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Abstract 

Supply networks have become more susceptible to disruptions due to a 

number of factors, including their increasing interconnected structure, the continued 

growth of global supply alternatives, and strategic outsourcing. Multi-tier supply 

networks in aerospace and automotive industries are particularly more exposed to 

disruptions, because the continuity of operations of manufacturers is highly 

vulnerable to disruptions of their suppliers (and of their suppliers’ suppliers, and so 

on). This paper aims to measure the resilience of manufacturers by analyzing the 

resilience of suppliers in multi-tier supply networks. As a result, suppliers that 

adversely impact the resilience of a manufacturer are highlighted, and other 

candidates for suppliers can be examined. We introduce metrics that quantify the 

resilience of suppliers as a function of their vulnerability and recoverability and 

quantify these metrics using Bayesian networks. Information theory is discussed as 

a means to rank the importance of suppliers. 
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INTRODUCTION 

Due to rapid globalization of supply chain alternatives and evolution of strategic 

outsourcing, understanding and measuring disruptions to supply networks has become 

an important area of study. The objective of supply networks has expanded beyond 

short term cost savings to long term strategic benefits like achieving high level of 

resilience. Hendricks and Singhal (2005) stated that the announcement of a supply 

disruption could drop a firm’s stock by an average of 20% six months after the 

announcement. Recent industry examples highlight the need for manufacturing firms to 

recover quickly after disruptions. For example, the Japanese tsunami and earthquake 

had profound implications on global supply chains, inventory levels, profit margins, 

corporate bottom lines, and broad economic output (ZeroHedge 2011). Many of 

Toyota’s part suppliers were unable to deliver parts at their expected volume and 

suffered from significant delays. Toyota was forced to keep some plants in North 

America idle due to shortage of parts  also halted most operations at 18 factories that 

assemble Toyota and Lexus vehicles in Japan (Huffington Post 2015, Ferreira 2012). 

General Motors had to halt their production due to the shortage of materials from 

Japanese suppliers. Nissan also suffered considerably because of its high level of 

dependency on raw material suppliers in the earthquake zone that supplied roughly 

12% of its engines (BBC News 2011), forcing Nissan to stop production at its 

Sunderland, UK plant for several days (Massey 2011, Hosseini and Barker 2016). The 

impact of the Japanese disruption was not limited to the auto industry solely but also 

expanded to other industries like electronics where, for example, Sony suffered from 

shortages of electronics parts and raw materials, which forced them to suspend the 

production at five plants in central and southern Japan producing camera lenses, 

televisions, and other goods (ZeroHedge 2011). These examples highlight that natural 

disasters could pose serious risks to automakers like Toyota which implements lean 

production methods and just-in-time supply chains. Balancing the (i) vulnerability of lean 

production and just-in-time systems and (ii) the high cost of maintaining large 

inventories require manufacturers to focus on the ability to respond flexibly to 

disruptions.  
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Many of the recent studies of resilient supply chain networks have focused on 

assessing the vulnerability of manufacturing firms or capabilities necessary to manage 

disruptions (Ellis et al. 2010; Sheffi 2007). However, in many cases, supply disruptions 

(i.e., stoppage of raw material supply) are not caused at a manufacturing firm’s facilities, 

but rather from its supply networks (Kim et al. 2015). Analyzing disruptions causing 

discontinuity of supply network could be challenging for several reasons. First, 

dependencies among the occurrence of disruptive events must be tracked. For 

example, earthquakes and tsunami are closely related. Tsunami can be caused by 

massive deep-level water displacement which is most common during earthquakes 

under ocean floor. The Japanese tsunami in 2011 indicates that the dependency among 

tsunami and earthquake and its impact on manufacturing industries was not explored 

very well. Second, researchers and industry practitioners largely focus to measure the 

vulnerability of manufacturing firms and first tier of their suppliers due to the complexity 

and large number of suppliers, while a true vulnerability analysis of supply networks can 

be accomplished when the impacts of disruption caused by supplier’s supplier (tier 2 

and tier 3 suppliers) are quantified throughout the supply networks. Third, suppliers can 

be disrupted due to operational, financial or environmental disruptive events. Snyder et 

al. (2010) discuss common modeling approaches of supply chain disruptions, but most 

of these models account for specific decision making situations such as how much to 

keep as surplus inventory.  

In this paper, we propose a methodology that integrates Bayesian networks 

(BNs) and optimization to quantify the resilience of supply networks. BNs are capable of 

describing the causes and effects of system output using graphical framework that 

provides rigorous quantifications of risks. BNs are useful for decision making under risk 

and uncertainty (Fenton and Neil 2013), with risk assessment applications in 

transportation systems, production systems, and water pollution, among others (Garvey 

et al. 2015; Tang et al. 2016; Li et al. 2016; Hosseini and Barker 2016a,b; Qazi et al. 

2017; Liu et al. 2018). The proposed metric measures the resilience of manufacturing 

firms as a function of the vulnerability and recoverability of their direct and indirect 

suppliers. We provide theoretical and managerial implications to identifying and 
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improving the resilience of supply chain networks using forward and backward 

propagation analysis.      

The rest of this paper is organized as follows: Section 2 reveals the literature 

review of supply chain resilience and disruptions. Section 3 discusses the theory of BN. 

