
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2017

Early Phase Cost Models for Agile Software
Processes in the US DoD

Rosa, Wilson; Madachy, Raymond; Clark, Bradford;
Boehm, Barry
IEEE

Rosa, Wilson, et al. "Early phase cost models for agile software processes in the US
DoD." Empirical Software Engineering and Measurement (ESEM), 2017 ACM/IEEE
International Symposium on. IEEE, 2017.
http://hdl.handle.net/10945/59882

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Early Phase Cost Models for
Agile Software Processes in the US DoD

Wilson Rosa
IT Estimating Division

Naval Center for Cost Analysis
Washington D.C, USA
wilson.rosa@navy.mil

Raymond Madachy
Department of Systems Engineering

Naval Postgraduate School
Monterey, CA, USA
rjmadach@nps.edu

Bradford Clark
Software Metrics, Inc.
Haymarket, VA, USA

brad@software-metrics.com

Barry Boehm
USC Center for Systems and Software Engineering

University of Southern California
Los Angeles, CA, USA

boehm@usc.edu

Abstract—Background: Software effort estimates are necessary
and critical at an early phase for decision makers to establish
initial budgets, and in a government context to select the most
competitive bidder for a contract. The challenge is that estimated
software requirements is the only size information available at
this stage, compounded with the newly increasing adoption of
agile processes in the US DoD.
Aims: The objectives are to improve cost estimation by investi-
gating available sizing measures, and providing practical effort
estimation models for agile software development projects during
the contract bidding phase or earlier.
Method: The analysis explores the effects of independent variables
for product size, peak staff, and domain on effort. The empirical
data for model calibration is from 20 industrial projects com-
pleted recently for the US DoD, among a larger dataset of recent
projects using other lifecycle processes.
Results: Statistical results showed that initial software require-
ments is a valid size metric for estimating agile software develop-
ment effort. Prediction accuracy improves when peak staff and
domain are added as inputs to the cost models.
Conclusion: These models may be used for estimates of agile
projects, and evaluating software development contract cost
proposals with inputs available during the bidding phase or
earlier.

Index Terms—agile software processes, software cost estima-
tion, software effort, software size, software requirements, re-
quirements volatility, peak staff, domain, productivity, interfaces

I. INTRODUCTION

In the United States Department of Defense (US DoD), it is
necessary and most critical to estimate software development
cost in early lifecycle phases when limited data is available.
These initial estimates are used to evaluate proposals for
government source selection, and to establish initial program
budgets. More realistic estimates in the beginning will mini-
mize project cost overruns.

The problem is compounded because agile software pro-
cesses are increasingly used in the DoD, and acquisition
practices must keep pace with the changes. Agile development
processes (e.g. Scrum, Extreme Programming) have been more

prevalent in industry, and are now being adopted more across
the DoD and other government agencies. Thus there is a
dire need for new, accurate, credible cost models calibrated
to actual project data. This study uses empirical data from
completed industry projects extracted from a DoD database.
The majority of agile projects were submitted in the last two
years.

The results are significant because the data provides ini-
tial empirical-based insight into DoD agile projects. It also
introduces the first cost model calibration to completed agile
software projects in the database, and a first comparison of
productivity with traditional processes.

The subset of agile projects is the primary focus of this
work. Results of the larger study covering all projects and
process types are not addressed in this paper, except for a
summary comparison of productivity for agile vs. non-agile
projects.

An important distinction of this approach is using early
phase initial estimates for model inputs and historical cal-
ibration of the cost model. This is pragmatic since those
initial estimated inputs are the only information available for
the early phase budgeting. The contrast between our early
phase model and traditional post-calibrated models such as
COCOMO II [5] are illustrated in Table I.

TABLE I
COMPARISON OF MODEL CALIBRATIONS

Size Cost Factors Effort
Model
Type

Initial
Estimate

Final
Actual

Initial
Estimates

Final
Actuals

Final
Actual

Early Phase x x x
Traditional x x x

II. BACKGROUND

A. DoD Empirical Data and Agile Processes

The source of actual industrial data for the DoD is
the Cost Assessment Data Enterprise (CADE) repository

2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

978-1-5090-4039-1/17 $31.00 © 2017 IEEE

DOI 10.1109/ESEM.2017.10

30

(http://cade.osd.mil) owned by the Office of the Secretary
of Defense for Cost Assessment and Program Evaluation
(OSD CAPE). The quantitative project data is contained in
Software Resources Data Report (SRDR) records. The DoD
acquisition process outlined in the DoD Instruction 5000.02
policy Operation of the Defense Acquisition System mandates
the SRDR as a regulatory contract reporting requirement [11].

