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on the order of p = .01 was reasonable. For this p, 1 - 
@(z) is 7.9 x so one could hardly be more pessi- 
mistic. 

Nevertheless, the candidate and his advisors decided to 
proceed with the recount. The recount was never completed. 
After some fraction of the votes had been recounted, the 
plurality for Candidate 2 had increased and Candidate 1 
called a halt to further recounting. 

5. CONCLUSION 

As noted in the introduction, the model employed here 
is not appropriate when voting machines or automatic tab- 
ulating equipment are employed. The errors that might be 
encountered in such cases include transposition of digits or 
interchanging the entire vote of two candidates. In such a 
case, errors will be clustered and will not be the cumulative 
effect of misclassifying a number of single ballots. 

In other controversial electoral outcomes, the recount re- 
sults have depended on matters such as identifying illegally 
cast ballots or judicial decisions concerning possible dis- 
qualification of improperly marked paper ballots. When 
electoral outcomes have depended on contesting “very few” 
ballots, such issues have played a significant note in decid- 
ing the outcome. The available literature on statistical mod- 
els for election recounts is quite small, but here is a brief 
list of references. 

Stinnett and Blackstrom (1964) gave a historical account 
of the very complex recount of the 1962 Minnesota gub- 
ernatorial election. Judicial review of contested ballots played 
a major role in this election. 

Israels (1975) studied the 1962 Massachusetts gubema- 
torial election. He compared the votes before and after the 

recount to get an estimate of the variability. It is interesting 
that an empirical analysis in that paper agrees substantially 
with the probabilistic result given here. 

Finkelstein and Robbins (1973) suggested randomly re- 
moving a number of votes equal to the number of illegal 
votes from the tally, when there is a known number of illegal 
votes cast. This model was discussed and generalized by 
Gilliland and Meier (1986), who employed six elections as 
illustrations. 

Downs, Gilliland, and Katz (1978), Gilliland and Meier 
(1986), and Gilliland (1984) discussed the 1975 mayoral 
election in Flint, Michigan. A “block” of ballots to be 
tabulated by machine were improperly “coded,” so all votes 
in the block that should have gone to Candidate 1 went to 
Candidate 2 and conversely. They gave a procedure for 
estimating the actual vote received by each candidate. 
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Integral Identities for Random Variables 
EDWARD B. ROCKOWER” 

Using a general method for deriving identities for random 
variables, we find a number of new results involving char- 
acteristic functions and generating functions. The method 
is simply to promote a parameter in an integral relation to 
the status of a random variable and then take expected values 
of both sides of the equation. Results include formulas for 
calculating the characteristic functions for x2, V% l/x, x2 
+ x, RZ = x2 + y2, and so forth in terms of integral 
transforms of the characteristic functions for x and (x, y), 
and so forth. Generalizations to higher dimensions can be 
obtained using the same method. Expressions for inverse/ 
fractional moments, E { n ! } ,  and so forth are also presented, 
demonstrating the method. 
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author thanks E. McKenzie, D. Gaver, and P. A. W. Lewis for advice 
and encouragement, and A. Lawrance for two of the references. This article 
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1. INTRODUCTION 

It is often easier to study a random process using trans- 
forms of the relevant probability distributions. Such trans- 
forms as the characteristic function and the probability 
generating function simplify manipulations involving con- 
volutions of probability distributions and allow us to apply 
powerful methods from complex analysis and integral trans- 
form theory to the solution of differential-difference equa- 
tions arising in the study of probability and stochastic 
processes. The value of techniques for manipulating such 
transforms and of “methods for constructing new charac- 
teristic functions out of given ones” is well known (see 
Feller 1965, p. 477). In fact, the theory of probability “de- 
pends to a large extent on the method of characteristic func- 
tions” (Feller 1960, p. 248). The characteristic function, 
C(w) ,  and the moment generating function, M( O) ,  are used 
for general random variables (rv’s), whereas the probability 
generating function, G(z) ,  is defined for integer-valued rv’s 
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Figure 1. Transform Expressions. 

and the Laplace transform of the pdf, 2(s ) ,  is used for 
nonnegative random variables. 

