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CURatio: Genome-wide phylogenomic analysis
method using ratios of total branch lengths

Qiwen Kang, Neil Moore, Christopher L. Schardl, and Ruriko Yoshida,

Abstract—Evolutionary hypotheses provide important underpinnings of biological and medical sciences, and comprehensive,
genome-wide understanding of evolutionary relationships among organisms are needed to test and refine such hypotheses. Theory
and empirical evidence clearly indicate that phylogenies (trees) of different genes (loci) should not display precisely matching
topologies. The main reason for such phylogenetic incongruence is reticulated evolutionary history of most species due to meiotic
sexual recombination in eukaryotes, or horizontal transfers of genetic material in prokaryotes. Nevertheless, many genes should
display topologically related phylogenies, and should group into one or more (for genetic hybrids) clusters in poly-dimensional “tree
space”. Unusual evolutionary histories or effects of selection may result in “outlier” genes with phylogenies that fall outside the main
distribution(s) of trees in tree space. We present a new phylogenomic method, CURatio, which uses ratios of total branch lengths in
gene trees to help identify phylogenetic outliers in a given set of ortholog groups from multiple genomes. An advantage of CURatio
over other methods is that genes absent from and/or duplicated in some genomes can be included in the analysis. We conducted a
simulation study under the coalescent model, and showed that, given sufficient species depth and topological difference, these ratios
are significantly higher for the “outlier” gene phylogenies. Also, we applied CURatio to a set of annotated genomes of the fungal family,
Clavicipitaceae, and identified alkaloid biosynthesis genes as outliers, probably due to a history of duplication and loss. The source
code is available at https://github.com/QiwenKang/CURatio, and the empirical data set on Clavicipitaceae and simulated data set are
available at Mendeley https://data.mendeley.com/datasets/mrxts7wjrr/1.

Index Terms—Evolutionary models, Gene trees, Likelihood functions, Outliers, Phylogenomics, Species trees

F

1 INTRODUCTION

In recent decades the field of phylogenetics has found
applications in the analysis of genomic scale data (phy-
logenomics). In particular, it has been applied to analyze
the relationships between species and populations, genome
evolution, and the evolutionary processes of speciation and
molecular evolution. However, today, we can generate ge-
nomic data so cheaply and quickly that we encounter a new
problem: the sheer volume of genomic data and the lack of
analytical tools for working with such quantities of data.

It is well-known that incomplete lineage sorting leads to
differences in phylogenetic tree topologies among gene trees
[1], [2], [3], [4]. Therefore, a key issue in systematic biology
is to reconstruct the evolutionary history of populations and
species from numerous gene trees with varying levels of
discordance [5], [6].

Even though there has been much work in discordant
phylogenetic relationships [1], [7], [8], [9], it is only recently
that researchers have shifted away from single gene or
concatenated gene estimates of phylogeny towards these
multiple gene (multilocus) approaches, e.g., [10], [11], [12],
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[13], [14]. For example, researchers have begun to consider
the effect of genetic drift in producing patterns of incom-
plete lineage sorting and gene tree/species tree discordance,
largely using coalescent theory [15], [16], [17], [18], [19],
[20], [21]. Other research has addressed the reconstruction
of species trees from the distribution of estimated gene trees
[22], [23], [24], [25], [26], [27], [28], [29], [30].

It is well-known that several processes can reduce the
correlation among gene trees, including negative or bal-
ancing selection [31], meiotic sexual recombination in eu-
karyotes [32], and horizontal transfers of genetic material
especially in prokaryotes [33]. Such processes can strongly
influence phylogenetic/species tree reconstruction from the
distribution of gene trees [6], [32], [34].