The SRDR is used to obtain both the estimated and actual
characteristics of new software developments or upgrades.
Both the Government program office and later the software
contractor submit the SRDR. It constitutes a contract data
deliverable for contractors that formalizes the reporting of
software metric and resource data.

Previously, early phase cost estimation relationships for the
DoD were developed from SRDR data in the CADE repository
using size in source lines of code and military application
domain as predictors [7]. However, none of the data was for
agile projects.

In 2009, a new Defense Authorization Act required DoD
to implement a new acquisition process for IT systems [36].
This new process included principles of Agile development
such as early and continual involvement of the user, multiple
rapidly executed increments or releases of capability, early
successive prototyping to support an evolutionary approach,
and a modular open-systems approach.

The current SRDR forms include identification of the soft-
ware development process used with Agile being an option
(see Section IV-B for more details). Supplemental details of
the processes can be provided in an associated data dictionary.
Agile process definitions for the DoD and implementation
guidelines are provided in [36] and [37].

B. Size Metrics

Selecting the appropriate size metric is instrumental in
improving the accuracy of a software cost estimate at an early
lifecycle phase [22]. During early inception and elaboration,
however, popular size metrics such as the COSMIC method [8]
or Function Points [13] can be approximated but not accurately
measured [16]. In later software development phases these
can be measured with additional artifacts such as Use Case
Diagrams, Class Diagrams, or other UML diagrams ([3], [17],
[21], [22]).

Most recent studies on early phase effort estimation have
used either Function Point Analysis ([2], [10], [13]), COSMIC
[17], Use Case Points ([6], [19], [23], [24]), or UML artifacts
([1], [14]) as the primary size measure.

A recent survey study [34] on agile software effort esti-
mation showed projects frequently use Story Points, Function
Points, and Use Case Points for software size (see Section
III). Although all these are widely accepted, deriving them at
early phases is challenging as these rely on constructs typically
available later in the life cycle ([16], [22], [23]).

In the DoD these constructs are captured in artifacts pro-
vided by software developers after contract award [17]. For
this reason, there is a need to find an alternate size measure

to estimate effort during the contract bidding phase or earlier
([15], [22], [28], [29]).

This study will overcome these limitations by providing ef-
fort estimation models for agile software development projects
at contract bidding phase. The decision to use software require-
ments as a size measure was based on the fact that these can be
obtained in early phases from software documents in the DoD
[12]. Examples of these source documents include Software
Requirements Specification, Requirements Traceability Matrix
and System and Software Requirements Document [12].

III. RELATED WORK

A. Agile Effort Estimation

A systematic literature review was conducted to provide
an overview of the state of the art in the area of effort
estimation in agile software development [33]. A total of 20
peer-reviewed papers were examined. A summary follows:

The analysis revealed whenever software requirements are
given in the form of stories or use case scenarios, Use Case
Points and Story Points were the most frequently used size
metrics respectively. Very few of those studies used traditional
size metrics such as Function Points Analysis and source lines
of code. The authors, however, did not address whether Use
Case Points and Story Points were measured during or after
the contract bidding phase.

The work in [33] differs from this study in two ways. It
uses software requirements in the form of stories or use cases
as opposed to functional requirements. Second, it converts
software requirements into Story Points or Use Case Points
instead of directly using requirements as primary size metric.

A further survey study was conducted to report on the state
of the practice on effort estimation in agile software devel-
opment [34], focusing on a wide range of aspects including
estimation techniques and effort predictors used. The study
was based on surveys collected from 60 agile practitioners
from 16 different countries. The results revealed that 61%
of the respondents selected story points as the preferred size
metric, 17% selected Function Points Analysis, and 10% Use
Case Points. Only a few respondents said they were able to
develop an estimate at the bidding or an earlier phase. In those
cases (7 out of 8), the respondents said they have used expert
judgment instead of story points (or other) because of the lack
of information. The results of this survey suggest story points,
Function Points Analysis, and Use Case Points, are often not
available at contract bidding or earlier life cycle phase.

B. Relating Requirements to Effort Estimation

One approach for estimating software development effort
uses a size measure called requirements-based complexity
(RBC) [29]. RBC is derived using artifacts from the software
requirements specification. According to the authors, complex-
ity of the software has a direct bearing on the required amount
of effort. The computation of RBC requires 12 input variables:

1) Input Complexity
2) Output Complexity
3) Storage Complexity

31

4) Functional Requirements
5) Non-Functional Requirements
6) Personnel Complexity Attributes
7) Design Constraints Imposed
8) Software deployment location
9) External Interfaces

10) Technical Complexity Factors
11) Size of Language
12) Environmental Complexity

The work in [29] is similar to this study in two ways.
First, it uses the number of functional requirements and
external interfaces as size inputs. Second, it considers Software
Requirements Specification as the primary source for size
estimation at early phase. Their work, however, has two
shortcomings. The experimental design poses a threat to the
validity as the equation and individual input parameters were
not tested for statistical significance. In addition, four out of
12 input parameters are qualitative and not available at early
phase – personnel complexity, design constraints, technical
complexity, and environmental complexity.