New metrics to quantify resilience of supply networks is presented in Section 4. The 

analysis of simulation results are discussed in Section 5, finally the conclusion is given 

in Section 6. 
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BACKGROUND AND LITERATURE REVIEW 

A supply chain disruption is defined as an unanticipated and unforeseen 

disruption that disrupts the normal flow of goods and materials in a supply network 

(Svensson 2000, Hendrick and Singhal 2003, Craighead et al. 2007). Longo and Oren 

(2008) defined supply chain resilience as the probability that a supply chain reacts to 

internal and external disturbances and returns to an equilibrium state in an efficient 

manner. A great deal of attention has been devoted to modeling disruptions to and 

resilience of supply chains from several perspectives, including behavioral (e.g., 

Wagner and Neshat 2010, Ellis et al. 2010), qualitative (e.g., Christopher and Peck 

2004, Tang 2006, Kovacs and Tatham 2009, Kim et al. 2015), quantitative (e.g., Juttner 

et al. 2003, Sheffi and Rice 2005, Craighead et al. 2007, Torabi et al. 2015, Hosseini 

and Barker 2016a), and simulation modeling (Zhao et al. 2011, Nair and Vidal 2011, 

Carvalho et al. 2012). Carvalho et al. (2012) used discrete event simulation to model 

automotive supply chain disruptions, evaluating the impact of different mitigation 

scenarios on the lead time and total cost of supply chains. Wu et al. (2007) modeled the 

extent of propagation impact of disruptions throughout supply chains. Brusset and Teller 

(2017) studied supply chain risks and resilience using structural equations modeling 

(SEM). Their work reveals that (i) tighter integration between echelons and increasing 

supplier and manufacturing flexibility can significantly enhance the resilience, and (ii) 

the perception of external disruption risks to supply chains can actually decrease the 

effort of deploying external capabilities to achieve resilience. Park et al. (2016) also 

utilized SEM to examine the causal relationship between risk taking propensity and 

supply chain disruption occurrences. Mancheri et al. (2018) developed a system 

dynamic simulation model to measure the resilience and vulnerability of a supply chain 

and found several resilience-enhancing mechanisms, including diversity of supply, 

material substitution, recycling, and stockpiling. Garvey et al. (2015) proposed an 

analytical framework to investigate the interdependencies of various risks in supply 

chains. Shin et al. (2011) examined the impact of alternative backorder replenishment 

plans on expected risk. Bode and Wagner (2015) studied the effect of complexity and 

structure of upstream supply chain (supply-side) on the occurrence of disruptions, 
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showing that the several drivers of complexity (i.e., horizontal, vertical, and spatial 

complexity) increase the frequency of disruptions. Blackhurst et al. (2018) used Petri 

nets and clustering algorithms to analyze a supply chain network’s vulnerability and 

evaluate different mitigation strategies in the case of supply chain disruptions. Snyder et 

al. (2010) and Sodhi et al. (2012) investigated the effects of different mitigation 

strategies such as buffer inventory, order reallocation on supply chain disruptions. 

Schemitt and Singh (2011) utilized simulation modeling approach to evaluate the impact 

of disruptions on dynamic supply networks. Schemitt et al. (2017) studied how 

adjustments in order activities could help to a quicker recovery from disruption, showing 

that adaptive ordering as a mitigation tool can trigger an unintended bullwhip effect. 

Carbonara and Pellegrino (2017) developed a computational model to measure the 

value of a postponement strategy in mitigating both demand and supply disruptions.   

Hosseini and Barker (2016a) developed a BN to evaluate suppliers based on 

primary, green, and resilience criteria, identifying factors that contribute to the resilience 

capacity of and probability of disruption of suppliers. Hosseini et al. (2016d) proposed a 

generic framework that consists of five phases: (i) threat analysis, (ii) resilience capacity 

design, (iii) resilience cost evaluation, (iv) resilience quantification, and (v) resilience 

improvement to design resilient supply chain systems. The authors simulated the impact 

of several environmental disruptions on the performance of manufacturing site using BN 

method. In this work, we utilize BN to model the dependencies among suppliers and 

manufacturers, and we propose metrics to quantify the vulnerability, recoverability, and 

resilience of a manufacturer in large scale supply networks. The vulnerability metric 

propagates the impact of a supplier disruption to the manufacturer, while the 

recoverability metric accounts for risk reduction when the supplier functions properly 

with no failure. The resilience of a supplier is then quantified as a ratio of its 

recoverability to vulnerability.  

Bayesian Networks   

BNs have been recognized as a powerful technology for dealing with uncertainty, 

handling risk assessment, and aiding the decision making process. BNs have been 

extensively utilized as a decision support tool in a diverse set of application domains 
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such as risk analysis (Song et al. 201, Smith et al. 2017, Kabir et al. 2018), reliability 

engineering (Langseth and Portinable 2207, Marquez et al. 2010), medical diagnosis 

support (Petousis et al. 2016, Constantinou, et al. 2016), infrastructure resilience 

(Hosseini and Barker 2016a,b, Hosseini et al. 2016d), and decision making (Sierra, et 

al. 2018, Sturlaugson et al. 2017), among others. BNs are particularly useful for risk 

analysis of complex systems for two main reasons: (i) there are numerous 

dependencies among the components of complex system which can be easily modeled 

using BNs, and (ii) BNs are capable of combining historical data and expert knowledge 

when there are a little data available (e.g., modeling the impact of rare disruptive 

events). Unlike black-box models (e.g., neural networks), there are no hidden variables 

in the BN model. Furthermore, BNs are capable of modeling both qualitative and 

quantitative variables. More details about advantages of BNs can be found in Uusitalo 

(2007), Boutselis and McNaught (2018), Qazi et al. (2018) and Fenton and Neil (2013).  

BNs represent random variables and explicitly model the interdependence 

between them (Jensen and Nielsen 2007). BNs are graphically represented by directed 

acyclic graphs with a set of nodes (variables) and set of arcs that express dependency 

or causal relationship among variables. Different types of variables including qualitative 

(low/medium/high), Boolean (yes/no, true/false), or continuous variables can be 

encoded in BN models.  

