ABSTRACT

This paper examines the implications pertaining to the problem of attempting to invert synthetic aperture radar
(SAR) measurement data to yield unique estimates of the underlying motion of slow targets in the imaged scene.
A recent analysis has demonstrated that ambiguities exist in estimating the kinematics parameters of surface
targets for general bistatic SAR collection data. In particular, a procedure has been developed which generates
alternate target trajectories which give the same SAR measurements as that of the true target motion. The
current paper extends the earlier analysis by generating specific numeric examples of alternate target trajectories
corresponding to the motion of a given slowly moving target. This slow-target case reveals the counter-intuitive
result that a single SAR collection data set can be generated by target trajectories with significantly different,
and possibly opposing, heading directions. For example, the true motion of a given target can be moving towards
the mean radar position during the SAR collection interval, whereas a valid alternate trajectory can correspond
to a target that is moving away from the radar. The present analysis demonstrates the extent of the challenges
associated with attempting to estimate of the underlying motion of targets using SAR measurement data.

Keywords: Synthetic aperture radar, Radar theory, Moving Targets

1. INTRODUCTION

SAR processing can produce remarking remarkable imaging quality of stationary objects and terrain. However,
moving targets typically yield artifacts in SAR imagery, which are often smeared beyond recognition. A number
of researchers have attempted to understand the nature of the motion-induced target smears. One frequent goal
is to attempt to refocus1–22 the smeared artifacts so that the resulting image is similar to that of stationary
objects.

There has been research into the general properties of such moving target artifacts.1–4 In addition, there have
also been other investigations of the properties of moving target smears. For example, some researchers have
attempted to improve the detection of such targets via the use of focusing methods.5–17 A number of other investi-
gators considered various methods for detecting moving targets through these signature techniques.23–28 Finally,
these moving target smear have been shown to exhibit curvature in the radar down-range direction.18,29–35

Some investigators36–40 noticed that ambiguities appear to arise in attempting to estimate target motion
parameters corresponding to these smear artifacts. Some of the examples include monostatic collections in
which both the radar and target move with constant velocity during the collection of the radar measurements.
Specifically, identical phase history data sets are obtained from alternate fictitious target trajectories.

A recent investigation41 extends the formalism regarding these ambiguities to include completely arbitrary
trajectory and speed profiles for the radar transmitter, the radar receiver, and the target. In particular, this
work presents the specific equations that can be used to generate alternate fictitious target trajectory and speed
profiles which give exactly the same radar measurement data as that corresponding to the true motion of the
target. That is, the analysis shows that it is not possible to form unique estimates of target motion of based upon
general bistatic radar range measurements. These results apply even if range-rate or doppler measurements are
collected as well. This ambiguity can be broken only through the use of additional constraints, such as target
motion on the one-dimensional (1D) locus of a road. Therefore, the ability to localize a moving target based
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upon general bistatic radar range measurements depends upon the overlap of the transmission and reception
mainbeams. Throughout these discussions, the concept of a bistatic radar collection includes the degenerate
monostatic case in which the transmitter and receiver are co-located on the same platform.

In the current paper, the special case of a slowly moving target is examined in more detail. In particular,
this analysis attempts to generate an alternate target trajectory which is significantly different in terms of the
heading direction. A special emphasis is placed on the generation of alternate fictitious targets in which the
heading direction is opposite to that of the true target.

2. TRUE TRAJECTORY OF SLOW MOVING TARGET

The fundamental result of the previous ambiguity analysis41 is that a number of differing target trajectory and
speed profiles can give the same set of bistatic radar measurements. That is, one cannot use a set of bistatic
range measurement data in order to generate an accurate estimate of the underlying target motion. Additional
constraints are required, as with the assumption that the target lies along the 1D locus of a road.

A number of definitions are required in order to properly summarize the results of previous ambiguity work.41

It is assumed that the radar transmitter and receiver are permitted to move with arbitrary trajectories and speed
profiles. It is also assumed that the instantaneous positions of the transmitter and receiver can be known with
arbitrary precision. The target is permitted with move with an arbitrary trajectory and speed profile on the
surface of a ground-plane. However, the target trajectory and speed profile is assumed to be unknown to the
radar system. In addition, the speeds of the transmitter, receiver, and target are assumed to be much less than
the speed of light, which is consistent with radar collection.