A measurement procedure called ReqPoints estimates the
size of object-oriented software projects from requirements
specification [1]. The approach consists of extracting artifacts
from Use Case Models (classes) and Sequence Diagrams
(messages) and thereafter, converting these into unadjusted
Function Points using 16 rules. The approach, however, has
three limitations. First, ReqPoints was not validated with actual
software development projects. Second, Use Case Models and
Sequence Diagrams are included in the system and software ar-
chitecture document, which typically becomes available during
the construction phase. Third, ReqPoint may not be applicable
to non-object oriented software projects.

An alternative method for early effort estimation is based
on Use Case Transactions (UCT) and Entity Objects obtained
from four projects developed at the System and Technology
Department of Austral University [24]. The result shows
that using the number of UCT as a notion of size is valid
for predicting software development effort. The analytical
approach is similar to this study in that the size input is based
on the total sum of a specific requirements elaboration type
without applying a complexity weight factor to account for the
fact that some requirements are more complex than others. The
approach, however, has two limitations. The analysis is based
on only four projects from a single entity. The size input relies
on UML artifacts and diagrams that may not be available until
after elaboration phase.

C. Relating Application Domain to Effort Estimation

In our earlier work analyzing DoD projects [26], we de-
veloped an empirical software effort estimation model for
early phase using source lines of code (SLOC) and application
domain as predictors. The analysis was based on CADE data
from 317 projects implemented within the DoD. The dataset
was normalized by grouping data into 12 general complexity
zones called application domains. Categorical variables were
added to account for the impact of the domains. The result

shows that the effect of SLOC on effort is highly significant,
when treated along with application domain. The work is
similar to this study in that it uses the same instrumentation,
data repository, and examines the effect of size and application
domain on effort. However, it differs from this study in four
ways:

• Product size measured in terms of source lines of code.
• It uses the final size (reported at project completion)

rather than estimates size (reported at project initiation).
• Did not account for the effect of peak staff and require-

ments volatility.
• The dataset was only grouped across 12 application do-

mains but did not regroup these into four super domains.
We later extended this work by introducing a simpler

domain-driven effort estimation model [27]. The analysis
framework consisted of mapping the dataset (initially reported
across different application domains) into four general com-
plexity zones called super domains.

The results showed that the effect of super domains on
effort is highly significant, when treated along with SLOC. The
work is similar to this study by using the same taxonomy for
grouping the dataset into four super domains and accounting
for their impact. It differs in that it uses actual SLOC (reported
at project completion) and did not account for the effect of
other cost drivers.

IV. RESEARCH METHOD

A. Population and Sample

The method uses empirical analysis of recent DoD agile
software development project data from submitted SRDRs to
derive early phase cost estimation relationships (CERs) with
metrics available on agile projects. Metrics on initial SRDRs
for model calibration include the number of requirements
(at source selection), peak staff (at proposal), requirements
volatility and application domain.

The sample subset was 20 agile projects from across 14
industrial contractors for the DoD from 2008 to 2016. They
are part of a larger dataset of 196 recent projects using
other lifecycle processes. This study focused on agile projects
reported at the Computer Software Configuration Item (CSCI)
level.

B. Questionnaire and Instrumentation

The primary data collection form used in the study is the
existing SRDR [11]. In our earlier work, this same form was
key to deriving DoD CERs based on reported lines of code
[7], [20], [26].

Each project used in the study contained both, initial
and final SRDR forms. The SRDR Initial Developer Report
was used to collect the initial functional requirements,
estimated external interface requirements, and estimated
peak staff reported at project start. The SRDR Final
Developer Report was used to collect the actual effort, and
requirements volatility reported at project completion. The
SRDR questionnaires and forms are available publicly [11],

32

and can be accessed via the links below:

http://cade.osd.mil/Files/Policy/2011-SRDRInitial.pdf
http://cade.osd.mil/Files/Policy/Initial Developer Report.xlsx
http://cade.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://cade.osd.mil/Files/Policy/Final Developer Report.xlsx

The SRDR questionnaire [11] requires developers to enter
the name of the development process (e.g. Waterfall, Spiral,
Incremental, and Agile). If the developer enters Agile, they
must indicate whether it is part of an Agile acquisition
approach, and whether it would be considered Hybrid Agile
(e.g. Waterfall for Architecture and Requirements, followed
by Agile for design, code, and unit test).