To mathematically represent the structure of BN, consider a directed acyclic 

graph represented by G, where 𝐺 = (𝑉, 𝐸) and 𝑉 = {𝑋1, 𝑋2, … , 𝑋𝑛} represents a set of 

random variables and E is set of arcs. An outgoing arc from 𝑋𝑖 to 𝑋𝑗 indicates the 

dependency or causal relationship between these two variables such that 𝑋𝑖 is the 

parent of 𝑋𝑗, and 𝑋𝑗 is the child of 𝑋𝑖. Generally speaking, there are three classes of 

nodes in BNs: (i) nodes without any child that are called leaf nodes, (ii) nodes without 

any parent node are called root nodes, and finally (iii) those nodes with parent and child 

nodes are called intermediate nodes. For example, in Figure 1, 𝑋2 and 𝑋3 are root 

nodes,  𝑋4 is the leaf node and 𝑋1 is intermediate node.  
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X2 X1

X3

X4

 

Figure 1. An illustrative example of BN with four variables 

 

The dependency between a child node with their parent nodes can be quantified 

by a conditional probability table (CPT). For the nodes without any parent, unconditional 

probabilities (UPs) or prior probabilities are specified.  

The dependencies among variables of a BN can be quantified by conditional 

probability distributions. Consider a BN with n variables 𝑋1, 𝑋2, … , 𝑋𝑛. The general 

expression for joint probability distribution can be represented as follows: 

 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑃(𝑋1|𝑋2, 𝑋3, … , 𝑋𝑛)𝑃(𝑋2|𝑋3, … , 𝑋𝑛)…𝑃(𝑋𝑛−1|𝑋𝑛)𝑃(𝑋𝑛) (1) 
   

Eq. (1) can be rewritten with Eq. (2). 
 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|𝑋𝑖+1, … , 𝑋𝑛)

𝑛

𝑖=1

 (2) 

 

The joint probability distributions of BN represented in Eq. (2) can be further 

simplified based on the knowledge the parents of each node. For example, if node 𝑋1 

has exactly two parents, 𝑋2 and 𝑋3, then 𝑃(𝑋1|𝑋2, … , 𝑋𝑛) can naturally be substituted 

with 𝑃(𝑋1|𝑋2, 𝑋3). As such, the joint probability distribution can be simplified with Eq. (3). 

 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) =∏𝑃(𝑋𝑖| parents (𝑋𝑖))

𝑛

𝑖=1

 (3) 

 

The full joint probability distribution for the illustrative example depicted in Figure 1 can 

be written with Eq. (4). 

 

𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑃(𝑋2)𝑃(𝑋3)𝑃(𝑋1|𝑋2, 𝑋3)𝑃(𝑋4|𝑋1) (4) 
 

In this case, we need the conditional probability (from a CPT) for 𝑃(𝑋1|𝑋2, 𝑋3) and 

𝑃(𝑋4|𝑋1) and the unconditional probability (or prior probability) for 𝑃(𝑋2) and 𝑃(𝑋3). The 

marginal distribution of each node (variable) can be computed by the marginalization of 
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the joint probability distribution. For example, the formula for marginalization of variable 

𝑋2 is found in Eq. (5). 

 

𝑃(𝑋2) = ∑ 𝑃(𝑋2)𝑃(𝑋3)𝑃(𝑋1|𝑋2, 𝑋3)𝑃(𝑋4|𝑋1)

𝑋1,𝑋3,𝑋4

 (5) 

 

Note that marginalization is a distribution operation over combinations. This implies that 

the global joint probability can be performed by marginalizing the local node probability. 

For example, 𝑃(𝑋2) from Figure 1 can be calculated with Eq. (6). 

 

𝑃(𝑋2) =

(

 
 
∑ 𝑃(𝑋3)

𝑋3

(∑ 𝑃(𝑋1|𝑋2, 𝑋3)𝑃(𝑋3)

𝑋1

(∑ 𝑃(𝑋4|𝑋1)

𝑋4

𝑃(𝑋1)))

)

 
 

 (6) 
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PROPOSED RESILIENCE METRIC 

This section describes the resilience metric calculated for manufacturers as a 

function of supplier vulnerability and recoverability.  

Modeling a Supply Network Disruption 

As discussed earlier, BNs are acyclic directed networks with a set of nodes 

(variables) and arcs. A raw material flow supply can be modeled using BN, where each 

node or variable represents a supplier and direction of material flow captured by an arc 

direction. We assume that the rate of return flow is negligible, so there are no cycles in 

the network. The relationship 𝑋 → 𝑌 represents that material flow supplied from supplier 

𝑋1 to 𝑋2 supplier Y. This also means that a disruption of supplier 𝑋1 can cause a 

disruption of supplier 𝑋2, as materials flow from supplier 𝑋1 to 𝑋2. While an upstream 

supplier can disrupt a downstream supplier (e.g., 𝑋1 disrupting 𝑋2), it is assumed that a 

disrupted downstream supplier will not disrupt an upstream supplier.  

Represent supplier node i with 𝑋𝑖 in a supply network with suppliers, 𝑖 = 1,… , 𝑛, 

and the manufacturer is denoted by O (this is also the target or sink node of the supply 

network). Each supplier 𝑋𝑖 can be either operational or disrupted. Generally, node 𝑋𝑖, 

whose parents 𝐺 are in state 𝑔, is in state 𝑥 with the probability P(𝑥|𝑔) and ∑ P(𝑥|𝑔) =𝑥

1 for every realization of the states of parent nodes. The conditional probabilities P(𝑥|𝑔) 

are called risk parameters. Assume that each node has two binary states (true or false), 

therefore there are 2𝑛 risk parameters at a node with n parents.  

Consider a simple BN model consisting of one manufacturer (node O) and two 

supplier nodes (𝑋1, 𝑋2) as represented in Figure 2. Node O is conditioned on supplier 

nodes 𝑋1 and 𝑋2, which means that the disruption of either supplier can cause the 

disruption of the manufacturer. The prior probability of each supplier is assumed to be 

3%, suggesting each supplier can fail to supply to the manufacturer with the likelihood 

of 3%. Disruption of a supplier induces disruption at O with a specific probability. Table 

1 lists the conditional probabilities of disruption at the manufacturer due to the disruption 

of supplier i.  
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Figure 2. A simple BN with two suppliers and one manufacture 

 

Table 1.  Conditional probability table (CPT) of a manufacturer disruption 

Supplier 1 ( X1) Operational Disrupted 

Supplier 2 ( X2) Operational Disrupted Operational Disrupted 

Mfr disrupted 0.01 0.08 0.12 0.21 

Mfr operational  0.99 0.92 0.88 0.79 

 

According to Table 1, for example, the probability that the manufacturer is 

disrupted if supplier 1 is disrupted and supplier 2 is operational is 0.12, while this 

probability changes to 0.21 when both suppliers are disrupted.  