In this paper we propose a method to detect outlier
genes from the distribution of gene trees from multiple
whole-genome analysis. Here, we focus on the problem
of discordance among gene trees, and the distribution of
gene trees as a whole. We view “typical” gene trees as
samples from some distribution f (e.g., a coalescent model)
that generates gene trees as independent samples. We also
suppose that there may be ”atypical” outlier gene trees
that in effect are sampled from some other distribution f ′

very different from f . We are interested in estimating the
distribution f for typical gene trees, and also identifying
outlier gene trees that were probably not generated by f .
Trees identified as outliers can be inspected for biologically
interesting properties or evolutionary histories. Also, identi-
fying and removing outliers that violate model assumptions
can improve inferences made from collections of gene trees.

Here we propose the CURatio method based on ratios
of total branch lengths in unconstrained and constrained
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gene trees. The CURatio method is a statistical test used to
compare the goodness of fit of two models: the null model
and an alternative model. In this paper, the null model is
the evolutionary model constrained to a fixed (e.g., species)
tree topology (the “constraint tree”) and the alternative is
the evolutionary model unconstrained to any fixed tree
topology. If a gene tree follows the constraint tree, the ratio
between these models should be close to one. If it does not,
this ratio should be significantly greater than one. Here we
demonstrate the method on simulated data sets, as well
as an empirical set from 12 genomes in the fungal family
Clavicipitaceae.

2 METHODS

2.1 Test statistics
For each gene tree, we consider the following hypotheses:

H0 : A gene tree with the data D is congruent to the given
tree topology τ .

H1 : A gene tree with the data D is not congruent to the
given tree topology τ .

In this paper we are testing these hypotheses using the
ratio between the total branch lengths in the constrained and
unconstrained trees.

Under the maximum likelihood estimation (MLE),
branch lengths in a tree are the expected number of muta-
tions per site in certain time period. This means that the total
branch length of a tree under the MLE is the expectation of
the total number of mutations per site over the certain time
period.

Our objective is to test how a gene tree fits a given
species tree topology. If the tree topology τ is not the “best”
tree topology for the observed dataset and for a given
evolutionary model, then the expected number of mutations
per site would increase to fit the data to the given tree
topology τ . Thus the total branch length would increase if τ
is not well-fitted to the given observed data under the given
evolutionary model.

Therefore, with the given data set, we used R package
ape [35] to infer the MLE tree T ′ under the null hypothesis
H0 by constraining the tree to have topology τ under the
given model, and we infer the MLE tree T under the alter-
native hypothesis H1 by not constraining the tree topology
(i.e., finding the optimal tree topology under the model). We
calculate the ratio, [Lambda-prime] as:

Λ′ =

∑
e′∈E(T ′) l(e

′)∑
e∈E(T ) l(e)

,

where l(e) is the length of edge e in T and l(e′) is the length
of edge e′ in T ′. E(T ) defines the set of edges on the MLE
tree T under the alternative (without constraint on the tree
topology) and E(T ′) is the set of edges on the MLE tree
T ′ under the null hypothesis (with constraint on the tree
topology).

Note that the ratio Λ′ ≥ 0, and, Λ′ can be greater than
one. Also note that ratios close to one constitute evidence fa-
voring H0 (congruence with the constraint tree), and higher
ratios constitute greater evidence for H1.

Note that the ratio test statistic Λ′ is standardized: i.e.,
like the Z statistic, it does not depend on the scale. In

addition, we compute each Λ′ independently from each
alignment, and since the Λ′ values are standardized, we can
compare them even though each gene tree is reconstructed
independently from each alignment. This is a significant
difference from the Shimodaira-Hasegawa (SH) [36] and
approximately unbiased (AU) tests [37]. SH and AU test
whether the given trees are congruent to each other by
comparing likelihood functions in the same given data set.
However, our CURatio test compares test statistics that are
independent of scale, therefore lacking the constraints of SH
and AU.

The CURatio method operates in the following manner:
Given a set of alignments {A1, . . . , Ag} for g genes on n
individuals and a tree topology τ for the constraint tree, we
reconstruct the MLE gene trees from each alignment both
constrained or unconstrained by τ . Next, we calculate the
ratio of total branch length of the constrained and the uncon-
strained tree. The pseudocode in Algorithm 1 summarizes
this process.

