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mean number of boundaries encountered before an 
electron is scattered. Assuming one conduction 
electron per atom, the value of a calculated from 
the results is close to one grain boundary encoun­
ter per scattering event. 

If it is assumed that the material in the grain 
boundary has a liquid configuration, having a 
residual resistivity of about 10-5 ohm cm, and 
it is assumed that the sole cause of grain bound­
ary scattering is the resistivity of the grain 
boundary material, the grain boundary thickness, 
t, is given by 2t= (S/a 10-5) cm, where, assum­
ing spherical grains, 2t is the mean length of the 
journey of electrons through boundary material 
when passing from one grain to another. The 
thickness so calculated is 3.3 x 10-7 cm, or 
about twelve atomic distances. This thickness is 
rather large; about two atomic distances would 
have been expected [3]. Either the residual re­
sistivity of copper in the liquid configuration is 
considerably greater than 10- 5 ohm cm, which is 
unlikely, or the grain boundary region does not 
consist merely of material in the liquid configu­
ration. 

Grain boundaries are often considered to be 
aggregates of dislocations. The resistivity due 
to dislocations in copper has been measured by 

Clarebrough et al. [4], and more recently by 
Faxon [5]. If Foxon's figure of 1.3 x 10-19 ohm 
cm/ dislocation line/ cm2 is taken to be the more 
reliable, a calculation of the dislocation popula­
tion of grain boundaries, assuming that most of 
the resistivity due to dislocation lies in the dis­
location core, would indicate that, in the present 
results , almost all the planes in a grain boundary 
consist of dislocation. This is consistent with the 
large grain boundary angles that might be ex­
pected in such samples, and would account for 
the calculated value of a, which indicates a very 
high order of probability of an electron being 
scattered on each encounter with a grain bound­
ary. 
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The Hall coefficient of indium is positive in 
the bulk material at all magnetic fields. We find 
that the sign of the effect in low fields changes 
in sufficiently thin plates in a perpendicular mag­
netic field. 

The indium plates were pressed from very pure 
bulk material as described previously [1]. They 
were of rectangular shape with an effective area 
of 1 cm by 3 cm after mounting. With this geome-
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try the end effects reduce the measured Hall 
voltage not more than 1.4% [2] and can be ne­
glected. The specimens used are listed in table 1 
with their ratio of d.c. resistivity at 4.2°K (oF) to 
room temperature resistivity (o293) and their 
thickness d. The bulk resistivity PB and the mean 
free path l were calculated by comparing the 
measured resistivity with the Fuchs [3] size ef­
fect theory (assuming diffuse scattering at the 
surface and using the value PB l = 1.27 x 10-15 
nm2 found by Cotti [1]). 

We may note that as pointed out by Cotti, 
Fryer and Olsen [4] a free path so calculated cor-
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Fig. 1. Hall coefficient RH for indium plates of differ­
ent thickness in a perpendicular magnetic field. H and 
N indicate RH at 20°K and 77°K, respectively. 

(1 Vs/m2 = 104 gauss). 

responds to the dominating group of carriers 
only. In indium this covers roughly 43% of the 
Fermi surface. The remainder of the carriers 
have much shorter free paths. 

In the figure we have plotted the Hall coefficient 
RH against a reduced field B Pel pF, where Pe is 
the resistivity at the Debye temperature, 0 = 
100°K. In addition to the sign reversal the fol­
lowing details should be noted: 
(i) Although specimens In 1, In 3 and In 7 show 
quite different size effects in their resistivity, 
there is no detectable difference in the behaviour 
of their Hall coefficients. We therefore consider 
the horizontal part of the curve for In 3 the zero 
field limit for bulk indium. 
(ii} The low field RH in In 3 is in agreement with 
the value at 77°K (In 5). 
{iii) At 4.2<?K Borovik (5] finds a sign reversal in 
bulk indium at a reduced field of about 20 V s/m2. 
As a size effect in Borovik' s specimen can be 
excluded, this discrepancy is difficult to explain. 
At 77°K and 20°K and at high fields our data are 
in agreement with those of Borovik [6] except for 
the sign in general. 