A number of interesting relations involving these trans- 
forms are found by promoting a parameter in an integral 
expression to the status of an rv and then taking expected 
values of both sides of the equation. In general, there is no 
guarantee that the resulting integrals can be evaluated in 
closed form for all distributions of interest, but the expres- 
sion may be helpful in numerical work. In the probability 
context similar methods have long been used to solve prob- 
lems by averaging conditional results over the conditioning 
variable. The methods presented here may further aid in the 
interpretation of complicated characteristic functions and 
facilitate the identification of independent processes that 
contribute to the result (see, e.g., Rockower and Abraham 
1978). Apart from their usefulness in probabilistic appli- 
cations, our results also provide another means of generating 
new integral identities from old ones. 

Several identities are presented in Sections 2 and 3, dem- 
onstrating the method of derivation. Additional results are 
derived in the Appendix. Figures 1 and 2 summarize these 
identities for probability transforms and expected values, 
respectively. Some examples of calculations illustrating their 
use are carried out in Section 4. 

2. IDENTITIES FOR TRANSFORMS OF 
DISTRIBUTIONS 

Consider the well-known integral expressing the nor- 
malization of a Normal (Gaussian) distribution, in which x 
is an arbitrary constant, 

30 I --m exp[- ( t -x)2 / (2d) ]d t  = 1. 

If we change variables according to 
+ i y ,  this becomes 

d m  1: exp[-it2/(4y) + i t x l d t  = exp[iyx21. 

&/(2y), 1 / ( 2 d )  

3: 

(1) 
We now promote x to be a real random variable and take 
expected values of both sides of the equation, assuming that 
the implicit interchange of orders of integration is justified 

(i.e., that J and E{ }commute). This yields the expression a 
of Figure 1 for the characteristic function of the square of 
an rv Cx2, in terms of C,. Generalizations of this result are 
derived in the Appendix and also appear in Figure 1. 

Given the Laplace transform of the pdf of x, is it possible 
to calculate general expressions involving <x? To answer 
this, consider the definite integral (e.g., Gradshteyn and 
Ryzhik 1980, p. 341) 

lox e x p [ - ~ / [ ~ - b t ~ ] d t  = d m  exp[-2@1. 

(2) 

Let a + x, b + s2/4 to obtain the identity 

[ exp[-x/t2-s252/4]d( = f i / s  e x p [ - s ~ ] .  (3) 

Now, promote x to be a nonnegative rv and average over 
x to obtain the Laplace transform of the pdf of fl, 2@). 
This is presented as expression e in Figure 1. Alternatively, 
a similar integral from Gradshteyn and Ryzhik (1980, p. 399) 
allows one to express Y,,,-(s) in terms of the characteristic 
function C,. Using another definite integral as the starting 
point, the Laplace transform for 1 /x is also evaluated in the 
Appendix. 

3. IDENTITIES FOR NONSTANDARD MOMENTS 
AND AVERAGES 

The methods used in Section 2 can also be employed to 
obtain identities for expected values. Consider the elemen- 
tary integral, where x is just a parameter 

loX s"- 1 exp[ --x s]ds = (n - l)!/x". (4) 

Now, promoting x to be a nonnegative rv, whose pdf falls 
off sufficiently rapidly as x + 0 [e.g., an Erlang (n + l)], 
and taking expected values with respect to x yields 

l / (n-  l ) !  lom s"-l gX(s) ds = E{l/x"}. (5 )  

Letting x + (x  + A) leads immediately to identity a in 
Figure 2. Analogous results for the moment generating func- 
tion (MGF) were also derived by Chao and Strawderman 
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a. [l /(n- l ) ! ]  s"-lexp(-sA)YX(s)ds = E(l/(x+A)"). 

b. l/v'%[y'n-lYX(y)dy = E ( l / G ) .  

c. 2 / f i [ M : ( - t z ) d t  = E{fi}. 

d. 1 YX(s)Jo(bs)ds = E ( l / v x T ) .  

e. 1/(2v) 1_9, exp[-n i e]c,(sin e)de = E{J,,(~)I. 