Algorithm 1: CURatio

Input: A set of alignments {A1, . . . , Ag} for g genes
on n individuals (species) and a tree topology τ
for the constraint tree.

Output: A sequence of ratios (r1, ..., rg).
1) For i = 1, . . . , g, do

a) Reconstruct the MLE gene tree Ti from an
alignment Ai for i = 1, . . . , g without any
constraint.

b) Reconstruct the MLE gene tree T ′i from an
alignment Ai for i = 1, . . . , g with the
constraint tree topology τ .

c) Compute the total branch length bi of Ti.
d) Compute the total branch length b′i of T ′i .
e) Compute ri = b′i/bi.

2) Return the ratios (r1, ..., rg).

Once we have all the ratios, we set the significance level
as 1 − P where P is the 95th percentile (or higher) of the
collection {r1, ..., rg} as the default. Finally, we select the
genes with ratios which are greater than P .

The hypothesis test is performed as follows: We compute
the test statistics ri from the observed data (alignments)
Ai. Then we estimate the distribution of ri under the null
hypothesis (if we know the asymptotic distribution of ri
then we use it, but this is still an approximation). If Ai
yields ri in the rejection region, for example above the
95th percentile of the estimated distribution, then Ai is
considered an outlier. The performance of this test is shown
in Figure 1 for varing P from 0 to 1.

2.2 Empirical data set
Genome sequences determined for one isolate each of 12
species in the fungal family Clavicipitaceae were anno-
tated with MAKER version 2.28 [38]. The annotation of
Epichloë festucae Fl1 (GenBank BioProject PRJNA51625) was
manually refined based on cDNA and RNA-seq datasets,
and the resulting gene models were included as evidence
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in the MAKER annotations of the other genomes. The
other genomes in this study were from Aciculosporium take
(PRJNA67241), Atkinsonella texensis B6155 (PRJNA274998),
Balansia obtecta B249 (PRJNA221345), Claviceps purpurea 20.1
(PRJNA76493), Epichloë amarillans E4668 (PRJNA222148),
Epichloë inebrians E818 (PRJNA174039), Epichloë glyceriae
E277 (PRJNA67247), Epichloë mollis AL9923 (PRJNA215230),
Epichloë typhina subsp. poae E5819 (PRJNA68441), Metarhiz-
ium robertsii ARSEF 23 (PRJNA38717) and Periglandula ipo-
moeae P4806 (PRJNA67303).

Gene models for the 12 genomes were subjected
to OrthoMCL version 2.0.2 [39] to classify ortholog
groups, as described in the OrthoMCL algorithm
document (https://docs.google.com/document/d/
1RB-SqCjBmcpNq-YbOYdFxotHGuU7RK wqxqDAMjyP
w/pub). Because OrthoMCL-derived groups may contain
paralogs as well as orthologs [39], we used the refiner
COCO-CL [40] to improve the inference of ortholog groups.
To enhance the reliability of the refinement process and
the quality of generated alignments, we used a modified
version of COCO-CL described in Protocol S2 of [41].

For each gene, the nucleotide sequence was identified
from the start codon to the stop codon, including introns; all
such gene sequences for each ortholog group were aligned
by MAFFT version 6.864b [42], [43]. Finally, the ortholog
groups were filtered to exclude those that had more than
one representative from any genome, those that had fewer
than five orthologs, and those for which the alignment had
fewer than 50% non-gap characters for every gene sequence.
The latter condition was imposed to filter out groups that
included misannotated genes, although it also removed
some ortholog groups that included pseudogenes. In total,
4266 out of 16995 ortholog groups passed the filters.

Phylogenies were determined by maximum likelihood
estimation (MLE) implemented in the R package ape [35]
under a Jukes-Cantor model. Those 3408 ortholog groups
that had a representative from each of the 12 genomes were
analyzed in a batch by CONSENSE in the PHYLIP version
3.2 package [44], and a 65% consensus tree was chosen as
the constraint tree; this corresponded to a 70% consensus of
the trees inferred under a GTR+Gamma model.