The results are best discussed by using the 
trajectory method described by Pippard [7]. In 
the low field limit it is then easy to show that 
with the field in the z direction the Hall angle 0H 
is given by 

tan 0H = eB f (v .LT (k))
2 

cos
2

a da dkz 
h f (v T (k}} cos2/3 dS 

Sample 

In 1 
In 3 
In 5 
In 6 
In 7 

Table 1 
Specimen properties. 

d Py X 104 
(mm) P293 

0.080 1.4 
0.083 4.31 
0.026 2.75 
0.013 4 .50 
0.63 0.77 

Py 

PB (mm) 

2.5 0.27 
1.25 0.044 
5.1 0.28 
7.8 0,26 
1.17 0.23 

where the integrals are taken over the entire 
Fermi surface. vi is the velocity component per­
pendicular to the magnetic field, T the relaxation 
time , a the angle between v .L and the electric 
field , /3 the angle between v and the electric field. 

We may divide the Fermi surface into three 
regions. The (locally) electron-like main sur­
faces of the second zone surface, the hole-like 
corners of this surface, and the electron-like 
monster in the third zone. The hole-like sign in 
the bulk Hall effect can be understood in the light 
of our previous suggestion that the free path on 
the monster is small if we assume at the same 
time that the free path of the hole-like corners 
is not too much smaller than the free path on the 
main faces. How delicate the balance is, may be 
seen from the electron-like sign of RH at low 
fields in aluminium (8, 9], where the Fermi sur­
face is of the same general character as that of 
indium. 

To account for the sign change we require a 
free path limitation that affects both regions of 
the second zone and allows the relative impor­
tance of the monster to increase. In this connec­
tion it should be pointed out that the explanation 
outlined here is not unique. The suggestion by 
Rayne [10] of hole-like regions in the main faces 
in the second zone need consideration also, but a 
detailed account of the parts of the Fermi sur­
face first affected is beyond the scope of our 
present technique; it may emerge from more ac­
curate work on single crystals. 
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It is recently noted by a number of authors (1-4] that the transport coefficients for classical systen;is 
cannot be expanded in a power series in the density. The evidence is born out the analysis of the cor­
rection terms to the Boltzmann equation. Particularly convincing is the calculation of Sengers (2] who 
found divergencies of a logarithmic type in the so called triple collision term for a two dimensional 
system of hard disks and showed that the various contributions do not compensate each other. Argu­
ments are presented (3, 4] that these divergencies can be repaired by the introduction of higher order 
terms which lead to a logarithmic term in the density in the expansion of the transport coefficient. In 
this letter we report on calculations supporting and extending these results for a simplified model, 
which allows a more detailed calculation and a further analysis of the low density behaviour of the trans­
port coefficients. 

We also use a hard sphere model but instead of having equal masses , we take one sphere in a medium 
of identical infinite heavy spheres. By this limit the dynamics is reduced to the motion of one sphere in 
a random configuration of static rigid spheres. 

We concentrate on the diffusion coefficient D , given by the time integral over the velocity auto- cor­
relation function of the moving sphere: 

00 

D = j dt (v(O) · v(t)) , (1) 
0 

where the average is taken over a canonical distribution of the static sphere configurations. 
The basic function in this model is the conditional probability <pt(x , x') that, given the moving sphere 

· is at t = 0 at the position-velocity point x = (q, v), it is found at the time t later at the position-velocity 
point x'. Introducing the Fourier-Laplace transform <pzk(v, v'), defined by 

00 

<Pzk(v , v') = J d5 q' exp{ik• (q' -q)} J exp(- z t) <Pt(x , x '), 
0 

the diffusion coefficient D is given as: 

(2) 

1? = J as v J as v' g(v) %o(v , v') v-v' , (3) 

where g(v) is the normalized Maxwell-Boltzmann velocity distribution and s the dimensionality of the 
system. 

The standard way to obtain a density expansion for Dis to set up a kinetic equation for <f'zk(v , v') 
which has the general form: 

(z-ik•v) <Pzk(v,v') = o(v-v') + tJlzk<Pzk(v,v'). (4) 

The collision operator Blzk operates on the velocity v only . Various techniques (5] are available to ob­
tain a density expansion of .'~zk in the form 
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