C. Data Normalization

The dataset was normalized for size, effort, and segmented
into domains and agile categories per the steps below.

1) Converting to Person-Months: The raw dataset reported
actual effort in labor hours. The reported labor hours
were then converted into Person-Months using the factor
152 hours per Person-Month from COCOMO II ([4],
[5]), which is commonly used in the DoD for estimation
and planning.

2) Counting Software Requirements: The raw dataset re-
ported total initial functional requirements and total
initial external interface requirements in separate fields;
extracted from the SRDR Initial Developer Report [11].
According to SRDR questionnaire respondents (software
developers), initial functional requirements were deter-
mined by counting the total number of shall statements
contained in the baseline Software Requirements Speci-
fication. Similarly, initial external interface requirements
were determined by counting the total shall statements
contained in the baseline Interface Requirements Spec-
ifications. The initial Software requirements was then
calculated by summing the total initial functional re-
quirements and the total initial external interface require-
ments.

3) Grouping Dataset by Super Domain: The raw dataset
was initially reported across different application do-
mains ([7], [11]). The dataset was then stratified into
four general complexity zones called super domains
[27]. This stratification was adopted from our previous
work [27]. The application domains to super domain
mapping are shown in Table I.

4) Grouping Dataset by Agile Process: The raw dataset
was initially reported as either Agile, Waterfall/Agile,
or Modified Agile. The dataset was then stratified into
two main groups – Agile and Hybrid Agile. The Hy-
brid Agile group included Waterfall/Agile and Modified
Agile.

5) Grouping Dataset by Agile Framework. The raw
dataset and associated dictionary provided limited
information about the Agile framework, as it is not a
required field in the SRDR questionnaire [11]. Based on

available information, projects were reported as Scrum,
Sprints, Lean Software Development, or Iterative
Development. Projects reported as either Sprints or
Scrum were grouped together in a category called
Scrum, as Scrum iterations are actually Sprints.

TABLE II
SUPER DOMAIN TAXONOMY

Super Domain Application Domain
Support (SUPP) Software Tools

Training

Automated Enterprise Information System
Information Enterprise Services
Systems (AIS) Custom AIS Software

Mission Planning

Engineering Test, Measurement, & Diagnostic Equipment
(ENG) Scientific & Simulation

Process Control
System Software

Real-Time (RT) Communications
Real Time Embedded
Command & Control
Vehicle Control
Vehicle Payload
Signal Processing
Microcode & Firmware

D. Research Questions
The goal of this research is to improve cost estimation of

DoD agile software development projects early in the lifecycle.
This leads to the following related research questions for
measurement and analysis:

• What size measures are available in early lifecycle phases
for DoD programs using agile processes?

• What other cost factors are available in early lifecycle
phases for DoD agile projects?

• How well can they predict effort for agile processes?
We found the measures of requirements, peak staff, require-

ments volatility and application domain are recorded in initial
submissions. With these, the more specific questions can be
answered in this study:

• Do initial software requirements relate to final effort?
• Do initial software requirements along with initial peak

staff relate to final effort?
• Do initial software requirements along with initial peak

staff and super domain relate to final
effort?

Larger research questions that this study feeds into are:
• For overall software process understanding, how do agile

and traditional processes compare for productivity, cost,
schedule and quality performance in the DoD?

Looking forward for improved measurement vehicles in the
DoD, the following question bears on regulatory governance
for data collection:

• What size measures and other cost factors should the
government mandate from contractors to better support
program estimates for agile projects and others?

33

E. Variables

The variables examined in the study are identified in Table
III.

TABLE III
VARIABLE NAMES AND DEFINITIONS

Variable Name Type Definition
Person-Months
(PM)

Dependent Actual labor in Person-Months.
Captures all the associated engi-
neering effort, by the developer for
analyzing, designing, coding, test-
ing, integrating, and managing the
software development project.

Initial Software
Requirements
(REQ)

Independent The sum of initial functional re-
quirements and initial external in-
terface requirements

Peak Staff
(STAFF)

Independent The initial peak staff measured in
terms of full-time equivalents re-
ported in the Initial SRDR Devel-
oper Report.

Super Domain
(SD)

Categorical Super domain grouping is denoted
as: Support = 1, AIS = 2, Engineer-
ing = 3, Real-Time = 4

F. Model Validity Measures

The model validation measures are described in Table IV.

TABLE IV
MODEL VALIDITY MEASURES

Measure Symbol Description
Coefficient of
Determination

R2 The Coefficient of Determination
shows how much variation in de-
pendent variable is explained by
the regression equation.

Coefficient of
Variation

CV Percentage expression of the stan-
dard error compared to the mean
of dependent variable. A relative
measure allowing direct compari-
son among models.