The prior and joint distribution probabilities of suppliers and the manufacturer are 

represented in Figure 3. The marginal probability of a manufacturer disruption, 

calculated from the conditional probabilities illustrated in Table 1, is 1.54%, which is 

calculated based on Bayes’ theorem from Eq. (6).   

 

𝑃(O disrupted) = ∑ 𝑃(Supplier disrupted |𝑋1, 𝑋2) × 𝑃(𝑋1) × 𝑃(𝑋2) =

𝑋1,𝑋2

 

𝑃(O disrupted| 𝑋1 = disrupted, 𝑋2 = disrupted) × 𝑃(𝑋1 = disrupted) × 𝑃(𝑋2 = disrupted)+ 

𝑃(O disrupted| 𝑋1 = disrupted, 𝑋2 = operational) × 𝑃(𝑋1 = disrupted) × 𝑃(𝑋2 = operational) + 

𝑃(O disrupted| 𝑋1 = operational, 𝑋2 = disrupted) × 𝑃(𝑋1 = operational) × 𝑃(𝑋2 = disrupted)+ 

𝑃(O disrupted| 𝑋1 = operational, 𝑋2 = operational) × 𝑃(𝑋1 = operational) × 𝑃(𝑋2 = operational)  
= (0.21×0.03×0.03)+(0.12×0.03×0.97)+(0.08×0.97×0.03)+(0.01×0.97×0.97)=1.54% 

(6) 
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Figure 3. Prior probabilities of two suppliers and marginal distribution probabilities of the 
manufacturer calculated using CPT 

 

Note that the CPT of a manufacturer disruption represented Table 1 requires 

23 = 8 risk parameters, as there are 𝑛 = 3 nodes, where each node has two binary 

states (True or Disrupted) vs. (False or Operational). In practice, constructing a CPT 

from a manufacturer disruption can be challenging because the manufacturer may 

receive materials from many suppliers, meaning that the disruption of the manufacturer 

is conditioned on the disruption of many suppliers. To deal with this issue, we utilize the 

noisy-OR model (Pearl, 1988) to build the causal relationship between disruption at 

parent and child nodes in large supply networks. The main advantages of utilizing noisy-

OR model include: (i) it significantly reduces the computational efforts in large supply 

networks, particularly when the manufacturer conditions on dozens of suppliers, and (ii) 

the number of required elicitation probabilities is much less relative to a BN is built using 

a CPT.   

Suppose that there are n suppliers, 𝑋1, 𝑋2, … , 𝑋𝑛, that affect the status of O. 

Assume that there is a probability associated with O being disrupted when one and only 

one 𝑋𝑖 (supplier i) is disrupted and all suppliers other than 𝑋𝑖 are operational. The noisy-

OR model for the O node can be expressed as follows:  

 

𝑁𝑜𝑖𝑠𝑦𝑂𝑅(𝑋1, 𝑣𝑂|𝑋1 , 𝑋2, 𝑣𝑂|𝑋2 , … , 𝑋𝑛, 𝑣𝑂|𝑋𝑛 , 𝜃𝑂) (7) 
    

where for each i, 𝑣𝑂|𝑋𝑖 = 𝑃(𝑂 = disrupted |𝑋𝑖 = disrupted, 𝑋𝑗 = operational for each 𝑗 ≠

𝑖) is the conditional probability of the manufacturer being disrupted if and only if the ith 
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supplier is disrupted solely and other suppliers are operational. There is a leak variable, 

𝜃, that represents the probability that the manufacturer is disrupted when all of suppliers 

are operational. The leak variable is taken into account because the disruption of the 

manufacturer does not only depend on supplier disruption but also on several other 

disruptions that may occur at manufacturing sites (e.g., machine failures, labor strikes, 

economic collapse of manufacturer, natural disaster). The leak variable is defined as 

follows: 

 

𝜃𝑂 = 𝑃(𝑂 = disrupted |𝑋1 = operational, 𝑋2 = operational,… , 𝑋𝑛 = operational) (8) 
 

By applying noisy-OR model, we assume that each supplier operates independently of 

others in terms of their effects. To see how to utilize noisy-OR model, consider the 

same example of two suppliers 1 and 2 that feed materials to the manufacturer. The 

conditional probability of a disruption of the manufacturer due to disruption at supplier i, 

∀𝑖 = 1,2, is represented by 𝑣𝑂|𝑋̅𝑖. The leak probability of node O is 𝜃. The prior 

probability of the disruption of supplier I is 𝜂𝑖, and the marginal distribution probability of 

the O node is represented by 𝐹𝑂. Assume that 𝑣𝑂|𝑋̅1 = 40%, , 𝑣𝑂|𝑋̅2 = 55%, 𝜃𝑂 = 5%, 

𝜂1 = 3%, and 𝜂2 = 4%. The marginal probability of a manufacturer disruption is 

calculated in Table 2.  

