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Abstract 
Advances in automotive sensing systems and speech inter-
faces provide new opportunities for smarter driving assis-
tants or infotainment systems. For both safety and consumer 
satisfaction reasons, any new system which interacts with 
drivers must do so at appropriate times. We asked 63 dri-
vers, ”Is now a good time?” to receive non-driving informa-
tion during a 50-minute drive. We analyzed 2,734 responses 
and synchronized automotive and video data, and show that 
while the chances of choosing a good time can be determined 
with better success using easily accessible automotive data, 
certain nuances in the problem require a richer understand-
ing of the driver and environment states in order to achieve 
higher performance. We illustrate several of these nuances 
with quantitative and qualitative analyses to contribute to 
the understanding of how to design a system that might 
simultaneously minimize the risk of interacting at a bad time 
while maximizing the window of allowable interruption. 
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Figure 1: When is a good time for a car to speak to drivers? 
We created a labeled dataset to fnd the best predictors. 

1 Introduction 

Recent advancements are laying the groundwork for intel-
ligent vehicles that can help drivers with a variety of vehicle-
based activities. Many of these services require user input, 
response or awareness. Speech interaction is often the pre-
ferred mode for these services because it does not require 
visual attention or physical manipulation. Speech interfaces 
can allow the driver to receive non-critical information or 
information not directly related to the driving task such as 
music, messages, or news, and also reciprocally solicit the dri-
ver for input. Examples of in-vehicle information that others 
are developing include: warnings about the car maintenance, 
information about future road closings, ads for local busi-
nesses, reminders of tomorrow’s meetings. There is research 
demonstrating that many individuals perform non-driving 
tasks while driving, and will seek non-driving information 
on hand-held devices even if it is against the law [8]. To be 
clear: our motivation for this work is to make such services 
safer, not to argue for such services. 
Currently, most in-car speech interfaces require the dri-

ver to initialize the conversation via a physical button or a 
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wake word for non-driving related tasks. This "pull" para-
digm prevents the driver from being alarmed or surprised 
by unexpected interactions, but greatly restricts interactive 
service oferings. To enable more proactive interactive ofer-
ings for in-vehicle services, it is desirable to model when are 
good times for vehicle-driver communication. 
In this paper, we address the question of when are good 

and bad moments for speech-based interfaces to engage with 
a driver in non-critical in-vehicle tasks. The goal of our study 
is to predict appropriate moments for interaction in-situ with 
an understanding of the driver-related and contextual factors 
that may lead to better or worse moments for interaction. To 
accomplish this, we conducted a naturalistic driving study 
with 63 drivers who each answered the question “Is now a 
good time?” throughout a 25.8 km (16 mi) course through 
freeway, suburban, and urban driving settings. 
Multi-channel video and vehicle telemetry from our in-

strumented car allow us to examine many factors which 
infuence communication timing. The results of our analysis 
suggest that people prefer to be spoken to when they are 
driving straight at constant speed or when they are stopped. 
They particularly do not want to be spoken to when they 
are in the middle of a driving maneuver or when they are 
of-course. These situations are easy to determine from navi-
gation or CAN bus data. On the other hand, our analysis also 
includes factors that might be difcult to predict without 
performing scene recognition of the car’s surroundings. 

2 Related Work 

Prior research in the domains of speech user interfaces, 
interruption modeling and automotive human-machine in-
teraction have laid the groundwork for this project. Here, we 
review the relevant literature that informs the design and 
analysis of our project. 
Speech Interfaces in Cars 

Currently, speech interfaces in cars are used for navigation, 
music selection, and cell phone interaction [32], although 
there is emerging interest in “artifcial intelligence” assistants 
such as Toyota Motor Corporation’s Yui, that “gauges your 
mood, indulges in personal chitchat and ofers to drive if it 
senses you are sleepy or distracted” [34]. Nissan-Renault are 
working with Microsoft to make an agent to help with pre-
dictive tasks such as “recommending routes to appointments 
stored in a calendar or suggesting a time for the vehicle to be 
taken in for maintenance” [23]. These interfaces take advan-
tage of the long periods of time people spend in their cars 
in daily commutes, and can help people take care of daily 
chores or improve their moods. 

On the other hand, the use of such systems could be unsafe 
if communications are designed poorly. A 2006 literature 
survey on speech interfaces in cars by Baron and Green 

found that in general, across 15 diferent studies, people 
drove at least as well, if not better (less lane variation, steadier 
acceleration/deceleration), when interacting with speech 
interfaces compared to manual interfaces. However, when 
compared to driving with no interface interactions, their 
driving was worse [5]. Some of the interaction advantages 
are due to the auditory vs physical or visual modes. After all, 
auditory interfaces are less detrimental to the driving task 
than visual interfaces [43]. 