Variance
Inflation Factor

VIF Method used to indicate whether
multicollinearity is present in a
multi-regression analysis. A VIF
lower than 10, indicates no multi-
collinearity.

Standard Error SEE Standard Error of the Estimate is a
measure of the difference between
the observed and CER estimated
effort. The SEE is to linear models
as the standard deviation is to a
sample mean

Mean Magnitude
of Relative Error

MMRE This study uses MMRE as the in-
dicator of models accuracy. Low
MMRE is an indication of high
accuracy. MMRE is defined as the
sample mean (M) of the magnitude
of relative error (MME). MME is
the absolute value of the difference
between actual and estimated effort
divided by the actual effort.

G. Demographics and Descriptive Statistics

The sample contains 20 software projects involving four
operating environments, four super domains, and 14 different
software developers. The breakout according to super domain
(horizontal axis) and operating environment (vertical axis) are
shown in Table V.

TABLE V
PROJECT TYPE COUNTS

Operating Super Domain
Environment Support AIS Engineering Real Time
Aircraft 2 0 4 0
Business 1 3 0 0
C4I 0 1 3 5
Missile 0 0 0 1

C4I = command, control, communication, computer, intelligence
AIS = automated information systems

Fig. 1 groups the dataset by Agile framework. The majority
of the projects used the standard Scrum framework [36]
delivering software in iterative sprints. The other four reported
using Lean Software Development adaptations [38], other
iterative agile frameworks or unspecified.

Scrum Other
0
2
4
6
8
10
12
14
16

Agile Framework

N
um

be
r

of
Pr

oj
ec

ts

Fig. 1. Projects by Agile Framework Type

Fig. 2 groups the dataset by actual effort (in Person-
Months). The majority of the projects (15) expended less than
500 person-months in software development activities. Only
two projects expended more than 1000 person-months.

Figure 3 groups the dataset according to the initial software
requirements reported by the developers. The chart indicates
a uniform spread across project sizes.

Fig. 4 displays the average effort per requirement (actual
hours per initial software requirement) for agile software
development projects by super domain. The boxp and whisker
plot shows agile software productivity is influenced by the
application domain. The boxes are bounded by the 1st and
3rd quartiles, Q1 and Q3, with the median shown as a line
in the box. The tails represent values beyond the 1st and 3rd
quartiles. The lower whisker on each is the smallest data value
which is larger than the lower quartile. The upper whisker is
the largest data value which is smaller than the upper quartile.
Data outliers beyond these ranges are indicated with marks.

34

1-100 101-500 501-1000 1001-2000
0
1
2
3
4
5
6
7
8
9

10
11

Person-Months

N
um

be
r

of
Pr

oj
ec

ts

Fig. 2. Projects by Actual Effort Range

1-100 101-500 501-1000 1001-5000
0

1

2

3

4

5

6

7

Initial Software Requirements

N
um

be
r

of
Pr

oj
ec

ts

Fig. 3. Projects by Size Range

0 200 400 600

Real-Time

Engineering

AIS

Support

Hours per Requirement

Fig. 4. Super Domain Productivities Boxplot

V. AGILE EFFORT ESTIMATION MODELS

This section displays three effort models derived using the
agile software project subset (n=20) and commercial statistical
package [30]. It also identifies the best-fitting regression model
that can be constructed.

A. Effort Model Equations

The resulting effort models with increasing independent
variables are in Equations (1), (2), and (3). These models
predict agile software development effort, based on the defense

and business systems projects ranging between 10 and 4900
initial software requirements in the dataset.

Product size is measured using the initial software require-
ments at contract start, and not the actual software require-
ments reported at contract end.

PM = 14.5 ∗ REQ0.5009 (1)

PM = 6.8 ∗ REQ0.4071 ∗ STAFF0.44404 (2)

PM = 1.3 ∗ REQ0.512 ∗ STAFF0.478 ∗ SD1.001 (3)

where
PM = Engineering Labor in Person-Months

REQ = Initial software requirements at the bid
phase

STAFF = Estimated peak staff in full-time equiva-
lent at the bid phase

SD = Super Domain (1 if mission support, 2 if
AIS, 3 if engineering, 4 if real-time)

B. Model Validity

Table VI shows the model validity results. All three vari-
ables examined have a significant effect on software develop-
ment effort as indicated by their p-values. All three models are
appropriate as their variance inflation factor (VIF) indicate no
multicollinearity present in the analysis.