 

Table 2. Calculating marginal distribution probability of Mfr, F_O, using the noisy-OR 
technique 

States g 𝑃(𝑂|𝑔) 𝑃(𝑔) 

𝑔1 = {𝑋̃1, 𝑋̃2} 𝜃𝑂 = 0.05 (1 − 𝜂1)(1 − 𝜂2) = 0.93 

𝑔2 = {𝑋̃1, 𝑋̅2} 1 − (1 − 𝜃𝑂)(1 − 𝑣𝑂|𝑋̅2) = 0.573 (1 − 𝜂1)𝜂2 = 0.039 

𝑔3 = {𝑋̅1, 𝑋̃2} 1 − (1 − 𝜃𝑂)(1 − 𝑣𝑂|𝑋̅1) = 0.43 𝜂1(1 − 𝜂2) = 0.029 

𝑔4 = {𝑋̅1, 𝑋̅2} 1 − (1 − 𝜃𝑂)(1 − 𝑣𝑂|𝑋̅1)(1 − 𝑣𝑂|𝑋̅2) = 0.74 𝜂1𝜂2 = 0.001 

 𝐹𝑂 =∑𝑃(𝑂|𝑔) × 𝑃(𝑔)

𝑔

= 0.082, 𝐹𝑂 = 8.2%  
 

 

In Table 2, there are four states, 𝑔1, … , 𝑔4. In state 𝑔1, both suppliers are 

operational, (𝑋̃1, 𝑋̃2). In the second state, the first supplier is fully operational (𝑋̃1 is 

100% in the False state), but the second is fully disrupted (𝑋̅2 is 100% in the True state). 

In the third state, supplier 1 is fully disrupted (𝑋̅1), and supplier 2 is operational (𝑋̃2). 
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Finally in the fourth state, both suppliers are disrupted, (𝑋̅1, 𝑋̅2). The probabilities of two 

suppliers and the manufacturer modeled using noisy-OR model is illustrated in Figure 4. 

As shown in Figure 4 and Table 1, the probability 𝐹𝑂 of manufacturer disruption is 8.2%.  

 

 

Figure 4. Prior probabilities of two suppliers and marginal distribution probabilities of the 
manufacturer calculated using noisy-OR model 

 

Proposed Metric for Quantifying the Resilience 

Henry and Ramirez-Marquez (2012) introduced a metric that quantifies the 

resilience of a system, represented by Я(𝑡), as a ratio of recovery to loss of that system 

at time t. The performance of system at time t is denoted by 𝜑(𝑡) in Figure 5. Three 

transitions states have been used in this model: (i) steady state, where system performs 

normally at time 𝑡0 prior disruption occurs, (ii), the vulnerability state where the system 

is affected by disruptive event type j, 𝑒𝑗, that occurs at time 𝑡𝑒, and performance 

gradually reduces to 𝜑(𝑡𝑑) at time 𝑡𝑑, and (iii), the recoverability state, where the 

recovery activity initiates at time 𝑡𝑠 and service function of system increases from 𝜑(𝑡𝑑) 

to 𝜑(𝑡𝑓) at time 𝑡𝑓. Resilience is measured as the ratio of recovery to loss in terms of 

service function as represented in Eq. (9).  

 

Я(𝑡|𝑒𝑗) =
𝜑(𝑡|𝑒𝑗) − 𝜑(𝑡d|𝑒

𝑗)

𝜑(𝑡0) − 𝜑(𝑡d|𝑒𝑗)
 (9) 
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Figure 5. System performance and state transition to describe system resilience (adapted 
from Henry and Ramirez-Marquez 2012). 

 

The resilience measure can be less than 100% if the recovered level is less than 

the loss level, equal to 100% if the recovered level is exactly equal to the loss level, and 

can be greater than 100% if the recovered level is greater than the loss level (e.g., 

where the performance of the system is somehow improved as a result of recovery).  

The resilience of the manufacturer in this paper is measured as a function of its 

vulnerability and recoverability when its supplier fails to supply due to disruption. Let 

Я𝑂|𝑋𝑖 denote the resilience of the manufacturer (node O) corresponding with supplier 𝑋𝑖, 

and let 𝑉𝑂|𝑋̅𝑖 and ℛ𝑂|𝑋̃𝑖 represent the vulnerability and recoverability indices, 

respectively, of the manufacturer given that supplier 𝑋̅𝑖 is disrupted. Я𝑂|𝑋𝑖 is then 

expressed as a function of 𝑉𝑂|𝑋̅𝑖 and ℛ𝑂|𝑋̃𝑖.   

The vulnerability index, 𝑉𝑂|𝑋̅𝑖, measures the percentage of increase on disruption 

risk (marginal disruption probability) of the manufacturer when supplier i (𝑋̅𝑖) is 

disrupted. That is, 𝐹𝑂(𝑋̅𝑖) compared with the baseline case, 𝐹𝑂. To calculate 𝐹𝑂(𝑋̅𝑖), we 

enter evidence describing supplier i, and set its state to be True. This means that we 

make an observation on supplier i when it is disrupted and update the marginal 

probability of the manufacturer through propagation.  

 

𝑉𝑂|𝑋̅𝑖 = (𝐹𝑂(𝑋̅𝑖) − 𝐹𝑂) (10) 
 

The recoverability index ℛ𝑂|𝑋̃𝑖 measures the decrease in disruption risk (marginal 

disruption probability) when supplier i is fully operational. To calculate ℛ𝑂|𝑋̃𝑖, the state of 
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supplier i is changed to 100% False, and the impact is propagated BN to determine the 

disruption risk of the manufacturer. In essence, the recoverability index quantifies the 

improvement of disruption risk of the manufacturer corresponding with supplier i being 

fully operational. The recoverability index is calculated with Eq. (11).    