However, speech introduces additional cognitive and psy-
chological complexity into the mix. Horrey and Wickens 
found that conversing on a mobile phone degrades driving 
performance, even with a hands-free device, and naturalis-
tic conversations degrade performance more than synthetic 
tasks [24]. Kun, Paek and Medenica found that lower speech 
recognition accuracy in in-simulator speech interfaces low-
ered participants’ driving performance [30]. Nass et al. found 
that mismatches in the emotions felt by drivers and expressed 
by in-vehicle voices afected driving performance [37]. 
Designers of automotive HMI have addressed the need 

to make the UI models and guidelines to make interaction 
fexible, to accommodate the cognitive limitations of drivers, 
to allow natural variation in speech input, and to reinforce 
speech with visual feedback and memory aids [10, 14, 26]. 
Nevertheless, last generation UI paradigms are often built 
around "voice buttons", i.e. voice triggering of existing func-
tion calls. These do not resemble natural speech communi-
cation, nor do they address the interaction issues raised by 
current generation in-vehicle voice assistants, which have 
the ability to proactively ofer services or start interactions. 
These older systems also do not address the car’s ability to 
sense and model the driver’s broader context, so that the 
car might time communications around driving-based tasks 
much as a passenger in the car would. Research suggests 
that drivers’ conversations with passengers in cars degrade 
performance less than conversations with people not in the 
car because passengers modulate conversation during more 
demanding urban driving in naturalistic interaction and driv-
ing situations [12, 17]. 
Modeling Interruptibility 

Although speaking to people while they are driving a car is 
not actually interrupting—because people are frequently able 
to conduct both tasks simultaneously—the HCI research in 
the area of interruptibility is pertinent. McFarlane proposed 
a taxonomy of how interruptions could occur—immediately, 
negotiated (signaling the prospective interruption), medi-
ated (requesting interruption based on user’s load), sched-
uled (breaking in only at planned intervals)—and found that 
people performed best on the primary (continuous) task and 
on the interruption task if the interruptions were negotiated 
or mediated [33]. 
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Working from ideas of predicting interruptibility frst 
posed by Miyata and Norman in 1986 [35], Czerwinski et 
al. found that timing of instant messages could lessen the 
performance impact of the interruptions on primary task 
activity [13]. Fogarty et al. found that the people’s interrupt-
ibility could be predicted using Naive Bayes classifers with 
sensors placed in-situ in the ofce environment [4, 19, 20, 27]. 
Chen and Vertegaal similarly used sensors, but mounted on 
the person rather than in the environment, so as to model 
interruptibility based on user cognitive or physiological state 
instead of task phase [11]. 
The advent of smartphones equipped with a wide vari-

ety of sensors has made it possible for interruptibility to 
be modeled on-line and in-situ. Fisher and Simmons used 
reinforcement learning on smartphones to create a person-
alized model of interruptibility for incoming phone calls 
[18]. Similarly, Anguita et al. used the inertial sensors on 
smartphones to perform human activity recognition using a 
Support Vector Machine [3]. 
Driver modeling and workload management 

In the automotive sector, cellphones have primarily been the 
distraction and interruption that keep people from driving 
well. Numerous attempts have been made to design systems 
to identify driving situations where in-vehicle information, 
mostly audio-based automotive warning alerts, must be man-
aged [2, 6, 36, 42, 45]. Most of these were designed in a top-
down fashion, architected from models of the vehicle-driver 
system and then evaluated with people after the fact. In prac-
tice, systems mostly limited access to cellphones or in-vehicle 
entertainment functions when the car was in motion, and 
formed a priority queue so that emergency alert warnings 
in the car would not overlap or overwhelm the driver [9]. 

One of the limiting factors in previous workload manage-
ment systems was the lack of ability to perform sophisticated 
recognition of the driving context and the driver state. More 
recently this type of sensing and recognition has become 
increasingly viable. Research to detect driver actions [7, 39], 
intent [16, 31], distraction [44], drowsiness [25], inebriation 
[38], and stress [41] using in-vehicle sensors could help with 
workload management. 