The transmitter is assumed to emanate a total of N radar waveforms during the coherent processing interval
of the SAR collection. Define τt,n to be the average value of the slow-time corresponding to the nth waveform.
Likewise, set τr,n to be equal to the average time of waveform absorption by the receiver after scattering off of
the target. In addition, the time interval between successive waveforms is not constrained to be fixed and instead
is permitted to vary in any manner.

Next, a number of geometrical definitions are required. In general, a three-dimensional (3D) ellipsoid is
formed as a 2D ellipse of revolution about the axis connecting the locations of the transmitter at waveform
emanation and the receiver at waveform absorption. These transmitter and receiver locations correspond to
the two foci of this ellipsoid. Define xt,n = {xt,n, yt,n, zt,n} to be the location of the transmitter phase center
corresponding to the transmission time τt,n. Similarly, define xr,n = {xr,n, yr,n, zr,n} to be the location of the
receiver phase center at the reception time τr,n.

This analysis is generated in terms of a local Cartesian coordinate system in which the x− y plane is tangent
to the local surface of the earth. Then, the location of the target at the waveform scattering time τs,n is given
by xs,n = {xs,n, ys,n, 0}.

Define ∆fn to be the temporal bandwidth of the radar, wherein the index n denotes the particular waveform
within the transmitted sequence during the synthetic aperture. It is assumed that this bandwidth is permitted to
be arbitrarily wide. Furthermore, the target is modeled as an idealized point scattering center, so that waveform
properties before scattering are preserved when absorbed into the receiver. The actual measurement of the
bistatic range of the radar system to the target is denoted by Rn. In addition, the permission of an arbitrarily
wide waveform bandwidth implies that the bistatic range error δRn can be arbitrarily small as well.

3. ALTERNATE TARGET CONSTRUCTION

The bistatic ambiguity analysis41 continues by generating arbitrary trajectories and speed profiles for the radar
transmitter and receiver. In addition, there are N bistatic range measurements of the moving target relative
to the radar system. Next, a particular prescription provides a means for computing any number of alternate
fictitious target trajectory and speed profiles with yield the same bistatic range measurement values. As clarified
in the original development, the location and other motion parameters corresponding to a given alternate target
trajectory is not required to lies within some particular small neighborhood about the true target values. Instead,
the instantaneous position of the fictitious target trajectory needs only to lie within the overlap of the transmission

Proc. of SPIE Vol. 10201  102010E-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/12/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



and reception beampatterns for this waveform. For convenience of notation, this waveform index n is suppressed
until later in order to avoid cumbersome mathematical notation.

A few definitions are repeated from the earlier ambiguity analysis41 for convenience. In this vein, denote the
round-trip waveform propagation fast-time via:

∆τ ≡ τr − τt =
2R

c
, (1)

which also yields the value of the bistatic range R from the moving target to the radar system. Denote the
location of the transmitter phase center at the time of waveform emanation to be xt, which is expressed in terms
of the Cartesian ground-plane coordinate system discussed above. Similarly, denote the location of the receiver
phase center at the time of waveform absorption to be xr. Next, the location of the center of the 3D ellipsoid is
given by:

x0 ≡
1

2

{
xr + xt

}
. (2)

Define the actual value of the ellipsoid center to be {x, y, z} = {X0, Y0, Z0} in terms of the selected ground-plane
coordinate system.

The previous analysis41 defines the vector between the transmitter and receiver to be:

w ≡ xr − xt. (3)

In particular, define the Cartesian components of w along the ground-plane unit vectors {x̂, ŷ, ẑ} to be given
by {wx, wy, wz}. Next, the elevation Φ and azimuthal Θ angles of the 3D ellipsoid relative to the ground-plane
coordinates are given by:

− π

2
≤ Φ ≡ arctan

(
wz√

w2
x + w2

y

)
≤ π

2
, (4)

−π < Θ ≡ arctan

(
wy
wx

)
≤ π. (5)

In these equations, the quadrant of Θ is determined by the signs of the values of wx and wy. In particular, a
value of Θ between zero and π is obtained for positive wy, and an angle that lies between −π and zero results
from a negative value of wy.