  

ℛ𝑂|𝑋̃𝑖 = (𝐹𝑂 − 𝐹𝑂(𝑋̃𝑖)) (11) 

 

The resilience value of the manufacturer corresponding with supplier i is 

calculated as the ratio of the recoverability and vulnerability indices shown below:  

 

Я𝑂|𝑋𝑖 =
ℛ𝑂|𝑋̃𝑖
𝑉𝑂|𝑋̅𝑖

=
(𝐹𝑂 − 𝐹𝑂(𝑋̃𝑖))

(𝐹𝑂(𝑋̅𝑖) − 𝐹𝑂)
 (12) 

 

To show how to calculate the resilience index, consider a manufacturer that is 

conditioned on four suppliers (𝑋1, 𝑋2, 𝑋3, 𝑋4). The prior disruption probabilities of the four 

suppliers are 𝜂1 = 3%, 𝜂2 = 4%, 𝜂3 = 5%,  and 𝜂4 = 6%, respectively, and the 

disruption probabilities of the manufacturer given disrupted suppliers are 𝑣𝑂|𝑋̅1 =

35%, 𝑣𝑂|𝑋̅2 = 40%, 𝑣𝑂|𝑋̅3 = 45%,  and 𝑣𝑂|𝑋̅4 = 50%, respectively. The probability of the 

leak variable associated with the manufacturer is 𝑃(𝜃𝑂) = 2%. The disruption risk or 

marginal disruption probability of the manufacturer is then 𝐹𝑂 = 9.53%, as illustrated in 

the baseline BN model in Figure 6. To calculate how much the disruption risk probability 

of the manufacturer can increase if supplier i is disrupted, we set the value of each 

supplier to True (True state = 100%) and propagate the impact of this observation 

throughout the BN to measure the impact of this observation on the risk disruption of the 

manufacturer. For example, Figure 7a show that the disruption risk of the manufacturer 

is 𝐹𝑂(𝑋̅1) = 40.57% when we have evidence that supplier 1 is fully disrupted. 𝑉𝑂|𝑋̅1 is 

calculated as the difference between 𝐹𝑂 and 𝐹𝑂(𝑋̅1) as shown in Table 3. The 

vulnerability index for supplier 1 is 31.04%, which means that the disruption risk of 

manufacturer increases by 31.04% when supplier 1 is disrupted or that the vulnerability 

of the manufacturer with respect to supplier 1 is 31.04%. For suppliers 2, 3, and 4, the 

vulnerability indices are 35.3%, 39.56% and 43.83%, respectively. A simple comparison 

between these four suppliers indicates that 𝑉𝑂|𝑋̅4 > 𝑉𝑂|𝑋̅3 > 𝑉𝑂|𝑋̅2 > 𝑉𝑂|𝑋̅1, suggesting that 
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a disruption of supplier 4 induces more disruption risk to the manufacturer. As such, 

supplier 4 plays a key role on the disruption risk of the manufacturer. The vulnerability 

index value can be obtained by performing inference from cause (supplier i) to effect 

(manufacturer) by setting such evidence that supplier i is 100% disrupted (True state) 

and measuring the resulting impact of this observation on the posterior distribution 

probability of the manufacturer. Considering the illustrative example of the BN model in 

Figure 6, the probability of the manufacturer being disrupted under normal conditions is 

𝐹𝑂 = 9.53%, while this probability can increase to 𝐹𝑂(𝑋̅1) = 40.57% as shown in Figure 

8a when supplier 1 is fully disrupted. Figures 8a-d represent the impact of observational 

inference of the four suppliers on the manufacturer for the BN model given in Figure 6.          

A managerial insight of the vulnerability index comparison across four suppliers 

suggest the importance of reducing the disruption probability of supplier 4 by analyzing 

the threats that can lead to its disruption and developing a pre-disaster strategy (e.g., 

extra inventory pre-positioning, fortifying the physical location of supplier) and post-

disaster resilience strategies (e.g., contracting with backup suppliers).  

The recoverability of the manufacturer with respect to each supplier is calculated 

using Eq. (11). To calculate 𝐹𝑂(𝑋̃𝑖), we set the state of each supplier i to their False 

states by assuming that supplier i is 100% operational and propagate this impact to the 

risk disruption of the manufacturer. The recoverability index of the manufacturer with 

respect to each supplier i is calculated in Table 3. Finally, the resilience of the 

manufacturer with respect to each supplier i is calculated using Eq. (12).   

 

 

Figure 6. BN model, prior probabilities of four suppliers and marginal disruption probability 
of the manufacturer. 
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Table 3. The calculations of the vulnerability, recovery, and resilience indices of the BN 
model given in Figure 6. 

Supplier i Vulnerability index (𝑉𝑂|𝑋̅𝑖) Recoverability index (ℛ𝑂|𝑋̃𝑖) Resilience index (Я𝑂|𝑋𝑖) 

Supplier 1 𝐹𝑂(𝑋̅1) − 𝐹𝑂 = 

40.57%− 9.53% = 31.04% 

𝐹𝑂 − 𝐹𝑂(𝑋̃1) = 

9.53%− 8.57% = 0.96% 
Я𝑂|𝑋1 =

ℛ𝑂|𝑋̃1
𝑉𝑂|𝑋̅1

=0.031% 

Supplier 2 𝐹𝑂(𝑋̅2) − 𝐹𝑂 = 

44.83%− 9.53% = 35.3% 
𝐹𝑂 − 𝐹𝑂(𝑋̃2) = 

9.53%− 8.05% = 1.48% 
Я𝑂|𝑋2 =

ℛ𝑂|𝑋̃2
𝑉𝑂|𝑋̅2

= 0.042% 

Supplier 3 𝐹𝑂(𝑋̅3) − 𝐹𝑂 = 

49.09%− 9.53% = 39.56% 

𝐹𝑂 − 𝐹𝑂(𝑋̃3) = 

9.53%− 7.44% = 2.09% 
Я𝑂|𝑋3 =

ℛ𝑂|𝑋̃3
𝑉𝑂|𝑋̅3

= 0.053% 

Supplier 4 𝐹𝑂(𝑋̅4) − 𝐹𝑂 = 

53.36%− 9.53% = 43.83% 
𝐹𝑂 − 𝐹𝑂(𝑋̃4) = 

9.53%− 6.73% = 2.8% 
Я𝑂|𝑋4 =

ℛ𝑂|𝑋̃4
𝑉𝑂|𝑋̅4

= 0.064% 
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APPLICATION AND EXPERIMENTAL RESULTS 

The proposed metrics are illustrated with a supply network for the center console 

component part of the Tiba sedan produced by SAIPA, an Iranian automobile 

manufacturer. Auto supply networks can be very large since manufacturers can have 

somewhere between 50-1,500 suppliers in the supply base. Hence, analyzing multi-tier 

supply networks with large number of suppliers and causal relationship among suppliers 

can be a difficult task. We utilize the noisy-OR formulation to prevent computational 

burden of analyzing a BN developed for the 29 suppliers of this supply network, as 

illustrated in Figure 7. The disruption probability of the BN model is extracted from 

historical data and expert knowledge, as represented in Figure 9. According to Figure 9, 

the risk of disruption at the manufacturer is 𝐹𝑂 = 8.04%.     