Currently, the intelligent vehicle community is looking 
beyond model- and rules- based approaches towards more 
data-driven approaches with large datasets of real-world driv-
ing. For instance, Virginia Tech’s 100-car naturalistic driving 
study was the frst instrumented-vehicle study undertaken 
with the primary purpose of collecting large-scale, naturalis-
tic driving data [15]. More recently, MIT’s Autonomous Vehi-
cle Technology study is gathering data from 25 instrumented 
vehicles collected over months and years, with the goal of 
modeling driver behavior and interaction with current-day 
automated driving features [21]. In the computer vision and 

machine learning community, there is interest in using these 
datasets and developing new ones in order to enable the 
vehicle to predict the drivers’ maneuvers. Brain4Cars, for ex-
ample, uses recurrent neural networks with long short-term 
memory units to try to predict driver actions 3.5 seconds 
before occurrence. [28] 
While these naturalistic driving projects may prove use-

ful for characterizing current day driving activity at scale, 
they do not translate directly into actionable designs. In the 
specifc area of vehicle-driver communication timing, for in-
stance, this type of research does not establish "ground truth" 
to determine when driver vehicle communication should oc-
cur. In the "Sensors know when to interrupt you in the car" 
project, Kim et. al. addressed this by specifcally modeling 
interruptibility using various on-body sensors and vehicle 
telemetry [29]. This work identifes episodes of peripheral 
interaction, when drivers are adjusting the radio or eating, 
as moments where drivers were interruptible. However, it is 
difcult to know if the drivers themselves would agree with 
that assumption. 

Within this landscape, our project, which identifes oppor-
tune moments for vehicle-driver communication by asking 
drivers themselves whether it is a good time to engage, is 
unique. Our human-centered approach employs a negotia-
tion model for communication timing. It focuses on driver 
preference and self-assessment of availability as opposed to 
task category, inferred driver capability or inferred safety 
risk. The question of when and why drivers feel they are 
interruptible may yield diferent answers than previous work 
modeling workload or activity, but it is a critical question 
nonetheless. Our human-centered work focuses on the em-
pirical experience of individual users, and examines what 
aspects of interruptibility can and cannot be easily recog-
nized using existing modeling techniques. 

3 Data Collection 

A total of 63 drivers completed a 25.8 km (16 mi) loop 
through freeway, suburban, and urban driving settings. Each 
driver answered the randomly posed question “Is now a good 
time?” an average of 43 times (SD = 6.6). Contextual infor-
mation was collected using an instrumented 2016 Toyota 
Prius V. The data capture system included multi-channel 
video of the cabin and road, vehicle telemetry, position, in-
ertial forces, and driver physiological data. Data collection 
occurred between August 2017 – May 2018. 
All drivers gave consent to be captured using audio and 

video recorders during the study and further gave consent 
for the recordings to be used for scientifc purposes and to 
be part of a dataset available to the research community. 
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Figure 2: Instrumented 2016 Toyota Prius V. 

Safety 

On-road driving research can be distracting and dangerous, 
but feld studies are critical for recreating ecologically valid 
fndings. Indeed, the potential risk of vehicle-driver commu-
nications is one of the motivating factors for our research. 
To minimize risk to participants and other road users, we 
recruited drivers with valid driver’s licenses as participants, 
vetted the course we intended the participants to take thor-
oughly, and instructed drivers that they could choose not to 
respond if they did not feel they were able to do so safely. 
We believe the level of risk and driving interference to be 
on the same order as verbal navigation instructions. This 
research was conducted under our institution’s IRB protocol 
#41842 and with the purview of our institution’s Ofce of 
Risk Management. 
Participants 

62 drivers (F = 23, M = 37, O = 1) aged between 21–96 years 
(M=40, SD=17) participated in our study. (Note that the de-
mographic data for one driver is missing, so our analyses of 
the survey data show 61 participants. That driver’s real-time 
responses are still part of the overall analyses.) Drivers re-
ported having between 1–80 years (M=21, SD=18) of driving 
experience. 
Data streams 

The data used in this study is part of a larger project collect-
ing naturalistic driving data to help understand when are 
good and bad moments for vehicle-driver communication.1 

From the dataset, we extracted video, location, and auto-
motive data collected using an instrumented 2016 Toyota 
Prius V. The following low-cost, consumer-grade sensors 
were used around the vehicle with their positions shown in 
Figure 2: 
(1) 4× GoPro Hero 4 video cameras at 1920 × 1080px, 30 

Hz with audio. These were mounted facing (i) the road 
ahead, (ii) the driver’s face, (iii) the driver’s body from 

1The data and the annotations associated with this study will be shared 
as part of a concurrent dataset submission, to encourage adoption of a 
data-driven approach to developing driver vehicle interactions. 

the side, and (iv) over the driver’s shoulder looking at 
the steering wheel. 