3 RESULTS

3.1 Simulations

We conducted simulations to test CURatio on gene trees
generated under the coalescent process,

Depth = Population Size× C (1)

where Depth is the depth of the species tree, Population Size
is the effective population size (Ne) and C is a parameter,
which we varied from 0.6 to 6.0 as in [45], [46].

For each value of C, we generated 2000 species trees
with 10 leaves each under the Yule process, and calculated
the Robinson-Foulds (RF) distance [47] for each pair of trees
using the R package phangorn [48]. Then, for each RF
distance 2, 4, 6, 8, 10, 12 and 14, we randomly selected ten
pairs of species trees. For each selected pair we called one
species tree “TreeOne” and the other “TreeTwo”.

From each species tree, we generated 1000 gene trees
with 10 leaves under the coalescent model using the soft-
ware Mesquite [49], with the fixed “Population Size” equal
to 10,000 and the depth of the species tree determined by the
parameter C (Equation 1). For each pair of species trees, we
called the set of gene trees generated from TreeOne “Ge-
neOne”, and the set generated from TreeTwo “GeneTwo”.

We then simulated DNA alignments based on these
gene trees using PAML [50] under the Jukes-Cantor (JC)
model, which is a special case of the GTR model with equal
mutation rates µ

4 , where µ is the overall substitution rate.

Algorithm 2: Simulating Data Sets Process

for each C (from 0.6 to 6.0) do
generate 2000 species trees randomly and calculate
pairwise RF distance;

for each RF distance (2, 4, 6, 8, 10, 12, 14) do
randomly pick 10 pairs of species trees;
for each pair of species trees(S1,S2) do

generate 1000 gene trees G1 from S1;
generate 1000 gene trees G2 from S2;
generate 1000 alignments A1 from each tree
in G1;

generate 1000 alignments A2 from each tree
in G2;

end
end

end

The first simulation produced ROC curves for compar-
ing CURatio with KDETREES [51]. KDETREES is a non-
parametric method to estimate the distribution of trees and
identify potential outlier gene trees which are probably not
generated by this distribution; CURatio, on the other hand,
is a parametric method. Note that CURatio does not fit
a chi-squared distribution because it is not a traditional
likelihood ratio test. Instead, potential outlier genes can be
identified by those giving a value of r in a high percentile of
the distribution of r values of all the genes in the genome for
which phylogenies were determined. To draw ROC curve
we vary the value r from 0 to 1 and we plot the true positive
(as x-axis) and the false positive (as y-axis). We used the
set of alignments GeneOne and their corresponding trees as
the non-outlier data set, and we used the set of alignments
GeneTwo and their corresponding trees as the outlier data
set. The constraint tree was the species tree corresponding
to GeneOne. The process is summarized in Algorithm 3.

We randomly selected a data set for each C value from
our simulations regardless of RF distance. As shown in Fig-
ure 1, CURatio performed as well or better than KDETREES
for C values up to 2. KDETREES performed better than
CURatio at C = 4. For C = 6 the ROC curves for both
methods passed close to the (0,1) point.

Our second simulation procedure is outlined in Algo-
rithm 4. For each pair of species trees and the associ-
ated gene trees, we applied CURatio (Algorithm 1) four
times, to obtain four sets of ratios: once on the set of
alignments GeneOne against the corresponding species tree
TreeOne; once on GeneOne against the other species tree;
and likewise for the GeneTwo alignments. Then we used
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Algorithm 3: Summary of the simulation comparing
CURatio and KDETREES. For our simulation, m = 100,
n = 1

Input: A set of alignments {A1, . . . , Ag} for g genes
and their corresponding trees as the non-outlier
data set. A set of alignments {B1, . . . , Br} for r
genes and their corresponding trees as the
outlier data set. A species tree, S,
corresponding to the non-outlier trees,