         

 

Figure 7. The BN model of center console supply network of Tiba automobile 
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(a) (b) 

  
(c) (d) 

Figure 8. Evidential reasoning of suppliers’ disruption for calculating F_O (X ̅_i ). 

 

 

Figure 9. Distribution probability of suppliers and manufacturer for the center console 
supply network of a Tiba model automobile. 

 



Acquisition Research Program 
Graduate School of Business & Public Policy - 23 - 

Naval Postgraduate School 

The resilience of the manufacturer with respect to each supplier is illustrated in 

Figure 10. The numerical values show that suppliers 28 and 4 have the highest and 

least resilience, respectively. Supplier 11 is the most resilient supplier among first tier 

suppliers (those with direct links to the manufacturer in Figure 7). Figure 11 illustrates 

the vulnerability and recoverability impact of each supplier on the manufacturer. The 

result of the vulnerability analysis indicates that a disruption to supplier 2 has the 

highest impact on disruption of the manufacturer, while the manufacturer is less 

sensitive to the disruption of suppliers 28, 17, and 10, respectively.   

  

 

Figure 10. The resilience value of the manufacturer with respect to each supplier. 
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Figure 11. The effect of vulnerability and recoverability of each supplier (individually) on the 
manufacturer. 

 

Sensitivity Analysis 

A useful means to examine the validity of an expert-built model is to perform 

sensitivity analysis, whereby it is possible to see which nodes have greatest impact on 

any selected target node. To gain more insights into the operation and disruption states 

of the manufacturer, we perform sensitivity analysis on the state of the manufacturer 

with respect to each supplier. From a purely visual perspective, the length of the bars 

corresponding to each supplier can be thought of as a measure of the impact of the 

supplier on the manufacturer. Figure 12a depicts the impact of each supplier on the 

disruption of the manufacturer. The vertical line at 0.074 on the horizontal axis depicts 

the crossover of a supplier going from operable to disrupted. For example, the 

probability of the manufacturer being disrupted given the result of supplier 2 goes from 

7.4% (when supplier 2 is operable) to 21.5% (when supplier 2 is disrupted). Suppliers 2 

and 5 have by far the most impact on the manufacturer. The sensitivity analysis of 

suppliers on the manufacturer being operable is illustrated in Figure 12b on the right 

and represents the complement of the Figure 12a.        
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(a) (b) 

Figure 12. Sensitivity analysis graph showing which suppliers most impact on the 
manufacturer being (a) disrupted and (b) operable. 

 

Node Force Visualization of Supply Network 

Here we perform node force analysis to explore the strength of suppliers and the 

manufacturer. Node force, a heuristic metric that is used to study the importance of 

suppliers across the entire BN, is defined as the sum of the incoming and outgoing 

forces. The node force of the suppliers is graphically depicted in Figure 13, where the 

size of each node is proportional to its node force: the higher node force per node is, the 

more strength the node is in the BN. Further, the thickness of the arc between nodes in 

Figure 13 represents the strength of the conditional dependency between nodes. 

The node force visualization in Figure 13 shows that the manufacturer has the 

highest strength due to its 14 incoming arcs. Supplier 25 has the second highest 

strength with one incoming and four outgoing arcs. With regard to arc thickness, 

suppliers 25 and 21 are tightly dependent with the highest joint probability. There also 

exists a strong dependency between suppliers 8 and 22. Note that among first tier 

suppliers, supplier 7 has the highest dependency with the manufacturer.     
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Figure 13. Node force mapping of supply network 

 

Uncertainty Analysis of Suppliers 

In a traditional statistical analysis, covariance and correlation between variables 

are examined to establish their relative importance, specifically with regard to the target 

variable. Here, we take an alternative approach to investigate the importance of each 

supplier with regard to the operability of the manufacturer based on information theory 

by considering how the uncertainty of the states of the manufacturer is affected by the 

supplier. 

Entropy is a key measure of uncertainty in information theory (Wang 2008; Pele 

et al. 2017). More specifically, we utilize entropy as a tool to measure the uncertainty 

manifested in the probability distribution of the manufacturer. The entropy for a discrete 

distribution is defined as a measure of expected log-losses, as in Eq. (11), where 𝐻(𝑋) 

is the entropy of variable X, x is the state of variable X, and 𝑃(𝑥) is the probability 

distribution of variable X on state x. 

 

𝐻(𝑋) = −∑𝑃(𝑥)

𝑥∈𝑋

log2𝑃(𝑥) (11) 
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Suppose X is a binary variable with two states of True and False, 𝑋 =

{True, False}. The uncertainty of variable X reaches its maximum (1) when the 

probability distribution of X is uniformly distributed (True=50%, False=50%), as 

illustrated in Figure 14a. The uncertainty of variable X is at its minimum value of 0 when 

the probability of either True or False sate is 100%, suggesting that there is no 

uncertainty involved with variable X, as illustrated in Figure 14b. Finally, the uncertainty 

of X with probability distribution of True=75% and False=25% is illustrated in Figure 14c 

and the elements of the calculation are shown in Eq. (12).  