(2) GlobalSat BU-353-S4 USB GPS - GPRMC sentences, 
data rate: 1 Hz 

(3) 8devices USB2CAN reader - CAN (Controller Area 
Network) Bus data was collected including throttle 
position, brake sensor, speed, & steering angle, data 
rate: 100 Hz 

Video from each camera was streamed via the live HDMI 
output to a video multi-viewer (Eazy2HD HDMI 4 × 1 Quad 
Multi-Viewer) where it was logged as a montaged 1280 × 720 
px video. The montaged video was captured using H. 264 
encoding using Apple QuickTime video capture software at 
an average efective framerate of 30 Hz. 
The various sensor streams were logged using a laptop 

with a 2.5 GHz Intel i7 quad-core processor, 16 GB RAM, and 
a 1 TB solid-state disk. All incoming data was timestamped 
with UNIX epoch time using the Python time subsystem. 

We captured interruption experience samples from drivers 
via speech. During the drive, an audio script prompted the 
driver with the question “Is now a good time?” every 30–120 
seconds. The query time was logged with a UNIX epoch 
timestamp. The driver’s response was recorded via the audio 
and video capture, see Figure 1. 
Driving Route 

The 25.8 km driving route included 5.2 km of highway, 19 
km of suburban surface street, and 1.6 km of urban driving, 
shown in Figure 3. The route included 43 trafc lights, 15 stop 
signs, 6 unprotected left turns (no left turn light protecting 
from oncoming trafc), 5 protected left turns, and 12 right 
turns (all right turns occur at stop signs or trafc lights). The 
route included varying number of lanes and varying trafc 
conditions. The driving sessions occurred between 10:00 and 
15:00 local time so that drivers avoided excessive rush-hour 
trafc. This ensured that each drive was approximately 50 
minutes long. 
Drivers were provided a mobile-phone based GPS navi-

gation of the route using the inRoute GPS Navigation ap-
plication. The application provided directions using speech 
and visual display. Due to issues with GPS signal and data 
coverage, the GPS navigation did not always function cor-
rectly and a paper map of the route including text directions 
was provided as a backup to drivers. Drivers mostly stayed 
on-route, however, some drivers deviated from the course, 
as shown in Figure 3. 
Procedure 

Before the Driving Session We recruited drivers from a univer-
sity campus and the surrounding community. Upon arrival at 
our garage, participants read and agreed to an informed con-
sent form and then completed a questionnaire asking about 
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Figure 3: Left: the instructed driving route given to all subjects. This was a 25.75 km (16 mi) counterclockwise loop covering 
freeway, suburban and urban roads and a variety of protected and unprotected intersections. Right: actual GPS traces from 
the dataset, showing numerous deviations from the intended route, particularly in the urban area to the far right. 

their demographic information and daily driving habits. We 
also checked that each participant had a valid driver’s license. 

An experimenter then explained the purpose of the study 
to the participant, telling them that they would be complet-
ing a loop around the surrounding area while answering 
the question “Is now a good time?” throughout the drive. 
Participants were told to interpret the question as if an intel-
ligent car would provide them with non-critical information 
that they might like to know. We did not specify what con-
tent this information would contain and told participants to 
consider if it was a good time to receive information at all 
assuming it was not critical to the operation of the car or a 
safety warning. The drivers were instructed to answer the 
“Is now a good time?” query with a clear ‘‘YES’’ or ‘‘NO’’ 
unless they felt uncomfortable and preferred to stay silent. 
Drivers were told that they could also provide a rationale 
for their initial answer when they felt it was safe to do so. 
Aside from the interruption query task, drivers were told 
they could behave as they normally would while driving, 
including activities such as listening to the radio. 
Before entering the car, the experimenter went over the 

route with the driver using a paper map. The experimenter 
also showed the driver the InRoute phone based navigation 
system and how to use it. 

The experimenter helped the driver sit in the vehicle and 
adjust the seat and steering wheel. Once seated in the ve-
hicle, the driver was instructed to relax and look forward 
while a fve-minute physiological baseline was taken. During 
these fve-minutes, the experimenter started the other data 
recording systems. Once the baseline was completed, the 
interruption query system was started and the experimenter 
let the driver hear a sample “Is now a good time?” query. The 

experimenter ensured that all drivers could hear the prompt. 
The experimenter told drivers that they could behave as 
they normally would while driving, including listening to 
the radio and using the climate controls. The experimenter 
reminded the participant to drive safely frst and foremost. 
After any fnal questions, the driver left the garage and began 
the route. 
During the Driving Session Drivers completed the drive in 
approximately 50 minutes. During the drive, participants fol-
lowed the navigation directions for the route and answered 
the “Is now a good time?” query. Driver mostly stayed on the 
route, however, there were a number of instances where dri-
vers went of-route. Due to signal issues, the GPS navigation 
did not always automatically reroute drivers. This occurred 
most frequently in the downtown and campus areas of the 
route. 
Afer the Driving Session Upon returning the driver com-
pleted a short questionnaire about their experience. The 
experimenter conducted a fve-minute interview asking the 
driver about what times were good, bad and generally how 
the driver felt during the drive. 