TABLE VI
MODEL VALIDITY MEASURES

p-value VIF
Model Inter. REQ Staff SD REQ Staff SD

(1) 0.0000 0.0002 *** *** *** *** ***
(2) 0.0000 0.0015 0.0559 *** 1.2 1.2 ***
(3) 0.0000 0.0000 0.0045 0.0003 1.4 1.3 1.0

C. Agile Model Accuracy

Table VII compares the accuracy of the agile effort models.
The accuracy dramatically improved when peak staff and super
domain were added to the initial model. The model in (3) is the
best fitting model as it displays the lowest MMRE and highest
R2 compared to the other two. It also exhibits a smaller SEE
for software cost models in general.

TABLE VII
MODEL ACCURACY RESULTS

Model # Variables R2 MMRE CV SEE
(1) 1 53 64% 48% 341
(2) 2 63 52% 36% 265
(3) 3 81 32% 22% 127

35

D. Agile Vs. Traditional Processes

The other portion of the project data for traditional processes
was handled similarly. Though not the focus of this effort, the
two groups do allow for an initial comparison between the
two. The caveat is the relatively small sample of 20 for agile
vs. 176 for traditional (non-agile).

The comparison in Table VIII shows the average productiv-
ities between agile and non-agile software development, mea-
sured as the initial software requirements per actual Person-
Month. The dataset was grouped by size range to control
for the effect of fixed effort on smaller projects. Based on
this comparison, agile software projects appear to be more
productive than non-agile projects.

TABLE VIII
AVERAGE SOFTWARE PRODUCTIVITY COMPARISONS

Size Range Agile Non-Agile
(# Requirements) (Rqts./PM) (Rqts./PM)

1-100 0.37 0.33
101-500 0.96 0.80
501-5000 1.97 1.16

Composite 0.80 0.66

VI. CONCLUSIONS

A. Primary Findings

The regression analysis indicates initial software require-
ments is a valid size measure for predicting agile software
development effort at early phase. An effort estimating model
only based on software requirements is statistically significant
but not very accurate. The model accuracy improves after peak
staff and super domain are incrementally added to the model.

The models may be used for validating contract cost pro-
posals for agile software projects for independent government
cost estimates, as the input variables used in the study are
often available during the bidding phase.

Since the data was collected at the CSCI level, the resulting
models may not be appropriate for projects reported at the
aggregate level due to the excluded cost of subsystem integra-
tion. The models have also not been validated outside of the
regression models dataset size range.

A related result of interest from this first batch of CADE
data containing agile projects is a productivity comparison.
The dataset indicates that agile software projects appear to
be more productive than non-agile projects, and this will be
updated in the future with larger samples.

B. Threats to Validity

This study only examined the impact of software require-
ments, peak staff, and super domain on development effort.
A future investigation should analyze the impact of other cost
drivers such as percent requirements reuse, volatility, process
maturity, and personnel experience.

The study did not apply a size complexity weight factor
to the initial software requirements to account for the fact
that some requirements can be more complex than others. A
future study will mitigate this shortcoming by asking each

organization to apply discrete weights (easy, nominal, and
difficult) to the estimated requirements similar to the one used
in the Constructive Systems Engineering Model [35].

In principle, the analysis framework may apply to commer-
cial sector systems, but this study did not have the data to test
this hypothesis.

A larger dataset beyond 20 projects is preferable to increase
model validity and accuracy, and this data collection is ongo-
ing.

C. Future Work

There are important areas of future work to improve the
usefulness of these model types for practitioners. The software
granularity of modeling can be finer. We intend to develop
similar regression models for agile projects using a dataset
greater than 20. We will also examine the impact of software
requirements on software development effort while controlling
for the effects of development process, process maturity, and
percent reuse.

Given the process trends, DoD acquisition practices must
keep pace with the changing processes. Our research will
support this on technical and regulatory levels. Results will
be transitioned at DoD venues. New CERs for agile processes
across the domains will go in the next edition of the Software
Cost Estimation Metrics Manual for Defense Systems. Recom-
mended improvements to the SRDR to cover agile processes
and size measures will also be submitted to the OSD CAPE
for incorporation.

ACKNOWLEDGMENT

Thanks to Joseph M Diaz (Naval Center for Cost Analysis)
and to the many interviewed data submitters for their outstand-
ing support of this effort.

REFERENCES

[1] S. Abrahao and E. Insfran, ”A Metamodeling Approach to Estimate Soft-
ware Size from Requirements Specifications, Software Engineering and
Advanced Applications, 2008. SEAA ’08. 34th Euromicro Conference,
vol., no., pp.465-475, 3-5 Sept. 2008.

[2] N. Adem and M. Kasirun, ”Automating Function Points analysis based
on functional and non functional requirements text,” in Computer and
Automation Engineering (ICCAE), 2010 The 2nd International Confer-
ence on, vol.5, no., pp. 664-669, 26-28 Feb. 2010.