1. [ G(z)exp[-szldz = E(n!/s"+'). 

g. l G(z)dz = E[ l / (n+l ) ] .  

h. l / w  G(z2)exp[-zZ/(2a2)]dz = E{(2n-l)!! dn}. 

i. (2/4 G(sin2e)de = E((2n - 1)!!/(2n)!!). 

j. l G(l  - y 2 ) d y  = E((2n)!!/(2n+ l)!!).  

l= 

- m  

Figure 2. Expectation Values. 

(1972) and Cressie, Davis, Folks, and Policello (1981) using 
methods similar to the above. Those authors also gave ad- 
ditional applications of this result. 

To obtain fractional moments, first consider the integral 

2 lo* exp[ - a  t2]dt = a. (6) 

Let a + x, a nonnegative rv, and take expected values. 
This yields an expression for E { l / G }  in terms of the La- 
place transform, YG(t2). A slight variation yields a cor- 
responding expression for E { G } .  

Making the change of variable y = r2 results in expres- 
sion b in Figure 2. This can be recognized as a fractional 
integration of order '/2 of the Laplace transform (or MGF). 
Some of the other moments in this section can also be written 
as fractional integro-differentiations of MGF's or Laplace 
transforms. This fact, as well as other extensions (and re- 
lated references) were discussed by Cressie and Borkent 
(1986) and Jones (1986, 1987). 

For a more general fractional moment we might consider 
Lipschitz's integral (see Watson 1958) for the ordinary Bes- 
sel function of zero order, Jo ,  

lom exp[-as]Jo(bs)cis = ~/VXT. (7) 

Promoting a + x, a nonnegative rv, and taking expected 
values of both sides we obtain expression d in Figure 2 for 
E{ l/(x2 + b2)1'2}. Successively differentiating this identity 
with respect to the parameter b produces a family of similar 
identities. 

An identity for an integer-valued rv is obtained by again 
considering the well-known integral defining the gamma 
function T ( n  + l ) ,  

loffi z" exp[-s z]dz = n ! / s " + l .  ( 8 )  

This time let n be the rv and average over it, yielding 
expression f in Figure 2. In particular, when s = 1 ,  this 
yields E{n!} when it exists; that is, the Laplace transform 
of the probability generating function, evaluated at s = 1 ,  
is just E { n ! }  This is in contrast to the factorial moments 
E{n(n - 1) * - * (n - k + 1)) obtained by differentiating G(z) .  
For noninteger rv's we obtain a corresponding expression 
for E{T(x)}. 

Additional expressions for integer-valued random vari- 
ables in Figure 2 are derived in the Appendix. Note the 
double factorial symbol !!, which means, for example, 5!! 
= 5.3-1 .  

4. SOME APPLICATIONS OF THE IDENTITIES 
If x has a Normal distribution with zero mean, then C,(O 

= exp{ - t2d2/2). Using this in expression a of Figure 1 
and performing the integration, we have 

C,Z(~) = d m  exp[ -it2/(4y) - t 2 d / 2 ] d (  

= 1 / V 1  - 2 id -y .  (9) 
This is recognized as the characteristic function for a x2 
distribution with 1 df. (Similarly, if x, y have independent 
normal distributions with the same value of the variance, 
then R 2  = X 2  + Y2 has a negative exponential distribution, 
which follows trivially from expression c in Fig. 1 .) 

Now, let x have a Normal distribution with nonzero mean, 
p; then C,(& = exp{ipt- t2d/2}. Substituting this in 
expression a of Figure 1 yields 

C,Z( y) = d m / f f i  --m exp[ipt-  it2/(4 y) - [ 2 d / 2 ] d t  

= 1 / V 1  - 2 i d y  exp{ip2y/(1 - 2 i d y ) } ,  
(10) 
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which is the characteristic function of an offset x2 distri- 
bution. 