4 Data Processing 

Labeling 

Drivers self-annotated their own communication preferences 
by answering the question “Is now a good time?” as they were 
driving. Drivers were instructed to provide a clear YES/NO 
after each query, or to not respond if they did not feel they 
were able to do so safely–these were coded as NO-ANSWER 
after the fact. The system did not perform any task or ofer 
any services following the question. Drivers were also told 
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Figure 4: Distribution of responses by driver. The response 
ratio of NOs to YESes varied considerably between drivers, 
from 0% at one extreme to over 50% in the other. 

that they could provide a rationale for their answer: for 
example, “No. I am merging onto the freeway.” 

We labeled the driver’s responses by hand to ensure accu-
racy and handle when drivers answered with deviations from 
YES or NO such as “sure” or “not really.” To do this, we created 
15-second clips of each query. These clips included six sec-
onds before the query and nine seconds after the query. We 
also transcribed any rationale that drivers provided. Further, 
we included a short description of what the driver was doing, 
such as “Driving straight. Low trafc ahead.” or “Stopped at 
a trafc light. First car in queue.” Because we were record-
ing what the drivers said objectively, we did not require 
interrater reliability. 
Descriptive Statistics 

We collected 2,734 responses during the experiment, ex-
tracted from 59 hours of driving video. Table 1 shows the 
frequency and distribution of responses. In 77.9% of instances, 
drivers responded yes. We found no signifcant efects of gen-
der (males said yes 78% of the time, females 77%), age, or 
driving experience. However, there was a large amount of 
individual variation, ranging from some participants answer-
ing yes all of the time to several who answered yes less than 
50% of the time. See Figure 4 for the distribution of responses 
by individual. 

5 Why is it a good time (or not)? 

In this section, we focus on what drivers ofer as frst-
person explanations of why they are saying YES or NO, as well 
as third person descriptions of in-vehicle activity performed 
by researchers who watched multi-perspective video clips 
of these moments. 

Table 1: Responses to "Is Now a Good Time?". 

Response Number Percentage 

YES 2,130 77.9% 
NO 545 19.9% 

NO ANSWER 52 1.9% 
OTHER 7 0.3% 

Total 2,734 100.0% 

Table 2: Relative frequency of words most used by 
drivers after responding YES. 

Word Good time freq. Bad time freq. Dif. 

light 261 7 +254 
stop/stopped 220 22 +198 
trafc 211 33 +178 
red 107 1 +106 
just 118 16 +102 
waiting 83 4 +79 
driving 74 4 +70 
straight 61 2 +59 

What Drivers Said 

As part of responding YES or NO when queried, participants 
were invited to provide a reason for why it was or was not a 
good time. Participants provided a reason 1,158 times. Tables 
2 and 3 show the relative frequency of words used in good 
and bad reasons, respectively. Many of these words were 
used together in reasons. For example, a common good-time 
reason was, “I’m just waiting at a stop light.” Another was, 
“I’m driving straight, and trafc is light.” Very diferent words 
were used most frequently to describe bad times, as shown in 
Table 3. Drivers often responded with their intention, such 
as “I’m trying to fgure out the GPS,” or “I need to make this 
turn.” The verb turn is unusual, as it often appears when it 
is a good time as well. Several participants responded with 
“I’m just waiting to turn,” and that was a good time, whereas 
others said, “I can’t fnd my turn,” and that was a bad time. 
What Drivers Were Doing 

Next we analyzed textual annotations of what drivers were 
doing when they answered the question. The relative fre-
quencies of the words were not insightful in this instance– 
‘driving’ was the most frequent word for both good times 
and bad times. Table 4 shows works corresponding the high-
est probability following NO Several of the words relate to 
navigation, including “lost”, “GPS”, and “directions.” 
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Figure 5: Lef: estimated probability of a participant responding YES based on their location along the route. Several notable bad 
times are evident: these typically occur at medium– to high–speed intersections (such as merging on or of a major road), and 
around complex intersections such as in the urban area in the upper right. Intersections with stop-lights, such as the upper 
center are less likely to be considered bad times. Right: scatter plot of responses occurring when subjects were driving on or 
of the designated route. It was found that while driving of the route (i.e. lost or re-routing), a subject’s chances of saying NO 
rose from 19% to 33%. 