Output: Average number of true and false outlier
identifications for each method

for each C (from 1.0 to 6.0) do
Randomly sample m alignments and their
corresponding trees from the non-outlier data set;

Randomly sample n alignments and their
corresponding trees from the outlier data set;

Detect outliers with both CURatio and
KDETREES;

Tally true and false outlier identifications for both
methods;

end

R to calculate Tukey’s five number summary (minimum,
lower-hinge, median, upper-hinge, maximum) of each of
the four sets of ratios. We were particularly interested in
the trend of the medians of GeneOne with TreeTwo, and
GeneTwo with TreeOne, with increasing C and different RF
distances between the species trees. Significant differences
were apparent at RF = 4 and high C values; at RF = 6
or higher, significant differences were also apparent for C
values of 2 or less (Figure 2).

Algorithm 4: LOESS Plot

Input: Two sets of alignments, A1 and A2, and their
corresponding species trees, S1 and S2.

Output: The trend of medians
for each RF distance (2, 4, 6, 8, 10, 12, 14) do

for each combination of sets of alignments and species
tree, (A1,S1)(A1,S2)(A2,S1)(A2,S2) do

Apply Algorithm 1;
Calculate the medians.

end
Apply ”LOESS” from R to fit a smooth curve.

end

For visualization, we applied “LOESS” from R on these
medians, fitting a smooth curve through the points in Figure
2, where we can observe that both of the two ratios are
greater than one. Nevertheless, when the species tree used to
simulate the gene tree was also the corresponding constraint
tree, the ratios were closer to one than when the other
species tree with substantially different topology was the
constraint tree.

When using the species tree as the corresponding con-
straint tree, larger values of C resulted in ratios approaching
one. This was as expected because, as C gets larger, the
species tree becomes taller and narrower relative to pop-
ulation size, so gene trees tend to follow the species tree
topology more closely. Also as expected, such behavior was
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Fig. 1: ROC curves comparing results of CURatio (dashed
line) and KDETREES (solid line) as the C value is changed.
TPR stands for true positive rate and FPR stands for false
positive rate.

not apparent when the gene trees differed from the species
trees, particularly at RF distances of six or greater.

An important feature of CURatio is that it is applicable
to datasets that include ortholog groups where some taxa
lack the gene, as well as ortholog groups with paralogs.
For paralogs, in-paralogs arise from gene duplications on
terminal branches and should not cause deviation from
the constraint tree, whereas out-paralogs arise from gene
duplications on internal branches and consequently differ
from the constraint tree (Figure 3). To account for paralogs,
CURatio modifies the constraint tree as if all paralogs in
an alignment are in-paralogs; for any genome with two or
more sequences in an alignment the corresponding taxon is
represented as the corresponding number of sister taxa in
a monophyletic clade. For the examples in Figure 4, where
the original constraint tree is ((D,C),(E,A),B);, the paralogs
in genomes A and E are treated as in-paralogs to give the
constraint tree ((D,C),((E’,E”),(A’,A”)),B);. In the simulation,
out-paralogs resulted in ratios significantly greater than one
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Fig. 2: LOESS on medians of four sets of ratios fitting a smooth curve through the points. Each set contains 10 points for
each C value. The area between the two dashed lines is the 95% confidence interval. When using a constraint tree with
a different topology from the species tree (”Different trees” columns), the ratio tends to be greater than one. Significant
differences were apparent at RF = 4 for high values of C; at RF ≥ 6, significant differences were also apparent for smaller
C values (C ≤ 2)
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(Figure 4).
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Fig. 3: Examples of constrained and unconstrained tree
configurations for ortholog groups with either in-paralogs
or out-paralogs. In-paralogs arise from gene duplication on
terminal branches, whereas out-paralogs arise from gene
duplication in common ancestors of two or more species.
For non-outlier trees the ratios of constrained to uncon-
strained tree lengths should be close to one, whereas for or-
tholog groups with outlier phylogenies and ortholog groups
with out-paralogs the ratios should be greater than one.