[3] A. Anton, ”Goal-based requirements analysis, in Requirements Engi-
neering, 1996., Proceedings of the Second International Conference on
, vol., no., pp.136-144, 15-18 Apr 1996.

[4] B. Boehm, Software Engineering Economics, Englewood Cliffs, NJ,
PrenticeHall, 1981.

[5] B. Boehm, C. Abts, W. Brown, S. Chulani, B. Clark, E. Horowitz,
R. Madachy, D. Reifer, and B. Steece, Software Cost Estimation with
COCOMO II, PrenticeHall, 2000.

[6] M. Braz and S. Vergilio, Software Effort Estimation Based on Use
Cases, Computer Software and Applications Conference, COMPSAC
’06. 30th Annual International, Dept. of Comput. Sci., Fed. Univ. of
Parana, Curitiba, 2006, pp. 221-228.

[7] B. Clark and R. Madachy (Eds.). (2015, Apr.). Software Cost
Estimation Metrics Manual for Defense Systems. Software Metrics
Inc., Haymarket, VA. [Online]. Available: http://www.sercuarc.org/wp-
content/uploads/2014/05/Software-Cost-Estimation-Metrics-Manual-for-
Defense-Systems.pdf

36

[8] Common Software Measurement International Consortium. (2009,
May). The COSMIC Functional Size Measurement Method,
Version 3.0.1., Measurement Manual. [Online]. Available:
http://www.cosmicon.com/portal/public/COSMIC%20Method%20v3.0.
1%20Measurement%20Manual.pdf

[9] S. Ferreira, J. Collofello, D. Shunk, G. Mackulak. (2009,
Oct.). Understanding the effects of requirements volatility in
software engineering by using analytical modeling and software
process simulation. Journal of Systems and Software, Volume
82, Issue 10, pp. 1568-1577, ISSN 0164-1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121209000557

[10] J. Cuadrado-Gallego, P. Rodriguez-Soria, A. Gonzalez, D. Castelo, and
S. Hakimuddin, Early Functional Size Estimation with IFPUG Unit
Modified, Computer and Information Science (ICIS), 2010 IEEE/ACIS
9th International Conference on, Comput. Sci. Dept., Univ. of Alcala,
Alcala de Henares, Spain, 2010, pp. 729-733.

[11] Department of Defense (2011, Nov.). Software Resource Data Re-
port. [Online]. Available: http://dcarc.cape.osd.mil/Files/Policy/2011-
SRDRFinal.pdf

[12] Department of Navy. (2010, Sep.). Software Criteria and
Guidance for Systems Engineering Technical Reviews
(SETR) Supplement to Guidebook for Acquisition of
Naval Software Intensive Systems. [Online]. Available:
http://www.secnav.navy.mil/rda/OneSource/Documents/Program

[13] S. Furey. (1997, Apr.). Why We Should Use Function Points [software
metrics]. Software, IEEE, 14(2), pp. 2830. Available: http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=582971&isnumber=12658

[14] M. Heriko, and A. ivkovi. (2008, Jun.). The size and effort esti-
mates in iterative development, Information and Software Technol-
ogy. Volume 50, Issues 78, pp. 772-781, ISSN 0950-5849. Available:
http://www.sciencedirect.com/science/article/pii/S0950584907000870

[15] International Function Point Users Group. (2000, Apr.). Function
Point Counting Practices Manual, Release 4.1.1. [Online]. Available:
http://perun.pmf.uns.ac.rs/old/repository/research/se/functionpoints.pdf

[16] C. Jones, Function points as a universal software metric, SIGSOFT
Softw. Eng. Notes38, 4 (July 2013), 2013, pp. 1-27.

[17] M, Kaya, and O. Demirors, E-Cosmic: A Business Process Model
Based Functional Size Estimation Approach, Software Engineering and
Advanced Applications (SEAA), 2011 37th EUROMICRO Conference
on, Inf. Inst., Middle East Tech. Univ., Ankara, Turkey, 2011, pp. 404-
410.

[18] I. Lipkin, Test Software Development Project Productivity Model, Ph.D.
dissertation, Univ. of Toledo, Toledo, OH, 2011.

[19] M. Ochodek, J. Nawrocki, and K. Kwarciak. (2011,
Mar.). Simplifying effort estimation based on Use Case
Points. Information and Software Technology, Volume
53, Issue 3, pp. 200-213, ISSN 0950-5849. Available:
http://www.sciencedirect.com/science/article/pii/S095058491000176X

[20] R. Madachy, B. Boehm, B. Clark, T. Tan, and W. Rosa, US DoD Ap-
plication Domain Empirical Software Cost Analysis, 2011 International
Symposium on Empirical Software Engineering and Measurement, 2011,
pp. 392 395.