Table 3: Relative frequency of words most used by 
drivers after responding NO. 

Word Bad time freq. Good time freq. Dif. 

trying 67 3 +64 
turn/turning 64 31 +33 
fgure 30 0 +30 
make 23 4 +19 
GPS 19 4 +15 
merging 15 3 +12 
intersection 18 7 +11 
left 18 7 +11 
need 12 2 +10 

Within the NO clips we reviewed, a few unusual situations 
stood out. For example, many NOs had to do with unique 
environmental factors; “Trafc is getting more intense and a 
police car pulled someone over on the other side of the street,” 
“There was a big truck,” “Someone almost just backed into me,” 
and “Changing lanes in front of the Ferrari.” These examples 
suggest that there can be specifc things in the environment 
that may make drivers nervous or more vigilant and thus 
reduce their availability for communication. None of these 
things are common, but in fact the uncommonness of the 
situation is what made it a NO moment. 

The presence of vulnerable road users also makes for bad 
times to communicate. Even if drivers were stopped or slow-
ing, we noticed that they would remain more vigilant around 

Table 4: Probability of participant answering NO 
conditioned on words in the activity annotations. 

Word Good time freq. Bad time freq. Probability 

lost 1 13 0.93 
listening 3 16 0.84 
GPS 6 24 0.80 
directions 3 8 0.72 
trying 3 7 0.70 
unprotected 12 9 0.69 
backing 5 7 0.58 
lanes 8 11 0.58 
make 27 35 0.56 
exit/exiting 14 17 0.54 
changing 8 8 0.50 

pedestrians or bikers. Some drivers noted, “Trying to make a 
right on a red and not hit these pedestrians” or “There are bikes 
and people turning. So I’m going to be careful of the biker.” 
Finally, we noticed some of the serial NO and NO-ANSWER 

moments came when people were “groovin to the music,” or 
were busy and wanting to concentrate. 

From an HCI perspective, while these moments may be 
less frequent, they are still important to understand. They 
represent moments that cannot be easily divined using exist-
ing in-vehicle technology, but might be determined through 
connected vehicle networking technology, driver activity 
monitoring, or environmental monitoring. 
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Table 5: Frequency of YES/NO when driver was 
following or had strayed from the designated GPS 
route. 

Good time? 

YES NO 

On the route? YES 1,918 (81%) 440 (19%) 
NO 212 (67%) 105 (33%) 

6 Predicting good times 

The dataset collected ofers numerous ways to predict 
good moments for vehicle-driver communication. Here, we 
focus on some hypotheses generated by the analyses of what 
the drivers mentioned and what we noticed while labeling: if 
people were currently trying to perform a particular driving 
maneuver, whether drivers were lost, and whether the driver 
is anticipating an upcoming event. 
These are initial investigatory analyses, intended to ex-

plore specifc aspects of the problem, and are not intended 
to represent optimal algorithms for predicting vehicle-driver 
communication timing. 
Location 

We asked participants to follow a prescribed route and pro-
vided them with turn-by-turn directions via a GPS. Never-
theless, for a variety of reasons (e.g. construction, ambiguous 
GPS instruction, unable to follow direction safely) partici-
pants frequently exited the prescribed course. In the third 
party coding, it appeared evident that these moments, when 
people were of course, were not good times for participants. 
While on the correct driving route, there were 2,358 re-

sponses (88% of total YES/NO responses) of which 440 were 
negative. While driving of of the correct driving route (dur-
ing which the GPS would have been recalculating), there 
were 317 responses (12% of total YES/NO responses) of which 
105 were negative. Participants who were of route were 
2.12 times more likely to respond negatively than those 
who were not. A chi-square test of independence was per-
formed to examine the relation between being of route 
and whether it was a good time. The relation is signifcant, 
χ2(1, N = 2675) = 35.16, p < .0001). 
CAN Bus-only Analysis 

CAN (Controller Area Network) has been a standard on US 
cars and light trucks since 1994 and became mandatory in 
Europe in 2001, and in the US in 2008. The beneft of being 
able to predict vehicle-driver timing using CAN bus data 
alone is that CAN bus is readily available in existing automo-
biles and hence could improve driver vehicle communication 
timing immediately. 