To calculate E{l/fi}, where x is an exponential rv, use 
2(s)  = A/(A + s). Substituting this in expression b of Figure 
2 and using a standard integral, we obtain 

E{l / f i}  = T ~ .  (11) 
This is easily verified by a direct calculation. E { ~ }  is also 
easily verified to be the result produced by expression c of 
Figure 2. 

A less common application is obtained by inserting the 
Laplace transform of the pdf for an exponential distribution 
into expression d of Figure 2: 

This integral was tabulated by Gradshteyn and Ryzhik (1980, 
p. 685), resulting in 

E ( l / V F T T )  = A(T/~)  [Ho(bA) - No(bh)],  (13) 
where Ho and No are Struve and Neumann functions, re- 
spectively, of zero order (No can be replaced with Yo, the 
Bessel function of the second kind). For example, taking 
b = 4 and A = 1 [H0(4) = .13501 and Y0(4) = - .01694; 
see Abramowitz and Stegun 19651, we find for the expo- 
nential distribution, 

E ( l / V m )  = .2387, 

which we also confirmed by direct Gauss-Laguerre inte- 
gration of the left side. 

We now calculate the average of the nth-order Bessel 
function when x has an N(0 ,  a )  distribution with the use of 
expression e from Figure 2. After inserting the characteristic 
function for a normal distribution, using the trigonometric 
identity sin28 = (1 - cos 2 8)/2, and Bessel's integral iden- 
tity, for ZnI2  we have 

(15) E{J,(x)} = exp[ - a2/4]Zn/2(d/4) 

when n is even, and 0 when n is odd. This expression can 
be confirmed by evaluating the expected value directly with 
the help of an integral tabulated by Gradshteyn and Ryzhik 
(1980, p. 710). 

Let G(z) be the generating function €or a Poisson distri- 
bution. G(z) = exp[Ti(z - l)]. Putting this in expression f 
of Figure 2 and integrating yields 

E{n!/s"+'} = l/(s-Ti)exp[-Til, (16) 

E{n!} = 1/(1 -Ti)exp[-Ti]. (17) 

and, in particular, when s = 1, 

This is easily verified, and for a Poisson distribution E{n!} 
is only finite for Ti < 1. 

If we substitute the generating function for a Poisson rv 
into expression h of Figure 2 and perform the integration, 
(letting a = 1) we easily obtain 

E((2n- l)!!} = [ l / ( l  -2ii)1/2]exp[-ii]. (18) 

Again using the generating function for a Poisson rv, 
Note that this is only finite for Ti < Yz. 

after using a trigonometric identity for sin28 and Bessel's 
integral representation for J o ,  expression i of Figure 2 yields 

E((2n - 1)!!/(2n)!!} = exp[ -ii/2]J0(i Ti/2) 

= exp[ -Ti/2]Zo(Ti/2), (19) 

where Zo is the modified Bessel function of zero order. All 
of the applications shown here have been verified with direct 
numerical calculations. 

5. CONCLUSION 
Some of the identities presented may be derived or ver- 

ified using other methods. For example, we originally ob- 
tained Equation (2) using the method of Rockower and 
Abraham (1978), which depends on the existence of all 
moments. Similarly, the expression for E{l/(n + 1)) follows 
easily from integrating, term by term, the infinite series 
definition of G(z).  In fact, expressions for fractional and/ 
or inverse moments, including some of those derived in 
Section 3, have been expressed elsewhere (Cressie and Bor- 
kent 1986; Jones 1986, 1987) in a unified manner in terms 
of fractional integro-differentiations of the MGF, general- 
izing the usual formulas for moments and factorial moments. 

But alternate derivations are not readily identified for all 
of our integral relations. By presenting our unified treatment 
(containing as a proper subset some of the previously men- 
tioned formalisms) it becomes straightforward to obtain new 
integral identities for random variables by a judicious search 
of tables of integrals such as in Gradshteyn and Ryzhik 
(1980). 