3.2 Analysis of an empirical data set

CURatio was applied to ortholog groups from a set of
12 genomes of fungi in the family Clavicipitaceae; a his-
togram of ratios of constrained tree length to unconstrained
tree length is presented in Figure 5. Although there was
a negative trend between the ratios and the numbers of
genomes containing orthologs in an ortholog group, the
correlation coefficient was −0.433. Thus, there was not a
strong general relationship between whether a gene was
a core gene (present in all 12 genomes) or accessory gene
(present in fewer than all genomes) and the ratio values for
its conformity to the species tree.

It has been noted previously that, in the Clavicipitaceae,
phylogenies of ergot alkaloid biosynthesis (EAS) genes fail
to match phylogenies of core housekeeping genes com-
monly used to infer species relationships [52], [53]. Ortholog
groups for five EAS genes passed the filters (see Section 2.2)
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Fig. 4: Density plots of ratios of constrained to uncon-
strained tree lengths for non-outlier ortholog groups with
in-paralogs and ortholog groups with out-paralogs as dis-
grammed in Figure 3. The p-value of a two-sample t-test
was 2.2 × 10−16, indicating a statistically significant differ-
ence between non-outliers with in-paralog and out-paralog
groups.
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Fig. 5: A histogram of log ratios of constrained tree length to
unconstrained tree length based on the empirical data set of
4266 ortholog groups from 12 annotated fungal genomes.
The lowest observed ratio was approximately 0.994. The
ratios obtained for ergot alkaloid biosynthesis genes are
indicated by arrows.

and were included in our analysis. All five EAS genes gave
ratios exceeding 1.09, and were therefore considered signifi-
cant outliers as expected (Figure 5). Figure 6 compares ratios
for nine core housekeeping genes and a mating type gene
(mtAC) with those of the five EAS genes, easG, easC, easD,
cloA and easA. If, instead of ratios, genes were ordered by RF
values, the difference between EAS genes and housekeeping
genes was much less apparent. With RF = 5, easG was in
the 52nd percentile, and with RF = 9, easC, easD, cloA and
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easA were in the 95th percentile. RF values for housekeeping
genes ranged from 2 to 9, with tefA, rpbB and actG having
RF = 5 (52nd percentile), tubP RF = 7 (80th percentile),
and gapD RF = 9 (95th percentile). In contrast, ratio values
for the ten housekeeping genes in Figure 6 ranged from the
4th to the 73rd percentile, whereas ratio values for the EAS
genes were all in the 99th percentile.
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Fig. 6: Ratios of constrained to unconstrained tree lengths
for nine core housekeeping genes and a mating type gene
(mtAC) with those of the five ergot alkaloid biosynthesis
genes, easG, easC, easD, cloA and easA.

4 DISCUSSION

Our objective was to develop a simple statistical approach to
identify genes with evolutionary histories that significantly
deviate from their corresponding species phylogeny, and
particularly an approach that can accommodate genes that
are missing or duplicated (paralogs) in some genomes. We
have proposed a novel statistical method, CURatio, to
detect outlying gene trees from a large set of gene trees,
for example obtained by whole genome analyses. For each
set of orthologous genes we calculate the length of the MLE
tree constrained to the postulated species tree, divided by
the length of the unconstrained MLE tree to give the ratio
statistic. We approximate the distribution of the ratios from
the observations, such as the entire set of orthologous gene
alignments from the gene annotations generated from mul-
tiple whole-genome sequences. In our simulations without
outliers, as well as in our analysis of empirical data, the
distributions appear close to a gamma function. Therefore,
potential outliers can be identified in the upper tail of
that distribution, such as the 95th or 99th percentile. An
obvious phylogenomic use for this method is to explore
relative deviations from the more common phylogenies,
such as different ratio percentiles, to address questions such
as whether some classes of genes tend to deviate more than
others. Importantly, the CURatio method can be applied to
gene sets in which some genes are lacking in some of the
taxa, making it possible to compare such accessory genes
with the species tree.