Data pre-processing CAN data messages pertaining to the 
motion of the vehicle were decoded and synchronized with 
the video and response times. These messages included ve-
hicle speed, accelerator pedal angle, steering wheel angle 
and brake oil pressure. A dataset of CAN bus data clips was 
created by extracting ±5 seconds of data around each of the 
2,734 participant responses. 
Probability heatmaps To explore the relationships between 
the extracted CAN data and the responses of subjects, we 
created pair-wise heat maps representing the empirical prob-
ability of responding YES in diferent parts of the data space 
using a K-nearest neighbors approach. A selection of the 
more revealing heat maps are shown in Figure 6. In the fg-
ure, the transparency of the heat maps are modulated such 
that they become more transparent as the density of obser-
vations declines. 

Figure 6 (left panel) shows that the probability of respond-
ing YES is higher when the steering wheel is straight, and is 
higher still when the car is traveling faster. Also, the darker 
region to the left of -200 degrees wheel angle, as compared to 
the lighter region to the right of 200 degrees, indicates that 
the probability of people saying NO is higher when turning 
left for any speed, which is expected since left turns are often 
across trafc and require more concentration on average. 
Figure 6 (center) plots the change in vehicle speed to 

change in brake pressure. A positive value of change in ve-
hicle speed means that the car is accelerating. For change 
in braking force, zero indicates no change, whereas a pos-
itive number indicates the driver is applying the brake (as 
opposed to releasing it). The yellow patch at the center cor-
responds to no change in speed and no change in brake 
pressure. This indicates that there is a high probability of 
saying YES when the car is moving at a constant speed or is 
completely stopped. The upper left quadrant represents the 
car accelerating from a stop and the lower right quadrant 
represents active braking. From the plot it can be observed 
that people are more likely to say YES while accelerating 
than when braking. 

In Figure 6 (right), we examine the change in braking force 
compared to vehicle speed. This heat map shows that the 
probability of saying yes is higher when the participant is 
releasing the brake versus applying the brake, regardless of 
the speed. It also shows that the probability of saying yes is 
highest when there is no change in brake pressure and the 
car is traveling faster. These support the observations made 
from center plot. 
Feature extraction To try to capture these relationships in a 
simple model for the binary classifcation task of detecting 
good or bad times from CAN data, we extracted the following 
simple-to-compute features from each message stream, x , 
for each response at time t seconds: 
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Figure 6: Pairwise heat maps of CAN data showing the empirical probability of drivers responding YES. Left: There is a high 
probability of saying YES while driving straight. Center: Subjects tended to say YES when the car was stopped or moving at a 
constant speed. Right: Subjects were more likely to say NO while they were actively braking versus releasing the brake. 

(1) Mean value of x over the time windows (t − 5, t − 2.5) 
and (t − 2.5, t ) 

(2) Change in value of x from t − 5 to t − 2.5 and from 
t − 2.5 to t 

(3) Diference in features from (2) 
where the message streams x included vehicle speed, brake 
pressure, steering wheel angle and gas pedal pressure. These 
features formed our “history” feature set. 

In addition, we generated a second, augmented set of “his-
tory + lookahead” features, which used the same features 
calculated above but this time evaluated both over the his-
torical range (t − 5 to t ) and the lookahead range of (t to 
t +3). The purpose of this was to understand the performance 
improvement of being able to perfectly predict the vehicles 
state (as expressed by these CAN signals) 3 seconds into 
the future. The time spans of 5 and 3 seconds were chosen 
empirically and all features were normalized to have zero 
mean and unit variance over the dataset. 
Modeling We model the feature sets using support vector 
machines (SVMs) [22] as they are well-suited to binary clas-
sifcation problems, require relatively limited computation at 
test-time and are a good choice of model when the dataset is 
small and prone to over-ftting. The non-linearity of the de-
cision boundary between good and bad times in the feature 
space can be addressed by choosing non-linear kernels such 
as polynomial functions, radial basis functions or sigmoid 
functions. As shown in Table 1, the classes in the dataset are 
imbalanced with the majority (77.9%) of samples belonging 
to YES. We used a stratifed sampling approach to account for 
this imbalance. This maintains a constant ratio of samples 
belonging to each class in the training set and validation 
sets of all cross validation folds. To further account for the 
class imbalance issue, we weight the cost of misclassifying 
each class with a term which is inversely proportional to the 
class’ frequency of occurrence. We tune the hyperparameters 

Figure 7: Sensitivity vs specifcity for SVM models using 
various kernel functions and extracted CAN data features. 

of the SVMs via grid search with 5-fold cross validation to 
obtain the best model for each kernel tested. 
Analysis In Figure 7 we plot sensitivity vs. specifcity curves 
for various SVM setups. These curves help in the assessment 
of performance of the model at diferent true positive rate 
and true negative rate thresholds (where we consider a true 
positive here to be a correctly identifed bad time). The thick 
lines on the graph show that the radial basis function kernel 
was better at capturing the underlying shape of the feature 
space better than other, less fexible kernels. However, the 
overall performance achieved by the model using historical 
features leaves room for improvement: at 80% performance 
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for correctly detecting bad times for interruption, the sys-
tem would only preserve 35% of the overall driving window 
for correct interruption. This suggests that such features 
extracted from CAN data, though rich enough to draw some 
intuitive conclusions about driver responses (as shown in 
Figure 6) are insufcient to capture the many nuances behind 
whether a driver thinks it is a good time to interrupt. 