The generation of an alternate fictitious trajectory begins with the selection of a different location than that
of the true target at the time for the initial waveform. This initial location is not constrained to lie within some
small neighborhood about the true target location, but it is required to lie within the overlap of the transmission
and reception energy beampatterns. In addition, this alternate target location is constrained to lie on a 2D
ellipse within the ground-plane, which is defined according to the equation:41∑

0≤α+β≤2

pα,β x
αyβ = 0. (6)

In this equation, the values of the pαβγ are computed via:

p20 ≡ ρ, (7)

p02 ≡ ω, (8)

p11 ≡ {ψ − η} sin(2Θ), (9)

p10 ≡ −2X0 ρ− Y0{ψ − η} sin(2Θ)− Z0{ξ − η} cos(Θ) sin(2Φ), (10)

p01 ≡ −X0{ψ − η} sin(2Θ)− 2Y0 ω − Z0{ξ − η} sin(Θ) sin(2Φ), (11)

p00 ≡−
1

4
+X2

0 ρ+ Y 2
0 ω + Z2

0 γ +X0Y0{ψ − η} sin(2Θ)

+X0Z0{ξ − η} cos(Θ) sin(2Φ) + Y0Z0{ξ − η} sin(Θ) sin(2Φ).
(12)
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These equations also define values for ξ, η, ψ, γ, ρ, and ω according to the following:

ξ ≡ {c∆τ}−2, (13)

η ≡
{
{c∆τ}2 − ‖xr − xt‖2

}−1
, (14)

ψ ≡ ξ cos2(Φ) + η sin2(Φ), (15)

γ ≡ ξ sin2(Φ) + η cos2(Φ), (16)

ρ ≡ ψ cos2(Θ) + η sin2(Θ), (17)

ω ≡ ψ sin2(Θ) + η cos2(Θ). (18)

The ellipse equation (6) determines the locus of possible alternate ground-plane scattering locations {x, y} of the
waveform off of the moving target.

The next step in the processing41 is to choose an alternate fictitious location within the beampattern overlap
for the first scattering event off of the moving target. One possible methodology is based upon the selection of
an alternate value for the ground-plane coordinate x with the radar beampattern overlap region. Then, (6) is
used to determine the constrained values of the y coordinate via:41 for the value of y:

y =
−p110 x− p010 ±

√
g(x)

2 p020
. (19)

Here, the following function is defined:

g(x) ≡ {p110 x+ p010}2 − 4 p020{p200 x2 + p100 x+ p000}. (20)

In order to obtain real-valued solutions for (19), it is necessary to ensure that g(x) is non-negative. In general,
the quadratic equation of (19) implies that there exist two possible solutions. Again, it is only necessary to select
a solution that lies within the overlap region of the transmission and reception beampatterns.

The previous ambiguity analysis41 also presents a method for computing the value of the fast-time τ which
is consistent with the alternate target position x ≡ {x, y, z} which is generated using (19). The value of this
particular time τ at which the waveform scatters off of the target is obtained via:

τ = τt +
`t
c
. (21)

In this equation, the value of the path length that the waveform traverses is going from the transmitter to the
points of scattering off of the target is obtained via:

`t ≡ ‖xt − x‖ . (22)

That is, the alternate fictitious target trajectory which is generated will have, in general, a different value for
the time of scattering off of the target relative to that of corresponding to the true target trajectory.

The discussion of the prior ambiguity investigation41 clarifies that actual value of the scatter time τ is
itself ambiguous, since the radar measures only the total distance traversed by the waveform in going from
the transmitter to the target and then into the receiver. However, once a particular set of alternate spatial
coordinates {x, y, 0} has been generated, then the corresponding value of the scattering time τ for this fictitious
trajectory becomes determined via (21). Note that this ambiguity in the actual scattering time disappears for
monostatic collections, since its value can be assumed to be the midpoint between the transmission and reception
times.

The discussion above presents a methodology which can used to generate an alternate target location and
scattering time {x1, y1, z1, τ1}alt which yields the same bistatic range measurement R1 for the initial waveform
as that which applies for the true space-time point {x1, y1, z1, τ1}true. This same procedure applies in generating
alternate space-time points {xn, yn, zn, τn}alt corresponding to waveform index n within the SAR collection
interval. Here, the waveform index is included again for clarity of presentation. Therefore, the full alternate
fictitious target trajectory and speed profile can be generated.
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4. NUMERIC EXAMPLE OF A SLOW TARGET

This section presents a particular example corresponding to a slowly moving target. This case considers a
monostatic SAR collection with a radar that is pointing broadside in the starboard direction. For this example,
the radar and target travel with constant velocity.

The radar transmits 1001 waveforms over a 1-second synthetic aperture interval with a pulse repetition
frequency (PRF) of 1 kHz. The values for the average location of the radar and the moving target are given by
{−0, 6, 0.5}km and {300, 0, 0}km, respectively, with regards to the selected coordinates {x, y, z}, with units of
kilometers. The corresponding {x, y, z} components of the velocity vector are selected to be {200, 0, 0}m/s and
{0.5,−5, 0}m/s, respectively, wherein the units are meters per second.