We applied the CURatio method to simulated data,
with gene trees derived from the coalescent model, based
on species trees differing by RF distances of 2 through 14,

assumingNe = 10, 000 and various C values for population
depth = Ne×C. With these parameters, average ratios were
significantly different for the same versus different species
trees for C ≥ 0.6 at moderate to high RF distances.

A set of genomes from Clavicipitaceae was chosen for
an empirical test of CURatio because previous investiga-
tions of species and alkaloid gene phylogenies indicated
different evolutionary histories [53]. Of the 12 genomes
included, EAS genes were present in 10 of the genomes.
The maximum number of EAS genes was 14, and nine EAS
genes were shared among all 10 genomes. Despite sharing
a similar topology, easG had a much lower RF (= 5) than
the other EAS genes (RF = 9), simply because easG was
not represented in all of the genomes that contained the
other EAS genes. Nevertheless, the EAS genes all had ratios
in the 99th percentile. Furthermore, the 10 housekeeping
and mating type genes had a wide range of RF values (2
to 9), but all had ratios very close to 1.00. Given the overlap
in RF values, EAS genes were not discoverable as outliers
based on RF. In fact, RF did not correlate significantly with
ratios (R2 = 0.0483). The obvious reason is that RF is a
purely topological measure, and some genes that gave high
RF differed from the constraint tree only in short branches.
Constraining such trees only slightly lengthened them.

For various reasons, only five of the 14 EAS genes passed
the filter to be included in the analysis (see Section 2.2).
Of the excluded genes, three were present in fewer than
five of the genomes, dmaW was duplicated in C. purpurea
(in this run we excluded duplicated genes), the closely
linked easF and easE genes were sometimes misannotated
as a single gene, and the lpsA, lpsB and lpsC genes were
not separated from other nonribosomal peptide synthetase
genes by the OrthoMCL/COCO-CL pipeline. The stringency
of the filter was deemed necessary to minimize cases of out-
liers originating from misannotations or incorrect inferences
of orthology, but in future, consideration can be given to
refining orthology searches and subsequent filters to capture
a greater proportion of shared genes for the CURatio test.
It seems likely that accessory genes were disproportionately
excluded, so more inclusive representation may well affect
the observed distribution of ratios. Additionally, although
not included in our empirical analysis, the implementation
of CURatio allows for inclusion of genes for which more
than one ortholog (up to a user-set maximum) may occur in
a taxon or genome.

Because maximum likelihood estimation is an NP-hard
problem, CURatio is likewise NP-hard: With the best
known exact MLE algorithms, it requires time exponential
in the size of the largest input alignment. However, each
alignment’s MLE trees are calculated independently of the
other alignments, so the algorithm has only linear com-
plexity in the number of alignments. Calculating a single
ratio from an alignment in our empirical data set with 12
taxa and a total size of 40 kilobytes (approximately 3300
bases in length) required 3.1s. Calculating ratios for the
entire empirical data set, with 4266 alignments, required 21
minutes. These timings were performed on a computer with
a 3.40GHz Intel Core i7-6700 processor (8 cores), 16 GB of
memory, and the Ubuntu 17.10 64-bit operating system.

In simulations in which the constraint tree differed from
the species tree by RF distances of 2–14, we observed that
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tree-length ratios leveled out at 1.1–1.3 for C = 2 or greater.
It would be of interest to derive an explicit formula for the
expected ratio under a given model and number of leaves.
Also of interest is the possibility of estimating population
depths based on the distributions of ratios from empirical
data sets.

In this paper, we employed the JC evolutionary model,
a specific case of Markov models, which are popular in
the area of molecular evolution. Markov models have the
“no memory” feature that the transition probabilities de-
pend only upon the current state, which makes it natural
to assume that the nucleotide sites in the DNA sequence
evolved independently of each other. However, such an
assumption is often inappropriate in co-evolution [54]. We
will discuss this situation and develop alternative models in
future work.
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