APPENDIX: ADDITIONAL RESULTS 
AND EXTENSIONS 

Expression a (Fig. 1) can be extended to more than one 
dimension by multiplying Equation (1) by itself with x + 
y, 5- E ,  and y+ 6 to obtain 

r-m r x  

+ itx - i ~ ~ / ( 4 6 )  + i e y l d t d ~  

= exp[iyx2+i6y2]. (A.l) 

Again consider x, y to be rv's and take expected values of 
both sides, which gives the relation in expression b (Fig. 1) 
for Cx2,y2(y, 6). If we now let 6 = y we obtain the cor- 
responding result for CR2 in expression c (Fig. l), where 
R 2  = X 2  + Y 2  (see Rockower and Abraham 1978). This 
can be generalized further to three or more rv's in an anal- 
ogous manner. 

Multiply Equation (1) by exp(iyx) and take expected 
values to obtain the characteristic function for X 2  + X ,  
expression d (Fig. 1). Again, it is clear that this can be 
generalized further. 

To obtain the Laplace transform of the pdf for the rv 
l/x (i.e., LQX, given gX), consider the integral 

JOw exp[ - a , $ l J o ( b f l ) d t  = l / a  exp[ -b2/(4a)] (A.2) 

(see Watson 1958). Multiply both sides by a and change 
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the parameters b + 2 f i ,  a + x (the latter a nonnegative 
N) to obtain 

[ E{x exp[ - x , $ l } J o [ 2 f l ] d [  = E{exp[ - s / x ] } .  (A.3) 

In terms of the Laplace transform, this is expression f in 
Figure 1. 

Multiply Equation (6) by a, let a + x, and average to 
obtain 

2 / f i  JOE E{x exp[ -xt2]}dt = E{G};  (A.4) 

switching to MGF’s instead of Laplace transforms for this 
result (either could be used here) gives expression c in 
Figure 2. This can be generalized to obtain a formula for 
E{xm+ 112}, with rn an integer, in a straightforward manner. 

Consider one form of Bessel’s integral for the nth-order 
ordinary Bessel function 

lI(2.n) /yTexp[-n i 8 + i x s in  Old0 = JJx) (A.5) 

(see Watson 1958), let x be an IT, and average over all x 
to obtain E{J,(x)} in expression e (Fig. 2). Clearly, this 
result can be generalized in many ways and is somewhat 
reminiscent of the well-known formula 

E{H(x)} = 1/(27r) k(o )C , (o )dw,  (A.6) 

where A(@) is the Fourier transform of H(x). The latter 
equation can, in the spirit of this article, be simply derived 
by taking expected values of x in the representation of H(x) 
as the Fourier transform of A(@). 

I 

Consider the integral 

lo1 z” dz = l / ( n +  1). 04.7) 

Now, let n be a nonnegative integer-valued N and average, 
obtaiaing identity g in Figure 2 for E{ l/(n + l)}, which also 
follows easily from the power series definition of G(z)  and 
is directly analogous to the usual result for E{n}. 

Consider the integral expressing the standard result for 
the even moments of the Normal distribution, 

1 / ~ / : =  ~exp[-z2/(2cr2)lciz = ( 2 n -  I)!!&”, 

(A.8) 

where the double factorial symbol means, for example, 5 ! !  
= 5 3 - 1. Again take averages over n on both sides of the 
equality.and obtain expression h (Fig. 2). When (T = 1 we 
have E{(2n - l)!!}. 

Consider the integrals 

/ow’2 [sin28]”de = 7r/2(2n - 1)!!/(2n)!! (A.9) 

and 

jOTI2 sin e [sin28]ncie = (2n)!!/(2n+ I)!!, (A.10) 

found in Gradshteyn and Ryzhik (1980, p. 369). Letting n 
be an rv and averaging over all values of n on each side of 
the (A.9) and (A.10), we obtain expression i in Figure 2, 
and with the change of variable y = cos2B we obtain ex- 
pression j.  
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