A fictitious target trajectory and speed profile which is consistent with the bistatic range measurements is
obtained41 is obtained by selecting an alternate set of x coordinate values for the target location corresponding
to each waveform along the synthetic aperture. A possible methodology involves the scaling and shifting of the
true target values of x is order to obtain the corresponding fictitious values. For the particular slow moving
target examined herein, a scale of −1 and a shift of −0.6 km are applied to generate the x coordinate values of
the fictitious target for each waveform along the synthetic aperture. Next, these x values are used within (19)
to solve for the corresponding y coordinates values for each waveform. Thus, these computation yield values for
the fictitious target locations {x, y, 0} on the surface of the ground-plane for each transmitted waveform.

The monostatic collection geometry for this particular example is shown in Figure 1. In this figure, the
trajectories of the slow target and the generated fictitious target almost appear only as points in this figure.
Thus, it is useful to examine an image zooms of the spatial region around both the true and fictitious targets,
as is shown in Figure 2 and 3. In both of these figures, the initial 200 ms of the total 1000 ms corresponding
to the full synthetic aperture is shown with a solid line is shown with a solid line, and the remainder is given
by a dashed line. Thus, the true target is moving away from the radar that lies distant in the +y direction.
In contrast, the alternate fictitious target is moving towards the radar in a direction which is approximately
opposite to that of the true target motion.

The average speed variation for the alternate fictitious target trajectory is presented in Figure 4. The variation
in the fictitious target speed in this figure is only approximately 0.1 sec over the 1 sec SAR processing interval.
Likewise, Figure 5 reveals the heading of the fictitious target varies by less than 0.1◦ over the SAR collection
interval. These results indicate that the speed and heading variation are very minor, so there would be relatively
little stress on the engines and tires if one were to attempt to travel according to this alternate target trajectory
and speed profile.

A comparison of the bistatic range values corresponding to the true target motion and that of the alternate
fictitious target are presented in Figure 6. This figure shows that the alternate fictitious target yields exactly the
same bistatic range profile along the synthetic aperture as that of the true target motion. Detailed examination
reveals that the differences between the two profiles lies on the order of computational machine precision.

5. CONCLUSIONS

There has been recent work in the understanding of ambiguities in the inferred target trajectory and speed
profile based upon the collection of general bistatic range measurements. In particular, specific equations have
been developed for computing alternate fictitious target trajectory and speed profiles which yield identical radar
measurement data as that obtained from the true target motion. The current paper investigates the special case
of a slowly moving target in more detail. A simulation is generated for the case of a monostatic radar collection
from a typical SAR collection system which is imaging with broadside geometry. A target is included within the
system which is moving approximately in the radar down-range direction away from the radar.

The current study reveals that it is possible to generate an alternate fictitious target trajectory and speed
profile corresponding to a target that is moving is approximately the opposite direction as that of the true target
motion. This result can appear counter-intuitive initially, but this result arises naturally from the mathematics
and can be understood by examining the rotation of the wavefronts at the scene center as the radar platform
traverses the full synthetic aperture.
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Measurement Geometry
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Radar

1 I I

-4 -2 0 2 4

Ground Plane x (km)
Figure 1. The monostatic collection geometry for this particular example, showing the radar trajectory. The trajectories
corresponding to the true and fictitious targets appear approximately as points in the spatial region of {x, y}={0, 0} near
the lower left of the legend box.
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Figure 2. A zoomed image of the true target trajectory, wherein the initial 200 ms of the total 1000 ms corresponding to
the full synthetic aperture is shown with a solid line, and the remainder is given by a dashed line. Thus, the true target
is moving away from the radar that lies distant in the +y direction.
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Figure 3. A zoomed image of the alternate fictitious target trajectory, wherein the initial 200 ms of the total 1000 ms
corresponding to the full synthetic aperture is shown with a solid line, and the remainder is given by a dashed line. Thus,
the alternate fictitious target is moving towards the radar in a direction which is approximately opposite to that of the
true target motion.

Proc. of SPIE Vol. 10201  102010E-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/12/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



.- 15 .04
v

15.02

---É
15

-a0a 14 .98
cn

14.96

Fictitious Target Speed

14.94
-0.5 0

Time (sec)
0.5

Figure 4. The ficititious target speed varies by approximately 1% over the SAR collection interval.
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