 

   
(a) (b) (c) 

Figure 14. Entropy value of variable X with different probability distribution cases 

 

𝐻(𝑋) = −[0.75 × log2(0.75) + 0.25 × log2(0.25)] = 0.811 (12) 
 

Although Eq. (11) is an entropy measure that quantifies the uncertainty involving 

a single variable X, we are interested in measuring the entropy of X in the context of 

other variables. As such, mutual information is used to depict how the knowledge of 

other variable reduces the uncertainty of the variable of interest. In this study, we would 

like to see how the knowledge of supplier i can reduce uncertainty on the manufacturer. 

The mutual information between two variables X (predictive variable) and Y (target 

variable), denoted by 𝐼(𝑌, 𝑋) is defined by the difference between the marginal 

probability of the target variable, 𝐻(𝑌), and conditional entropy of target variable Y given 

predictive variable X, 𝐻(𝑌|𝑋).   

  

𝐼(𝑌, 𝑋) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) (13) 
 

To demonstrate the calculation of mutual information, consider a supplier as the 

predictive variable and the manufacturer as the target variable. The prior probabilities of 

the supplier being disrupted and operational are 0.12 and 0.88, respectively, as 
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illustrated in Figure 15. Assume Table 4 represents the CPT of the manufacturer given 

the supplier. The marginal probability distribution of the manufacturer illustrated in 

Figure 15 is calculated with Eq. (14). 

 

Table 4. Conditional probability table (CPT) of a manufacturer disruption  

Supplier  False True 

False 0.98 0.02 

True 0.11 0.89 

 

 

Figure 15. Prior and marginal probability distributions of the supplier and the manufacturer. 

 

         𝐻(Mfr) = −[0.8756 × log2(0.8756) + 0.1244 × log2(0.1244)] = 0.5419 

  𝐻(Mfr|Supplier)
= 𝑃(Supplier = False) × 𝐻(Mfr|Supplier = False)
+ 𝑃(Supplier = True) × 𝐻(Mfr|Supplier = True)
= (0.88 × 0.141) + (0.12 × 0.499) = 0.184 

          𝐼(Mfr, Supplier) = 𝐻(Mfr) − 𝐻(Mfr|Supplier) = 0.5419 − 0.184 = 0.3579 

(14) 

 

   

Figure 16. Entropy of the manufacturer and marginal entropy of the manufacturer given the 
supplier. 

 

The mutual information of the manufacturer and supplier is 0.357 as calculated in 

Eq. (14), suggesting that the knowledge about the supplier can reduce the uncertainty in 

characterizing the manufacturer by 35.7%. While the primary focus of this work is to 
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characterize the importance of suppliers on the manufacturer, this approach also 

enables the evaluation of the importance of lower tier suppliers to top tier suppliers. The 

mutual information can effectively measure the uncertainty associated with variable of 

interest regardless of what type of the relationship (linear or nonlinear) existing between 

those two variables.   

The intuitive interpretation of mutual information in this study is that a supplier 

that reduces more uncertainty with regard to the manufacturer is more important. The 

mutual information measure can provide a complementary perspective to resilience 

metric discussed in section 3.2. We plot importance versus resilience in the multi-

quadrant chart in Figure 17. This plot divides into four quadrants. One could surmise 

that the most critical suppliers are the ones located in the upper left quadrant (suppliers 

2, 9, 19, 21, 22, 26), as they are highly important with regards to the manufacturer but 

not sufficiently resilient. As such, the manufacturer can look to other suppliers to take 

their place or request that they improve their pre-disaster and post-disaster resilience 

strategies to reduce the risk of disruption propagation throughout the supply network. 

Suppliers located in the upper right quadrant are also considered important but probably 

do not need major revisions in their resilience strategies. Finally, suppliers located in the 

lower left quadrant lack resilience but are not deemed as important as other less 

resilient suppliers.  
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Figure 17. Quadrant plot analysis of percentile resilience versus percentile of importance 
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CONCLUSIONS 

Supply chains have become more susceptible to disruptions due to the 

globalization of business, the complexity and competitiveness of supply chain 

structures, and the increasing occurrence of major disruptive events. To ensure the 

continuous operation of supply chain networks, the constituents of the supply chain 

must be prepared for disruptive events with quick response and high recovery capacity. 

Complex manufacturing supply networks, like those in the automobile industry that have 

a large number of local and global suppliers, can be more vulnerable as there exist 

more opportunities for cascading effects. Hence, it is important for manufactures to 

have a means to measure the vulnerability and recoverability of not only first tier 

suppliers, but second and third tier supplier as well.  

In this paper, we propose vulnerability and recoverability metrics, the 

combination of which describe resilience. The vulnerability metric quantifies the change 

in risk of a disruption of a manufacturer with respect when a particular supplier is 

disrupted. The recoverability metric quantifies the level of deceases in total risk of 

disruption of the manufacturer with respect to supplier when supplier is fully operational. 

The resilience of the manufacturer with respect to supplier is then defined as a ratio of 

recoverability to vulnerability. The resilience metric can capture the ripple effect of a 

supplier disruption throughout the supply network by the causal inference property of 

Bayesian networks. In complex supply chains with large number of suppliers, it is critical 

for manufacturers to identify the resilience level of their important suppliers.  

Mutual information theory is used to determine the importance level of suppliers. 

The combination of importance and resilience provide a more holistic direction for future 

action: Identify those suppliers that are considered to be important to the operation of 

the manufacturer but that result in an increased probability of manufacturer disruption 

(i.e., suppliers that are less resilient). Changes in supplier selection could result, or the 

manufacturer can change contracts with existing important but less resilient suppliers 

such that they engage in more effective pre- and post-disruption planning. 
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Research Output 

A conference paper was submitted to the 2018 Acquisition Research 

Symposium, but the abstract for the paper was not accepted for the conference. A 

journal article discussing the methodology and results of this report is being prepared 

for submission. 
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