The dashed line represents the “history + lookahead” fea-
ture set, where the model is given the beneft of knowing 3 
seconds into the future about the state of the vehicle. While 
performance improves somewhat over the “history”-only 
feature set, the overall performance remains relatively low. 

7 Discussion 

Our goal was to explore specifc aspects of the problem 
which emerged from what people said and what we noted 
people were doing. What did we learn about how to predict 
driver availability? First, simple CAN features alone (such 
as those we extracted in Section 6 do not provide sufcient 
predictive power. Second, being on or of a predesignated 
route is predictive. And third, monitoring driver state and 
intention would increase the accuracy of determining if it is 
a good time to interact. 
CAN Data 

Because of its widespread availability, it would be extremely 
useful if we were able to predict vehicle-driver communi-
cation timing using CAN bus data alone. The CAN data’s 
predictions align with the reasons drivers gave for their 
responses. The heat maps in Figure 6 demonstrate that it 
is a better time to talk when the driver is driving straight 
and when there is little change in brake pressure. This de-
scribes both driving straight and waiting at lights, which 
were among the most frequent words used in reasons that it 
was a good time. 

However, the features we extracted from the CAN data 
alone were not a strong predictor of good times. Figure 7 
shows that if we would like the model to be 80% correct 
about knowing it’s a bad time, it would only be able to in-
terrupt during 35% of the good times. So, while the features 
we extracted from the CAN data might be useful in form-
ing predictions for vehicle-driver timing, they are not very 
powerful on its own. 
Location 

Conversely, location relative to the route is a good predictor. 
Drivers were nearly twice as likely to fnd that it was not a 
good time for non-critical communication when they were 
of-route. This is also refected in the frequency of words the 
drivers used in describing reasons for NO responses, as well 
as what the labelers found when annotating the videos. 

Information about whether people are on- or of-route 
can easily be determined by in-car navigation systems. How-
ever, navigation information is not always readily available 
to vehicle systems because many drivers prefer the turn-
by-turn directions provided by smart phone applications to 
factory-installed navigation [1]. Hence, the use of on-route 
vs of-route as a predictor of communication opportunity is 
currently more accessible for smartphone-based than vehicle-
based applications. Nonetheless, this information is highly 
valuable towards predicting vehicle-driver communication 
timing. 
Driver Monitoring and Intent Prediction 

The reasons that the drivers said it was a bad time (Table 
3) suggest that understanding the driver’s future intent is a 
potential feature for determining when drivers are free to 
interact. Four reasons in particular, trying, fgure, make, and 
need suggest that the driver is preparing to do something or is 
cognitively loaded and thinking about a future action. During 
these moments, drivers were often trying to fnd the next 
road to take or preparing to make a turn. These features may 
be determined using algorithms currently being developed 
to predict the driver’s next maneuver [28] or estimate their 
cognitive load [40]. 

8 Conclusion 

The in-car environment can be a rich context for human-
machine interaction if the interactions can be well-timed. On 
the whole, drivers in our study indicated that they welcome 
non-critical speech-based interaction, and most moments in 
their drives were moments when people felt were a good time 
to talk. However, poorly timed interactions could cause stress 
and even danger to drivers. Hence, data, analysis, modeling 
and prediction of opportune moments for vehicle-driver com-
munication are critically important to future interactions. 

This work builds on the long history in CHI of fguring out 
how to adapt the machine to the needs, preferences and con-
straints of the human. The car is opportune space in which 
to use machine learning to improve interaction. We’ve iden-
tifed that moments when people are of course and feeling 
lost are moments that they do not want to be interrupted 
by some non-critical interaction. Quantifying the correla-
tion against other common-sense claims has real value in 
the life-or-death calculations of what should happen while 
people are driving. We believe this work breaks new ground 
in using machine learning to support human-machine inter-
action, and believe it points a path towards a future where 
machines are responsive to what people want to do and need 
as help to get there. 
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