[21] A. Malik, and B. Boehm. (2011, Jul.). Quantifying
requirements elaboration to improve early software cost
estimation. Information Sciences, Volume 181, Issue 13,
1 July 2011, pp. 2747-2760, ISSN 0020-0255. Available:
http://www.sciencedirect.com/science/article/pii/S002002550900526X

[22] A. Malik, Quantitative and Qualitative Analyses of Requirements Elab-
oration for Early Software Size Estimation, PhD Dissertation, Computer
Science Department, University of Southern California, 2011.

[23] A. Nassif, D. Ho, and L. Capretz. (2013, Jan.). Towards an
early software estimation using log-linear regression and a mul-
tilayer perceptron model. Journal of Systems and Software, Vol-
ume 86, Issue 1, pp. 144-160, ISSN 0164-1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212002221

[24] G. Robiolo, R. and R. Orosco, ”An Alternative Method Employing Uses
Cases for Early Effort Estimation,” Software Engineering Workshop,
2007. SEW 2007. 31st IEEE , vol., no., pp.89-98, March 2007-Feb. 8
2007

[25] W. Rosa, T. Packard, A. Krupanand, J. Bilbro, and M.
Hodal. (2013, Feb.). COTS integration and estimation for
ERP. Journal of Systems and Software, Volume 86, Issue
2, February 2013, pp. 538-550, ISSN 0164-1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212002713

[26] W. Rosa, R. Madachy, B. Boehm, B. Clark, ”Simple Empirical Software
Effort Estimation Model, ESEM ’14 Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, Article No. 43.

[27] W. Rosa, B. Clark, B. Boehm, and R. Madachy. (2014, Oct.)
Simple-Empirical Software Cost Estimation. 29th International Fo-
rum on COCOMO and Systems/Software Cost Modeling. [On-
line]. Available: http://csse.usc.edu/new/wp-content/uploads/2014/10/
Simple-Empirical-Software-Cost-Estimation v2.pdf

[28] A. Sharma, and D. Kushwaha, Early estimation of software complexity
using requirement engineering document, SIGSOFT Softw. Eng. Notes
35, 5 October 2010.

[29] A. Sharma, and D. Kushwaha, Estimation of Software Development
Effort from Requirements Based Complexity, Procedia Technology,
Volume 4, 2012, pp. 716-722, ISSN 2212-0173.

[30] TECOLOTE Inc. (2014, Jul.). Automated Cost Esti-
mating Integrated Tools: CO$TAT. [Online]. Available:
http://ww.aceit.com/Pages/Products/ProductPage.aspx?id=
f638a6d8-60e9-414a-9970-7fed249b9d25

[31] M. Tsunoda, Y. Kamei, K. Toda, M. Nagappan, K. Fushida, and
N. Ubayashi, Revisiting software development effort estimation based
on early phase development activities, Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on, Toyo Univ., Saitama,
Japan, 2013, pp. 429-438.

[32] D. Rodrguez, M.A. Sicilia, E. Garca, R. Harrison. (2012, Mar.).
Empirical findings on team size and productivity in software de-
velopment. Journal of Systems and Software, Volume 85, Is-
sue 3, March 2012, pp. 562-570, ISSN 0164-1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121211002366

[33] M. Usman, E. Mendes, F. Weidt, and R. Britto, Effort estimation in agile
software development: a systematic literature review, In Proceedings of
the 10th International Conference on Predictive Models in Software
Engineering (PROMISE ’14). ACM, New York, NY, USA, 2014, pp.
82-91.

[34] M. Usman, E. Mendes, and J. Brstler, Effort estimation in agile software
development: a survey on the state of the practice, In Proceedings of the
19th International Conference on Evaluation and Assessment in Software
Engineering (EASE ’15). ACM, New York, NY, USA, 2015, Article 12,
10 pages.

[35] R. Valerdi, The constructive systems engineering cost model
(COSYSMO), Ph.D. dissertation, Dept. Industrial and System Eng.,
Univ. of Southern California, Los Angeles, CA, 2005.

[36] United States Department of Defense (2016, Mar.). Agile and Earned
Value management: A Program Managers Desk Guide. [Online]. Avail-
able http://www.acq.osd.mil/evm/docs/PARCA

[37] United States Government Accountability Office (2012, Jul.).
SOFTWARE DEVELOPMENT: Effective Practices and Federal
Challenges in Applying Agile Methods. [Online]. Available
http://www.gao.gov/assets/600/593091.pdf

[38] M. Poppendieck, and T. Poppendieck (2003). Lean Software Develop-
ment: An Agile Toolkit, Addison-Wesley Professional

37

